一元一次不等式应用题
一元一次不等式15道应用题

一、综合题(共15题;共160分)1.(2015•凉山州)2015年5月6日,凉山州政府在邛海“空列”项目考察座谈会上与多方达成初步合作意向,决定共同出资亿元,建设40千米的邛海空中列车.据测算,将有24千米的“空列”轨道架设在水上,其余架设在陆地上,并且每千米水上建设费用比陆地建设费用多亿元.(1)求每千米“空列”轨道的水上建设费用和陆地建设费用各需多少亿元(2)预计在某段“空列”轨道的建设中,每天至少需要运送沙石1600m3,施工方准备租用大、小两种运输车共10辆,已知每辆大车每天运送沙石200m3,每辆小车每天运送沙石120m3,大、小车每天每辆租车费用分别为1000元、700元,且要求每天租车的总费用不超过9300元,问施工方有几种租车方案哪种租车方案费用最低,最低费用是多少》2.(2015•攀枝花)某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市一次性购进两种商品共80件,且恰好用去1600元,问购进甲、乙两种商品各多少件!(2)若该超市要使两种商品共80件的购进费用不超过1640元,且总利润(利润=售价﹣进价)不少于600元.请你帮助该超市设计相应的进货方案,并指出使该超市利润最大的方案.3.(2015•钦州)某体育馆计划从一家体育用品商店一次性购买若干个气排球和篮球(每个气排球的价格都相同,每个篮球的价格都相同).经洽谈,购买1个气排球和2个篮球共需210元;购买2个气排球和3个篮球共需340元.|(1)每个气排球和每个篮球的价格各是多少元(2)该体育馆决定从这家体育用品商店一次性购买气排球和篮球共50个,总费用不超过3200元,且购买气排球的个数少于30个,应选择哪种购买方案可使总费用最低最低费用是多少元》4.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案&5.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要万元,购买2台电脑和1台电子白板需要万元.(1)求每台电脑、每台电子白板各多少万元(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低./"6.某超市销售甲、乙两种商品,五月份该超市第一次购进甲商品50件,乙商品30件,用去1400元,第二次购进甲商品40件,乙商品40件,用去1600元.(1)求两种商品进价分别是多少元.(2)由于商品受到市民欢迎,六月份决定再购进甲乙两种商品共80件,且进价不变,甲种商品售价15元,乙种商品售价40元,该超市为使甲、乙两种商品共80件的总利润(利润=售价﹣进价)不少于600元,但又不超过610元.请你帮助该超市设计相应的进货方案.^7.师生积极为地震灾区捐款,在得知灾区急需帐篷后,立即到当地的一家帐篷厂采购,该厂生产的帐篷有两种规格:可供3人居住的小帐篷,价格每顶160元;可供10人居住的大帐篷,价格每顶400元。
10道一元一次不等式应用题和答案过程

一元一次不等式解应用题一、某水产品市场管理部门规划建造面积为2400平方米的大棚,大棚内设A种类型和B 种类型的店面共80间,每间A种类型的店面的平均面积为28平方米,月租费为400元,每间B种类型的店面的平均面积为20平方米,,月租费为360元,全部店面的建造面积不低于大棚总面积的85%。
(1)试确定A种类型店面的数量?(2)该大棚管理部门通过了解,A种类型店面的出租率为75%,B种类型店面的出租率为90%,为使店面的月租费最高,应建造A种类型的店面多少间?解:设A种类型店面为a间,B种为80-a间根据题意28a+20(80-a)≥2400×85%28a+1600-20a≥20408a≥440a≥55A型店面至少55间设月租费为y元y=75%a×400+90%(80-a)×360=300a+25920-324a=25920-24a很明显,a≥55,所以当a=55时,可以获得最大月租费为25920-24x55=24600元二、水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到情况:1、每亩地水面组建为500元,。
2、每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;3、每公斤蟹苗的价格为75元,其饲养费用为525元,当年可或1400元收益;4、每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益;问题:1、水产养殖的成本包括水面年租金,苗种费用和饲养费用,求每亩水面虾蟹混合养殖的年利润(利润=收益—成本);2、李大爷现有资金25000元,他准备再向银行贷款不超过25000元,用于蟹虾混合养殖,已知银行贷款的年利率为10%,试问李大爷应租多少亩水面,并向银行贷款多少元,可使年利润达到36600元?解:1、水面年租金=500元苗种费用=75x4+15x20=300+300=600元饲养费=525x4+85x20=2100+1700=3800元成本=500+600+3800=4900元收益1400x4+160x20=5600+3200=8800元利润(每亩的年利润)=8800-4900=3900元2、设租a亩水面,贷款为4900a-25000元那么收益为8800a成本=4900a≤25000+250004900a≤50000a≤50000/4900≈10.20亩利润=3900a-(4900a-25000)×10%3900a-(4900a-25000)×10%=366003900a-490a+2500=366003410a=34100所以a=10亩贷款(4900x10-25000)=49000-25000=24000元三、某物流公司,要将300吨物资运往某地,现有A、B两种型号的车可供调用,已知A 型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?解:设还需要B型车a辆,由题意得20×5+15a≥30015a≥200a≥40/3解得a≥13又1/3 .由于a是车的数量,应为正整数,所以x的最小值为14.答:至少需要14台B型车.四、某城市平均每天产生生活垃圾700吨,全部由甲,乙两个垃圾厂处理,已知甲厂每小时处理垃圾55吨,需费用550元;乙厂每小时处理垃圾45吨,需费用495元。
一元一次不等式应用题专题

一元一次不等式应用题专题(附答案)1、某校王校长暑假将带领该校市级三好学生去北京旅游。
甲旅行社说如果校长买全票一张,则其余学生可享受半价优惠,乙旅行社说包括校长在内全部按全票价的6折优惠(按全票价的60%收费,且全票价为1200元) ①设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(写出表达式) ②当学生数是多少时,两家旅行社的收费一样? ③就学生数x讨论哪家旅行社更优惠。
解:设设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,根据题意,得①y甲=1200+1200×50%×x=1200+600xy乙=(x+1)×1200×60%=720(x+1)=720x+720②当学生数是多少时,两家旅行社的收费一样?当y甲=y乙时,即1200+600x=720x+720120x=480x=4所以,当学生数为4人时,两家旅行社的收费一样!③就学生数x讨论哪家旅行社更优惠。
若y甲>y乙,即1200+600x>720x+720120x<480x<4,此时乙旅行社便宜。
若y甲<y乙,即1200+600x<720x+720解得,x>4,此时甲旅行社便宜。
答:当学生人数少于4人时,乙旅行社更优惠;当学生人数多于4人时,甲旅行社更优惠;当学生人数等于4人时,两个旅行社一样优惠。
2、李明有存款600元,王刚有存款2000元,从本月开始李明每月存款500元,王刚每月存款200元,试问到第几个月,李明的存款能超过王刚的存款。
解:设到第x个月李明的存款超过王刚的存款,根据题意,得600+500x>2000+200x300x>1400x>14/3因为x为整数,所以x=5答:到第5个月李明的存款超过王刚的存款。
3、暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价为每人500元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折;乙旅行社的优惠条件是:家长,学生都按八折收费。
一元一次不等式组应用题专题

• • • • •
解:依题意,甲店B型产品有(70﹣x)件,乙店A型有(40﹣x)件,B型有(x﹣10)件,则 (1)W=200x+170(70﹣x)+160(40﹣x)+150(x﹣10)=20x+16800. 解 得10≤x≤40.(2分) 由
• • • • • • • • • • •
(2)由W=20x+16800≥17560, ∴x≥38 . ∵ 10≤x≤40 ∴38≤x≤40,x=38,39,40. ∴有三种不同的分配方案. ①x=38时,甲店A型38件,B型32件,乙店A型2件,B型28件; ②x=39时,甲店A型39件,B型31件,乙店A型1件,B型29件; ③x=40时,甲店A型40件,B型30件,乙店A型0件,B型30件. (3)依题意:W=(200﹣a)x+170(70﹣x)+160(40﹣x)+150(x﹣10)=(20﹣a) x+16800. ①当0<a<20时,x=40,即甲店A型40件,B型30件,乙店A型0件,B型30件,能使总利润达 到最大; ②当a=20时,10≤x≤40,符合题意的各种方案,使总利润都一样; ③当20<a<30时,x=10,即甲店A型10件,B型60件,乙店A型30件,B型0件,能使总利润达 到最大.(8分)
• 3、(2013•湛江)某工厂现有甲种原料280kg, 乙种原料190kg,计划用这两种原料生产A,B 两种产品50件,已知生产一件A产品需甲种原料 7kg、乙种原料3kg,可获利40可获利350 元. • (1)请问工厂有哪几种生产方案? • (2)选择哪种方案可获利最大,最大利润是多 少?
• • • •
解:(1)60﹣x﹣y; (2)由题意,得900x+1200y+1100(60﹣x﹣y)=61000, 整理得y=2x﹣50. (3)①由题意,得P=1200x+1600y+1300(60﹣x﹣y) ﹣61000﹣1500, • 整理得P=500x+500. • ②购进C型手机部数为:60﹣x﹣y=110﹣3x.根据题意列不等
一元一次不等式(组)应用题及练习(含答案)

类型一例1.*校初三年级春游,现有36座和42座两种客车供选择租用,假设只租用36座客车假设干辆,则正好坐满;假设只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游"(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】此题的关键语句是:"假设只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人〞.理解这句话,有两层不等关系.(1)租用36座客车*辆的座位数小于租用42座客车(*-1)辆的座位数.(2)租用36座客车*辆的座位数大于租用42座客车(*-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车*辆.据题意得:3642(1)3642(2)30x xx x<-⎧⎨>-+⎩,解得:79xx>⎧⎨<⎩.由题意*应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.练习一:1.将一筐橘子分给几个儿童,假设每人分4个,则剩下9个橘子;假设每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.2. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李〔药品、器械〕,租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车*辆,请你设计所有可能的租车方案;(2) 假设甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.类型二例2.*市局部地区遭受了罕见的旱灾,"旱灾无情人有情〞.*单位给*乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.〔1〕求饮用水和蔬菜各有多少件?〔2〕现方案租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.〔3〕在〔2〕的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:〔1〕设饮用水有*件,蔬菜有y件,依题意,得320,80, x yx y+=⎧⎨-=⎩解得200,120.xy=⎧⎨=⎩所以饮用水和蔬菜分别为200件和120件.〔2〕设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得4020(8)200,1020(8)120.m mm m+-≥⎧⎨+-≥⎩解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960〔元〕;②3×400+5×360=3000〔元〕;③4×400+4×360=3040〔元〕.所以方案①运费最少,最少运费是2960元.练习二:1.户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积〔单位:亩〕种植B类蔬菜面积〔单位:亩〕总收入〔单位:元〕甲 3 1 12500乙 2 3 16500说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵ *种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积〔两类蔬菜的种植面积均为整数〕,求该种植户所有租地方案.2、*公司为了更好得节约能源,决定购置一批节省能源的10台新机器。
一元一次不等式(销售问题)应用题专题(附答案)

一元一次不等式(销售问题)应用题专题(销售问题)1、商场购进某种商品m件,每件按进价加价30元售出全部商品的65%,然后再降价10%,这样每件仍可获利18元,又售出全部商品的25%。
(1)试求该商品的进价和第一次的售价;(2)为了确保这批商品总的利润率不低于25%,剩余商品的售价应不低于多少元?解:(1)设进价是x元, (一件商品)(1-10%)×(x+30)=x+18x=90第一次的售价x+30=90+30=120该商品的进价和第一次的售价分别是90元和120元(2)设剩余商品售价应不低于y元,(90+30)×m×65%+(90+18)×m×25%+y×m×(1-65%-25%)≥90×(1+25%) ×my≥75剩余商品的售价应不低于75元2.水果店进了某中水果1t,进价是7元/kg。
售价定为10元/kg,销售一半以后,为了尽快售完,准备打折出售。
如果要使总利润不低于2000元,那么余下的水果可以按原定价的几折出售?解:方法一:设按原价的x折出售所以:1000×1/2×10+1000×1/2×10×x/10>=7×1000+20005000+500x>=90005x>=40x>=8所以至多打8折方法二:1.货款:7.00*1000=7000.00元2、已销售产生的利润:(10.00*500)-(7.00*500)=5000.00-3500.00=1500.00元3、剩余商品需要产生的利润:2000-1500.00=500.00元4、产生利润需要的单价:7.00+500/500=8元5、需要在10元基础上打折:8/10=0.8,也就是八折3.“中秋节”期间苹果很热销,一商家进了一批苹果,进价为每千克1.5元,销售中有6%的苹果损耗,商家把售价至少定为每kg多少元,才能避免亏本?解:设这批苹果有 a千克,商家把售价至少定为每千克 x元a(1-6%)×x≥a×1.5解得:x≥1.60(哟等于)2、某电影院暑假向学生优惠开放,每张票2元。
一元一次不等式应用题

一元一次不等式应用题
问题描述
某游乐场门票的价格是每张27元。
小明手头有200元,他想买尽可能多的门票,但不能超过他的预算。
请问,小明最多能买到多少张门票?
解决方案
我们可以通过解一元一次不等式来确定小明最多能够买到的门票数量。
首先,我们设小明最多能买到的门票数量为x。
根据题目中的信息,每张门票的价格为27元。
因此,小明所需支付的总金额为27x元。
题目中还给出了小明手头的预算是200元。
小明不能超出这个预算,即27x 不能大于200。
这个不等式可以表示如下:
27x ≤ 200
接下来,我们进行解不等式的过程。
首先,我们将不等式中的等号变为大于等于号,即27x≥200。
这样做是为了方便求解。
然后,我们将不等式两边同时除以27,得到:
x ≥ 7.4
根据数学规则,我们将不等式的解写成小明最多能够买到门票的整数解。
因为门票数量必须是整数,所以小明最多能买到的门票数量为8张。
结论
根据题目中所给的条件,小明最多能买到8张门票。
一元一次不等式的应用题

一元一次不等式的应用题一元一次不等式是数学中的重要概念之一,其在实际问题中的应用十分广泛。
本文将通过具体的应用例题来介绍一元一次不等式的应用。
请参考以下内容:案例一:商品打折小明在某商场看中了一双原价为200元的鞋子,商店正好在进行优惠活动,打折力度为n折。
小明想知道如果商品可以享受到2折优惠,他需要支付多少钱?解析:根据题意,我们可以建立如下一元一次不等式:n * 200 ≤ 200,其中n表示折扣数。
通过对不等式进行运算,得到n ≤ 1/10。
由于n是折扣数,因此n必须为正数。
因此,小明实际上需要支付的金额不能低于0,所以他最多享受到1折的优惠。
案例二:车辆超速违章某城市的高速公路对车辆速度进行限制,标识要求车辆速度不得超过v km/h。
小红驾驶汽车行驶在某路段上,她想知道自己的车速是否超过了限制。
解析:根据题意,我们可以建立如下一元一次不等式:v - x ≥ 0,其中v表示限速值,x表示小红的车速。
如果不等式成立,说明小红未超速;如果不等式不成立,则说明小红超速了。
案例三:裁剪布料小张在裁剪布料时,从一块长方形的布料中切割出一块长为x米、宽为y米的布料。
他想要知道是否有足够的布料满足要求。
解析:根据题意,我们可以建立如下一元一次不等式:x ≤ 长度,y ≤ 宽度,其中x表示所需的布料长度,y表示所需的布料宽度。
如果不等式成立,说明有足够的布料满足要求;如果不等式不成立,则说明没有足够的布料满足要求。
通过上述案例,我们可以看到一元一次不等式在实际问题中的应用。
无论是商品打折、车辆超速还是裁剪布料,一元一次不等式都能帮助我们解决具体问题,找到满足条件的解答。
总结:一元一次不等式的应用包括但不限于商品打折、车辆超速违章、布料裁剪等。
通过建立一元一次不等式,并利用不等式的性质进行数学运算,我们可以得出所需的答案。
在实际问题中,我们需要根据题意确定不等式的形式以及解的意义,从而找到正确的解法。
不等式的应用不仅能够帮助我们解决实际生活中的问题,还可以提升我们的逻辑思维能力和数学运算能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第21题专练
1、某商店在一次促销活动中规定:消费
者消费满200元或超过200元就可享受打折优惠.一名同学为班级买奖品,准备买6本影集和若干支钢笔.已知影集每本15元,钢笔每支8元,问他至少买多少支钢笔才能打折?
2、王女士看中的商品在甲,乙两商场以
相同的价格销售,两商场采用的促销方式不同:在甲商场一次性购物超过100元,超过部分八折优惠;在乙商场一次性购物超过50元,超过部分打九折优惠,那么她在甲商场购物多少元就比在乙商场购物优惠?
3、班学生到学校阅览室上课外阅读课,
班长问老师要分成几个小组,老师风趣地说:假如我把43本书分给各个组,若每组8本,还有剩余;若每组9本,却又不够,你知道该分几个组吗?4、小华家距离学校2.4千米.某一天小
华从家中出发去上学,恰好行走到一
半的路程时,发现离到校时间只有
12分钟了.如果小华能按时赶到学
校,那么他行走剩下的一半路程的平
均速度至少要达到多少?
5、市某初中举行“八荣八耻”知识抢答
赛,总共50道抢答题.抢答规定:
抢答对1题得3分,抢答错1题扣1
分,不抢答得0分.小军参加了抢答
比赛,只抢答了其中的20道题,要
使最后得分不少于50分,问小军至
少要答对几道题?
6、某校餐厅计划购买12张餐桌和一批
餐椅,现从甲、乙两商场了解到:同
一型号的餐桌报价每张均为200元,餐椅报价每把均为50元.甲商场称:每购买一张餐桌赠送一把餐椅;乙商
场规定:所有餐桌椅均按报价的八五
折销售.那么,什么情况下到甲商场
购买更优惠?
7、某城市的一种出租车起步价为10元
(即行驶5千米以内都需付款10元车费),达到或超过5千米后,每增加1千米加价1.2元(不足1千米按1千米计算),现某人乘这种出租车有甲地到乙地,支付车费17.2元.求甲、乙两地的路程.
8、某工程队要招聘甲、乙两种工人150
人,甲、乙两种工种的月工资分别为600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付工资最少?
9、某校举行学科知识竞赛,有120名学
生参加,学校准备按1:2:3的比例分设一、二、三等奖,且获奖的总人数不得超过参赛人数的20%,试问一等奖最多设几个?10、有10名工人生产甲、乙两种零
件,每人每天可生产甲种零件3个或
乙种零件2个,已知甲种零件每个可
创利润0.5千元,乙种零件每个可创
利润0.8千元,要使每天的总利润不
低于15.6千元,则每天最多安排多
少人生产甲种零件?
11、李小明有存款600元,张亮有存
款2000元,从2012年1月开始,李
小明每月存500元,张亮每月存200
元,不计利息,试问至少几个月后,李小明的存款能超过张亮的存款?
12、宏志高中高一年级近几年来招
生人数逐年增加,去年达到550名,其中面向全省招收的”宏志班”学生,也有一般普通班学生.由于场地,师
资等限制,今年招生最多比去年增加
100人,其中普通班学生可多招20%”
宏志班”学生可多招10%,问今年最
少可招收”宏志班”学生多少名?
第23题专练
1、在信宜市某“三华李”种植基地有A、
B两个品种的树苗出售,已知A种
比B种每株多2元,买1株A种树
苗和2株B种树苗共需20元.
(1)问A、B两种树苗每株分别是
多少元?
(2)为扩大种植,某农户准备购买
A、B两种树苗共360株,且A种树
苗数量不少于B种数量的一半,请
求出费用最省的购买方案.
2、天骄超市和金帝超市以同样的价格
出售同样的商品,为了吸引顾客,两
家超市都实行会员卡制度,在天骄超
市累计购买500元商品后,发给天骄
会员卡,再购买的商品按原价85%
收费;在金帝超市购买300元的商品
后,发给金帝会员卡,再购买的商品
按原价90%收费,讨论顾客怎样选
择商店购物能获得更大优惠?公园野营活动,其中甲班有50多人,乙班不足50人。
如果以班为单位分别购买门票,两个班一共应付920元;如果两个班联合起来组成一个团体购票,一共只要付515元。
问:甲、乙两班分别有多少人?
3、“元旦”期间,某学校由4位教师
和若干位学生组成的旅游团,到某风
景区旅游.甲旅行社的收费标准是:如果买4张全票,则其余人按7折优
惠;乙旅行社的收费标准是:5人以
上(含5人)可购团体票,游团体票
按原价的8折优惠.这两家旅行社的
全票价均为每人300元.问有多少位
学生参加该旅游团,选甲旅行社更省
钱?
.
4、2010•历下区三模)暑假期间,两名
老师计划带领若干名学生去三亚旅
游,他们联系了报价均为每人400
元的两家旅行社.经协商,甲旅行社
的优惠条件是:两名老师全额收费,学生都按六折收费;乙旅行社的优惠
条件是:老师,学生都按七折收费.假
设这两名老师带领x名学生去旅游,他们应该选择哪家旅行社?
5、有一本《数学的奥秘》科普书,每本
定价15元,某校九年三班的同学准
备组织去购买.经了解,甲、乙两书
店各有不同的优惠方案:在甲书店购
买5本以上,超出部分按九折优惠;
在乙书店购买10本以上,超出部分
每本让利2元.
(1)若需购买20本,应去哪家书店
能获得更大优惠;
(2)购买多少本时,去乙书店比甲
书店能获得更大优惠?6、六一”儿童节前夕,某时装店老板到
厂家选购A、B两种品牌的儿童时
装,若购进A品牌的时装5套,B
品牌的时装6套,需要950元;若购
进A品牌的时装3套,B品牌的时
装2套,需要450元.
(1)求A、B两种品牌的时装每套
进价分别为多少元?
(2)如果该时装店老板用不超过
4300元购进A、B两种品牌的儿童
时装共50件,那么最多能购进A品
牌时装多少件?
7、某单位要购买一批电脑,甲公司的标
价是每台5800元,优惠条件是购10
台以上,第11台起可按标价的七折
付款;乙公司的标价是每台5800元,优惠条件是每台均按标价的八五折
付款.若两个公司所售电脑的品牌、质量、售后服务等完全相同,该单位
购买哪个公司的电脑合算?请说明
理由.
第18题
1.甲、乙两地路程为180千米,一人骑自行车从甲地出发每时走15千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3倍,若两人同时出发,相向而行,问经过多少时间两人相遇?
2. 甲、乙两地路程为180千米,一人骑自行车从甲地出发每时走15千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3倍,若两人同向而行,骑自行车在先且先出发2小时,问摩托车经过多少时间追上自行车?
3.甲、乙两人分别从甲、乙两地同时相向出发,在甲超过中点50米处甲、乙两人第一次相遇,甲、乙到达乙、甲两地后立即返身往回走,结果甲、乙两人在距甲地100米处第二次相遇,求甲、乙两地的路程。
4、甲乙两人相距6千米,二人同向而行,甲3小时可追上乙,相向而行,1小时相遇,二人的平均速度各是多少?。