少子寿命的测量
少子寿命的测量

表面复合对少子寿命测量影响的定量分析我们测量硅单晶、铸造多晶以及单晶硅片、多晶硅片的少子寿命,都希望得到与真实体寿命b τ相接近的测量值(表观寿命),而不是一个受表面影响很大的表面复合寿命s τ。
因为在寿命测量中只有b τ才能真正反映半导体材料的内在质量,而表面复合寿命只能反映样品的表面状态,是随表面状态变化而变化的变数。
通过仪器测量出的寿命值我们一般称为表观寿命,它与样品体寿命及表面复合寿命有如下关系,公式(1)由SEMI MF28-0707给出的计算公式τ0 =SF R τ--11(τ0或b τ表示体寿命)推演出来:Sb F τττ111+= (1)即仪器测量值F τ,它实际上是少子体寿命b τ和表面复合寿命s τ的并联值。
光注入到硅片表面的光生少子向体内扩散,一方面被体内的复合中心(如铁原子)复合,另一方面扩散到非光照面,被该表面的复合中心复合。
光生少子在体内平均存在的时间由体复合中心的多少而决定,这个时间就称为体寿命。
如果表面很完美,则表面复合寿命趋于无穷大,那么表观寿命即等于体寿命。
但实际上的表面复合寿命与样品的厚度及表面复合速度有关。
由MF1535-0707中给出slD l spdiff s 222+=+=πτττ (2)可知,其中: diff τ=Dl 22π——少子从光照区扩散到表面所需的时间sp τ=2ls——少子扩散到表面后,被表面(复合中心、缺陷能级)复合所需要的时间l ——样品厚度D ——少子扩散系数,电子扩散系数Dn=33.5cm 2/s ,空穴扩散系数Dp=12.4 cm 2/sS ——表面复合速度,单位cm/s硅晶体的表面复合速度随着表面状况在很大范围内变化。
如表1所示:表1据文献记载,硅抛光面在HF 酸中剥离氧化层后复合速度可低至0.25cm/s ,仔细制备的干氧热氧化表面复合速度可低至1.5-2.5cm/s ,但是要达到这样的表面状态往往不容易,也不稳定,除非表面被钝化液或氧化膜保护。
半导体少子寿命测量实验

半导体少子寿命测量实验实验:半导体少子寿命的测量一.实验的目的与意义非平衡少数载流子(少子)寿命是半导体材料与器件的一个重要参数。
其测量方法主要有稳态法和瞬态法。
高频光电导衰退法是瞬态测量方法,它可以通过直接观测少子的复合衰减过程测得其寿命。
通过采用高频光电导衰退法测量半导体硅的少子寿命,加深学生对半导体非平衡载流子理论的理解,使学生学会用高频光电导测试仪和示波器来测量半导体少子寿命。
二.实验原理半导体在一定温度下,处于热平衡状态。
半导体内部载流子的产生和复合速度相等。
电子和空穴的浓度一定,如果对半导体施加外界作用,如光、电等,平衡态受到破坏。
这时载流子的产生超过了复合,即产生了非平衡载流子。
当外界作用停止后,载流子的复合超过产生,非平衡少数载流子因复合而逐渐消失。
半导体又恢复平衡态。
载流子的寿命就是非平衡载流子从产生到复合所经历的平均生存时间,以τ来表示。
下面我们讨论外界作用停止后载流子复合的一般规律。
当以恒定光源照射一块均匀掺杂的n 型半导体时,在半导体内部将均匀地产生非平衡载流子Δn 和Δp 。
设在t=0时刻停止光照,则非平衡载流子的减少-d Δp /dt 应等于非平衡载流子的复合率Δp (t )/τ。
1/τ为非平衡载流子的复合几率。
即:()τt p dt p d ?=?- (1-1)在小注入条件下,τ为常量,与Δp (t )无关,这样由初始条件:Δp (0)=(Δp )0可解得:()τt e p t p -?=?0 (1-2)由上式可以看出:1、非平衡载流子浓度在光照停止后以指数形式衰减,Δp (∝)=0,即非平衡载流子浓度随着时间的推移而逐渐消失。
2、当t=τ时,Δp (τ)=(Δp )0/e 。
即寿命τ是非平衡载流子浓度减少到初始值的1/e 倍所经过的时间。
因此,可通过实验的方法测出非平衡载流子对时间的指数衰减曲线,由此测得到少子寿命值τ。
图1-1 高频光电导衰退法测量原理图高频光电导衰减法测量原理如图1-1所示。
实验衰减法测寿命

实验四 高频光电导衰减法测量硅(锗)单晶少子寿命少子寿命是少数载流子的平均生存时间,本实验的目的是使学生更深入地理 解高频光电导衰减法测少子寿命的原理,并掌握测试方法。
一、实验原理1、高频光电导法的测试原理(l)装置高频光电导测试装置如图2.1所示。
它主要由光学和电学两大部分组成。
光学系统主要是脉冲光源系统。
充电到几千伏的电容器,用脉冲触发,.通过氙气灯放电,给出余辉时间小于10ps 的光脉冲(1 次/s)。
经光栏、聚光镜、滤波片发射于样品。
这种光源,光强强频谱丰富,能为硅、锗提供本征吸收边附近的有效激发光(硅是1.1ps,锗是1.7ps)在样品厚度范围内产生分布均匀的非平衡载流子。
但其中短波强吸收光只在前表面处产生非平衡载流子。
而它们会在表面复合掉。
故高、中阻样品要用硅或锗滤光片滤去短波强吸收光,以减小表面效应。
光源光强由氙灯直流高压、光栏和滤光片(厚0.5~2 mm)联合调节,并能在很宽范围内改变,以适应不同阻值的小信号测试要求。
对于τ<10μs者用余辉时间小于lμs的红外脉冲光源(3次/s及30次/s),其光强由发光管电压调节。
电学系统主要有30MHz的高频电源、宽频带前置放大厦,以及显示测试 信号的脉冲示波器等。
测量要求高频源内阻小且恒压,放大系统灵敏空高、线性 好,且示波器要有一标准的时间基线。
(2)取样显示30MHz的高频源送出等幅的30MHz正弦波,经耦合电极耦合至单晶样 品,在其中产生同频率的高频电流0sin i I t ω=式中I 0为无光照时样品中高频电流的幅值;ω为频率。
此高频电流由另一同样 的电极耦合到检测电路的取样电阻R 2支路中。
当脉冲光以小注人条件照射样品时,产生了非平衡载流子,使电导率增加, 因高频源为恒压输出,故样品中高频电流的幅值增加ΔI, 以致光照时样品中 的高频电流是0()sin i I I t ω=+Δ光照间隙,样品中非平衡载流子因复合按指数规律衰减,高频电流幅值及在 R 2上的取样信号v 的幅值亦按同样规律衰退,即0(exp(/))sin f i I I t t τω=+Δ−0(exp(/))sin f v V V t t τω=+Δ−式中V O 为无光照时R 2上的的等幅高频电压幅值; ΔV 为光照后R 2上电压幅值的增量。
少子寿命实验报告

一、实验目的1. 了解光电导法测试少数载流子寿命的原理。
2. 熟练掌握LTX2高频光电导少数载流子寿命测试仪的使用方法。
3. 测量非平衡载流子的寿命。
二、实验原理少子寿命是指半导体材料中少数载流子的平均生存时间。
在半导体器件中,少数载流子的寿命对器件的性能具有重要影响。
光电导衰减法是测量少数载流子寿命的一种常用方法。
其原理是在样品上施加一定频率的高频电场,使样品中的载流子产生振荡,从而产生光电导现象。
通过测量光电导衰减曲线,可以计算出少数载流子的寿命。
三、实验仪器与材料1. 仪器:LTX2高频光电导少数载流子寿命测试仪、样品测试夹具、示波器、信号发生器、频率计、稳压电源等。
2. 材料:样品(如硅单晶、锗单晶等)、光注入源、腐蚀液、钝化液等。
四、实验步骤1. 准备样品:将样品进行清洗、切割、抛光等处理,使其表面光滑、平整。
2. 设置实验参数:根据样品类型和测试要求,设置合适的测试频率、测试时间等参数。
3. 连接仪器:将样品夹具、信号发生器、示波器、频率计、稳压电源等仪器连接好,确保连接正确、牢固。
4. 光注入:使用光注入源对样品进行光注入,产生非平衡载流子。
5. 测量光电导衰减曲线:打开测试仪,记录光电导衰减曲线。
6. 数据处理:对光电导衰减曲线进行拟合,计算少数载流子的寿命。
五、实验结果与分析1. 光电导衰减曲线:实验测得的光电导衰减曲线如图1所示。
图1 光电导衰减曲线2. 少子寿命计算:根据光电导衰减曲线,拟合得到少数载流子的寿命为5.6×10^-6 s。
3. 影响因素分析:(1)样品材料:不同材料的样品,其少子寿命不同。
例如,硅单晶的少子寿命一般比锗单晶长。
(2)样品制备:样品的制备过程对少子寿命有较大影响。
如样品表面粗糙度、杂质浓度等都会影响少子寿命。
(3)光注入强度:光注入强度越大,产生的非平衡载流子越多,从而影响少子寿命。
(4)测试参数:测试频率、测试时间等参数对少子寿命的测量结果有一定影响。
少子寿命测试

表面寿命对测试寿命有很大影响,使其偏离体寿命,下图是体寿命与测试寿命的 关系。在样品厚度一定的情况下,即扩散寿命一定,如果表面复合速率很大,则 在测试高体寿命样品时,测试寿命值与体寿命值就会偏差很大;而对于低体寿命 的样品,不会使少子寿命降低很多。因此我们需对样品表面进行钝化,降低样品 的表面复合速率。从图中我们可以看到,对于表面复合速率S 为1cm/s,或 10cm/s 的样品,即使在1000μs 数量级的体寿命,测试寿命还是与体寿命偏差很 小。即当样品的表面复合速率为10cm/s 或更小的情况下,对于1000μs 数量级高 体寿命的样品,测试寿命也能用来表示体寿命。
总结: (1)为了使测试的有效寿命趋向于体寿命,我们要尽量减少表面寿命的影 响,为此我们推荐使用表面钝化的方法,通常的钝化方法有热处理,化学钝化及 硅片表面电荷沉积等方法。 (2)对于太阳能领域,因材料表面不做抛光处理,所以我们推荐使用化学 钝化的方法。 (3)在体寿命较高,而表面寿命较低的情况下,化学钝化后测试寿命有较 大提高,测试寿命更加趋向于体寿命。 (4)在体寿命较低的情况下,比如<3μs,化学钝化前后寿命值不会明显变 化,可以认为此时测试寿命 即为体寿命。
研发中心
要破坏半导体的平衡状态,可以对其进行光注入(光照)或电注入(如p-n结正向工 作时,或金属探针与半导体接触时)。 非平衡载流子的复合:当产生非平衡载流子的外部作用撤销后,由于半导体的内 部作用,使它由非平衡状态恢复到平衡状态,此时非平衡载流子逐渐消失,此过 程称为非平衡载流子的复合。 半导体处于平衡状态时,电导率 σ=nqμn+pqμp 光注入时必然导致半导体电导率的增大,电导率 σ=(n+⊿n)qμn+(p+⊿p)qμp ⊿n=⊿p 引起的附加电导率为:⊿σ=⊿nqμn+⊿pqμp= ⊿pq(μp+μn) 光注入撤销后,由于非平衡载流子的复合,电导率会降低,所以光注入时半导体 材料电导率的变化可以反映出其非平衡载流子浓度的变化。 少子寿命:非平衡载流子的平均生存时间称为非平衡载流子的寿命。由于相对于 非平衡多子,非平衡少子的影响处于主导的、决定的地位,所以非平衡载流子的 寿命常称为少数载流子寿命。
μ-PCD测试原理

少子寿命测量方法都包括非平衡载流子的注入和检测两个基本方面。
最常用的注入方法是光注入和电注入,而检测非平衡载流子的方法很多,如探测电导率的变化,探测微波反射或透射信号的变化等,这样组合就形成了许多寿命测试方法,如:直流光电导衰减法;高频光电导衰减法;表面光电压法;微波光电导衰减法等。
WT-2000PV 采用微波光电导衰减法测试少子寿命。
微波光电导衰退法(Microwave photoconductivity decay)测试少子寿命,主要包括激光注入产生电子-空穴对和微波探测信号这两个过程。
904nm 的激光注入(对于硅,注入深度大约为30μm)产生电子-空穴对,导致样品电导率的增加,当撤去外界光注入时,电导率随时间指数衰减,这一趋势间接反映少数载流子的衰减趋势,从而通过微波探测电导率随时间变化的趋势就可以得到少数载流子的寿命。
μ-PCD测试得到的是少子有效寿命,它会受到两个因素影响:体寿命和表面寿命。
测得的少子寿命可由下式表示:(2-1)式中:τdiff 为少子从样品体内扩散到表面所需时间;τsurf 为由于样品表面复合产生的表面寿命;τmeas 为样品的测试寿命;d 为样品厚度;Dn,Dp 分别为电子和空穴的扩散系数;S 为表面复合速度。
(图2-1)不同的表面复合速率下,体寿命和测试寿命的关系由式(2-1)可知,表面寿命对测试寿命有很大影响,使其偏离体寿命,图2-1是体寿命与测试寿命的关系。
在样品厚度一定的情况下,即扩散寿命一定,如果表面复合速率很大,则在测试高体寿命样品时,测试寿命值与体寿命值就会偏差很大;而对于低体寿命的样品,不会使少子寿命降低很多。
因此我们需对样品表面进行钝化,降低样品的表面复合速率。
从图2-1我们可以看到,对于表面复合速率S为1cm/s,或10cm/s的样品,即使在1000μs数量级的体寿命,测试寿命还是与体寿命偏差很小。
即当样品的表面复合速率为10cm/s或更小的情况下,对于1000μs数量级高体寿命的样品,测试寿命也能用来表示体寿命。
高频光电导法测少子寿命

实验6高频光电导法测少子寿命学习目标1、掌握高频光电导衰减法测量半导体单晶中少子寿命的实验原理;2、掌握高频光电导衰减法测量半导体单晶中少子寿命的实验方法;3、完成高频光电导衰减法测量半导体单晶中少子寿命的实验内容;4、加深理解少数载流子寿命与半导体其它半导体物理参数的关系。
建议学时:2学时原理半导体中非平衡少子寿命是是表征半导体单晶材料质量的重要物理量,与半导体中杂质、晶体结构缺陷直接有关。
少子寿命测量是半导体的常规测试项目之一。
光电导衰减法是指利用脉冲光在半导体中激发出非平衡载流子,导致半导体的体电阻发生改变,通过测量体电阻或两端电压的变化规律获得半导体中非平衡少子的寿命。
光电导衰减法又分为直流光电导衰减法、高频光电导衰减法和微波光电导衰减法,分别采用直流、高频电流以及微波加载在半导体样品上检测非平衡载流子的衰减过程。
直流法是标准方法,高频法使用方便,常用来检验单晶质量,而微波法常用于器件工艺线上测试晶片的工艺质量。
此外,还有扩散长度法、双脉冲法、漂移法以及光磁电法等测量寿命的方法。
本实验采用高频光电导衰减法测量半导体单晶中少子寿命。
1、理论基础当用能量大于半导体禁带宽度的光照射样品时,在样品中激发产生非平衡电子和空穴。
若样品中没有明显的陷阱效应,那么非平衡电子(∆n )和空穴(∆p)的浓度相等,即∆n =∆p 。
即使在小注入的情况下,注入的非平衡少子的浓度也比热平衡状态少子的浓度大得多,所以在半导体中非平衡少子往往起着重要作用,通常所说的非平衡载流子都是指非平衡少子。
光注入的非平衡载流子必然导致半导体电导率增大,引起的附加电导率为)(n p n p p q n q p q μμμμσ+∆=∆+∆=∆ (1)其中:q 为电子电荷;µp 和µn 分别为空穴和电子的迁移率。
附加电导率可以采用如图1所示电路观察。
图1 光电导衰减法测量非平衡少子寿命原理图图2-18中电阻R 比半导体电阻r 大很多,无论是否光照,半导体中的电流I 几乎是恒定的,半导体上的电压降V=Ir 。
少子寿命测试实验报告

少子寿命测试实验报告一、实验目的和任务1、了解光电导法测试少数载流子寿命的原理,熟练掌握LTX2高频光电导少数载流子寿命测试仪的使用方法;2、测非平衡载流子的寿命。
二、实验原理处于热平衡状态的半导体,在一定温度下,载流子浓度是一定的。
这种处于热平衡状态下的载流子浓度,称为平衡载流子浓度。
半导体的热平衡状态是相对的,有条件的。
如果对半导体施加外界作用,破坏了热平衡的条件,这就迫使它处于与热平衡状态相偏离的状态,称为非平衡状态。
处于非平衡状态的半导体,其载流子浓度不再是X和X,可以比它们多出一部分。
比平衡状态多出来的这部分载流子称为非平衡载流子,有时也称过剩载流子。
寿命的全称是非平衡少数载流子寿命,它的含意是单晶在受到如光照或点触发的情况下会在表面及体内产生新的(非平衡)载流子,当外界作用撤消后,它们会通过单晶体内由重金属杂质和缺陷形成的复合中心逐渐消失,杂质、缺陷愈多非平衡载流子消失得愈快,在复合过程中少数载流子起主导和决定的作用。
这些非平衡少数载流子在单晶体内平均存在的时间就简称少子寿命。
通常寿命是用实验方法测量的。
各种测量方法都包括非平衡载流子的注入和检测两个基本方面。
最常用的注入方法是光注入和电注入,而检测非平衡载流子的方法很多。
不同的注入和检测方法的组合就形成了许多寿命测量方法。
三、实验设备本实验采用LTX2高频光电导少数载流子寿命测试仪。
该仪器灵敏度高,配备有红外光源,可测量包括集成电路级硅单晶在内的各种类型硅单晶及常用的晶体管级锗单晶。
该仪器根据国际通用方法—高频光电导衰退法的原理设计,由稳压电源、高频源、检波放大器、脉冲光源及样品电极共五部分组成,采用印刷电路和高频接插件连接。
整机结构紧凑,测量数据准确、可靠。
四、实验结论实验通过测电压间接的少子寿命指少子的平均生存时间,寿命标志少子浓度减少到原值的1/e所经历的时间,实验中便通过测量最高点电压减少到原值的1/e所经历的时间,与最高点多少无关;当样品含有重金属且存在缺陷时,会产生杂质能级,成为少子的复合中心,从而寿命降低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表面复合对少子寿命测量影响的定量分析
我们测量硅单晶、铸造多晶以及单晶硅片、多晶硅片的少子寿命,都希望得到与真实体寿命b τ相接近的测量值(表观寿命),而不是一个受表面影响很大的表面复合寿命s τ。
因为在寿命测量中只有b τ才能真正反映半导体材料的内在质量,而表面复合寿命只能反映样品的表面状态,是随表面状态变化而变化的变数。
通过仪器测量出的寿命值我们一般称为表观寿命,它与样品体寿命及表面复合寿命有如下关系,公式(1)由SEMI MF28-0707给出的计算公式τ0 =S
F R τ--11(τ0或b τ表示体寿命)推演出来:
S
b F τττ111+= (1)
即仪器测量值F τ,它实际上是少子体寿命b τ和表面复合寿命s τ的并联值。
光注入到硅片表面的光生少子向体内扩散,一方面被体内的复合中心(如铁原子)复合,另一方面扩散到非光照面,被该表面的复合中心复合。
光生少子在体内平均存在的时间由体复合中心的多少而决定,这个时间就称为体寿命。
如果表面很完美,则表面复合寿命趋于无穷大,那么表观寿命即等于体寿命。
但实际上的表面复合寿命与样品的厚度及表面复合速度有关。
由MF1535-0707中给出s
l
D l sp
diff s 222+=+=πτττ (2)可知,其中: diff τ=D
l 22
π——少子从光照区扩散到表面所需的时间
sp τ=
2l
s
——少子扩散到表面后,被表面(复合中心、缺陷能级)复合所需要的时间
l ——样品厚度
D ——少子扩散系数,电子扩散系数Dn=33.5cm 2/s ,空穴扩散系数Dp=12.4 cm 2/s
S ——表面复合速度,单位cm/s
硅晶体的表面复合速度随着表面状况在很大范围内变化。
如表1所示:
表1
据文献记载,硅抛光面在HF 酸中剥离氧化层后复合速度可低至0.25cm/s ,仔细制备的干氧热氧化表面复合速度可低至1.5-2.5cm/s ,但是要达到这样的表面状态往往不容易,也不稳定,除非表面被钝化液或氧化膜保护。
一般良好的抛光面表面复合速度都会达到 104 cm/s ,最容易得到而且比较稳定的是研磨面,因为它的表面复合速度已达到饱和,就像饱和浓度的盐水那样,再加多少盐进去浓度依然不变。
现在很多光伏企业为了方便用切割片直接测量寿命,即切割后的硅片不经清洗、抛光、钝化等减少和稳定表面复合的工艺处理,直接放进寿命测试仪中测量,俗称裸测,这种测量简单、方便、易操作。
为了定量分析表面复合对测量值F τ的影响,我们以最常用厚度为180μm 的P 型硅片为例进行定量分析。
因为切割面实质上也是一种研磨面,是金属丝带动浆料研磨的结果,一般切割、研磨面的表面复合速度为S=107cm/s ,但线切割的磨料较细,我们将其表面复合的影响估计的最轻,也应该是S ≥105cm/s 。
因为良好的抛光面S ≈104cm/s,我们按照2007版的国际标准MF1535-0707、MF28-0707提供的公式:b τ=
S
F R τ--1
1
,其中Rs 是表面复合速率,表面复合寿命S s R 1=τ,
由以上公式即可推演出常用公式:S
b F
τττ111+=
表面复合寿命s
l
D l sp
diff s 222+=+=πτττ 我们以以下的计算结果来说明,当切割面的表面复合速度为S=105cm/s 时,
l =180μm 厚的硅片当它的体寿命由0.1μS 上升到50μS (或更低、更高)时,
我们测出的表观寿命受表面影响的程度,以及真实体寿命b τ与实测值F τ相差多
大,其计算值如表2所示:
由sp
τ=2l s 可得sp τ=0.09μS ,diff τ=D
l 22π可得d i f f
τ=0.98μS ,则s τ=0.98+0.09=1.07(μS ),由(1)式可得F τ=
1.071.07b
b
ττ+。
表2
从计算结果可以看出,体寿命在5μS 以下的硅片实测值可以发现相对寿命的明显变化,而在体寿命b τ>5μS 后,测量值的变化较小,则进入偏离真实体寿命值很大,相对变化又很小的检测“盲区”。
以上情况是硅片裸测时必须非常注意的。
我们测量少子寿命时往往会感到材料参数的测量值偏差会较大,因此我们一下子不能马上测得一个体寿命的绝对准确数,但也应该尽量争取做到相对准确,在裸测硅片少子寿命时准确度很差,而且硅片数量多,容易损坏,因此在切片之前尽量用单晶硅块、锭、棒来测量寿命,既准确又省工。
这里还要提到按国际标准和国家标准的分工,测硅块不宜采用微波反射法,这是因为微波法光波长短,贯穿深度浅(≈30μS ),反射时受表面损伤的影响很大,因此得到的往往是偏低很多的寿命值,容易误判单晶或多晶的质量,建议使用直流光电导和高频光电导法测量。
实验已经证明测量块状晶体少子寿命时,随着波长的减小,寿命测量也在减小,测量寿命对比表如表3:
表3
因为在块状单晶的寿命测量标准MF28中明确规定可用光源波长要≥1.0μm,而微波反射光源波长为0.904μm,因此明显地不适合用在块状晶体的寿命测量,为了测量出与真实值接近的寿命值,选用正确的测量方法非常重要。
广州市昆德科技有限公司
王世进田蕾。