表面复合对少子寿命测量影响的定量分析

合集下载

硅键合材料及二极管少子寿命测试分析与研究

硅键合材料及二极管少子寿命测试分析与研究

电子电流密度为:以=g坟粤+秽以f(2。

48)同理,空穴电流密度为:护训产徊,警(2.49)于是总的电流密度为:厶=以+,。

(2.50)式(2.48)(2.49)(2.50)构成的电流密度方程表达了在低电场情况下工作情况,对于器件分析计算具有重要意义,但是在强电场情况下这些表达式是不适用的。

2.5连续性方程描述半导体材料中同时存在漂移、扩散、产生、复合时,总体效应的方程称为连续性方程。

为了推导连续性方程,在一维情况下进行讨论。

考虑图2,6所示材料中位于x,厚度为dx的一个无限小薄层。

薄层内的电子数可由于电流的流入和电子产生而增加。

电子的总增加率是下面四个分量的代数和,x处流入薄层的电子数减去x+dx处流出薄层的电子数,加上薄层内电子的产生率减去电子空穴的复合率。

由此可以得到薄层内电子数的总变化率为:娶4d,:【丛型一丛坐型】+眠一R。

)4d;(2.51)优一日一g式中G。

为产生率,R。

为复合率。

图2.6厚度为dx的薄层电流产生复合过程将x+dx处的电流展开成泰勒级数,并取前两项,代入式(2.51)得到W=(3.18)当突变结一边的掺杂浓度远大于另外一边时,所形成的pn结称为单边突变结,图3—4是一个单边突变结的示意图(NA>>ND)。

图3-4(a)单边突变结结构(b)单边突变结空间电荷分布从图3.4可以看到在单边突变结中,耗尽区几乎全部在低掺杂一边,因此耗尽区宽度w。

x。

这时式(3.18)可以简化为:W=(3.19)同样,最大场强表达式可以简化为:缸:盟(3.20),max…一。

,占F所以电场表达式为:f:一‰+监:一靠。

(1一三)(3.21)tw对式(3.2I)积分,令由(O)=O,可阻得到单边突变结的电势分布为:妒(x):望(2一三)(3.22)WW从式(3.21)(3.22)可以得到单边突变结的电场和电势分布,如图3·5所示。

如果P型区到N型区的杂质浓度不是突然变化,而是线性变化,这样形成的pn结称为线性缓变结。

少子寿命测试的讨论_02概要

少子寿命测试的讨论_02概要

施美乐博公司上海代表处上海浦东新区商城路738号胜康廖氏大厦906A (邮编:200120Rm.906A,Suncome Liauw's Plaza, No.738, Shangcheng Road,Pudong,Shanghai 200120, ChinaTel: +86-21-58362889 Fax: +86-21-58362887To : Semilab 产品用户FROM : 黄黎 / Semilab Shanghai Office Pages : 5 Pages (included this page Refer : 1、Semilab 公司上海办事处联系方法2、关于少子寿命测试若干问题的讨论尊敬的Semilab 产品用户:感谢您和贵公司一直以来对我们的支持!为了更好地服务于中国客户,Semilab 公司现已在上海成立办事处。

具体的联系方法为:施美乐博公司上海办事处上海浦东新区商城路738号胜康廖氏大厦906A (邮编:200120Tel: +86-21-58362889 Fax: +86-21-58362887联系人:黄黎先生手机: +86-138******** (Shanghai +86-135******** (Beijing E-mail:leon.huang@ Website: 现提供关于少子寿命测试若干问题的讨论,供您参考,并烦请填写客户意见反馈表,传真给我们,以便我们改进工作,谢谢!如您还有任何问题或需要,请随时与我们联系。

此致敬礼!施美乐博公司上海办事处 2006年4月7日施美乐博公司上海代表处上海浦东新区商城路738号胜康廖氏大厦906A (邮编:200120Rm.906A,Suncome Liauw's Plaza, No.738, Shangcheng Road,Pudong,Shanghai 200120, ChinaTel: +86-21-58362889 Fax: +86-21-58362887关于少子寿命测试若干问题的讨论鉴于目前Semilab 少子寿命测试已在中国拥有众多的用户,并得到广大用户的一致认可。

太阳能电池用多晶硅材料少数载流子寿命的测试

太阳能电池用多晶硅材料少数载流子寿命的测试

太阳能电池用多晶硅材料少数载流子寿命的测试邵铮铮;李修建;戴荣铭【摘要】The minority carrier lifetime in p-typed polycrystalline silicon used for solar cells was tested by the high frequency photoconductivity decay method,and the influence of photo injection intensity on the testing re-sult was analyzed in detail. The results show that the decay curve is not exponential damping in a wide area near the peak point,until the signal fade down to lower than half value. In addition,the measured value of the minority carrier lifetime is reduced when reinforcing the photo injection intensity. Based on the surface recom-bination effect and grain boundary recombination effect of the non-equilibrium carriers, we interpreted this physical phenomenon appropriately.%采用高频光电导衰退法测试了太阳能电池用p型多晶硅片的少数载流子寿命,细致分析了光注入强度对测试结果的影响。

结果显示光电导衰减曲线在靠近尖峰处较宽的时间区域内并按非指数规律快速衰减,当信号衰减到一定程度后逐渐接近指数规律,且随着光注入强度增大,少子寿命的测量结果显著减小。

semilab

semilab

关于少子寿命测试若干问题的讨论鉴于目前Semilab 少子寿命测试已在中国拥有众多的用户,并得到广大用户的一致认可。

现就少子寿命测试中,用户反映的一些问题做出如下说明,供您在工作中参考:1、Semilabμ-PCD 微波光电导少子寿命的原理微波光电导衰退法(Microwave photoconductivity decay)测试少子寿命,主要包括激光注入产生电子-空穴对和微波探测信号的变化这两个过程。

904nm 的激光注入(对于硅,注入深度大约为30um)产生电子-空穴对,导致样品电导率的增加,当撤去外界光注入时,电导率随时间指数衰减,这一趋势间接反映少数载流子的衰减趋势,从而通过微波探测电导率随时间变化的趋势就可以得到少数载流子的寿命。

少子寿命主要反映的是材料重金属沾污及缺陷的情况。

Semilab μ-PCD 符合ASTM 国际标准F 1535 – 00 2、少子寿命测试的几种方法通常少数载流子寿命是用实验方法测量的,各种测量方法都包括非平衡载流子的注入和检测两个基本方面。

最常用的注入方法是光注入和电注入,而检测非平衡载流子的方法很多,如探测电导率的变化,探测微波反射或透射信号的变化等,这样组合就形成了许多寿命测试方法。

近30 年来发展了数十种测量寿命的方法,主要有:直流光电导衰退法;高频光电导衰退法;表面光电压法;少子脉冲漂移法;微波光电导衰减法等。

对于不同的测试方法,测试结果可能会有出入,因为不同的注入方法,表面状况的不同,探测和算法等也各不相同。

因此,少子寿命测试没有绝对的精度概念,也没有国际认定的标准样片的标准,只有重复性,分辨率的概念。

对于同一样品,不同测试方法之间需要作比对试验。

但对于同是Semilab 的设备,不论是WT-2000 还是WT-1000,测试结果是一致的。

μ-PCD 法相对于其他方法,有如下特点:- 无接触、无损伤、快速测试- 能够测试较低寿命- 能够测试低电阻率的样品(最低可以测0.01ohmcm 的样品)- 既可以测试硅锭、硅棒,也可以测试硅片,电池- 样品没有经过钝化处理就可以直接测试- 既可以测试P 型材料,也可以测试N 型材料- 对测试样品的厚度没有严格的要求- 该方法是最受市场接受的少子寿命测试方法3、表面处理和钝化的原因μ-PCD 测试的是少子有效寿命,它受两个因素影响:体寿命和表面寿命。

少子寿命测试实验报告

少子寿命测试实验报告

少子寿命测试实验报告一、实验目的和任务1、了解光电导法测试少数载流子寿命的原理,熟练掌握LTX2高频光电导少数载流子寿命测试仪的使用方法;2、测非平衡载流子的寿命。

二、实验原理处于热平衡状态的半导体,在一定温度下,载流子浓度是一定的。

这种处于热平衡状态下的载流子浓度,称为平衡载流子浓度。

半导体的热平衡状态是相对的,有条件的。

如果对半导体施加外界作用,破坏了热平衡的条件,这就迫使它处于与热平衡状态相偏离的状态,称为非平衡状态。

处于非平衡状态的半导体,其载流子浓度不再是X和X,可以比它们多出一部分。

比平衡状态多出来的这部分载流子称为非平衡载流子,有时也称过剩载流子。

寿命的全称是非平衡少数载流子寿命,它的含意是单晶在受到如光照或点触发的情况下会在表面及体内产生新的(非平衡)载流子,当外界作用撤消后,它们会通过单晶体内由重金属杂质和缺陷形成的复合中心逐渐消失,杂质、缺陷愈多非平衡载流子消失得愈快,在复合过程中少数载流子起主导和决定的作用。

这些非平衡少数载流子在单晶体内平均存在的时间就简称少子寿命。

通常寿命是用实验方法测量的。

各种测量方法都包括非平衡载流子的注入和检测两个基本方面。

最常用的注入方法是光注入和电注入,而检测非平衡载流子的方法很多。

不同的注入和检测方法的组合就形成了许多寿命测量方法。

三、实验设备本实验采用LTX2高频光电导少数载流子寿命测试仪。

该仪器灵敏度高,配备有红外光源,可测量包括集成电路级硅单晶在内的各种类型硅单晶及常用的晶体管级锗单晶。

该仪器根据国际通用方法—高频光电导衰退法的原理设计,由稳压电源、高频源、检波放大器、脉冲光源及样品电极共五部分组成,采用印刷电路和高频接插件连接。

整机结构紧凑,测量数据准确、可靠。

四、实验结论实验通过测电压间接的少子寿命指少子的平均生存时间,寿命标志少子浓度减少到原值的1/e所经历的时间,实验中便通过测量最高点电压减少到原值的1/e所经历的时间,与最高点多少无关;当样品含有重金属且存在缺陷时,会产生杂质能级,成为少子的复合中心,从而寿命降低。

1.少子寿命测试及微波光电导衰退法

1.少子寿命测试及微波光电导衰退法
B
钝化前和钝化后的少子寿命值,图 1.1 作出了钝化前和钝化后的趋势。
表 1.3 钝化前和钝化后的少子寿命(单位为μs)
1 钝化前 钝化后 1.60 4.67
2 1.48 4.53
3 1.53 4.72
4 1.49 4.49
5 1.47 4.57
6 1.51 4.63
钝化前和钝化后少子寿命测试结果比较
表 1.1 几种少子寿命的测试技术
少子注入方式
测试方法 直流光电导衰退 表面电压法 交流光电流的相位 微波光电导衰减法 红外吸收法 电子束激励电流(SEM)
测定量 τ L(τB) τB τ τ τB,S
测量量范围 τ﹥10 s 1<L<500μm τB﹥10-8s τ﹥10-7s τ﹥10-5s τ﹥10-9s
-7
特性 τ的标准测试方法 吸收系数α值要精确 调制广的正弦波 非接触 非接触法光的矩形波 适于低阻
光注入
电子束
微波光电导衰退法测试少子寿命,包括光注入产生电子-空穴对和微波探测信号的变化 两个过程。激光注入产生电子-空穴对,样品电导率的增加,当撤去外界光注入时,电导率 随时间指数衰减, 这种趋势反映了少子的衰减趋势, 则可以通过观测电导率随时间变化的趋 势可以测少子的寿命。 而微波信号时探测电导率的变化, 依据微波信号的变化量与电导率的 变化量成正比的原理。 微波光电导衰减法(如 WT-1000B 少子寿命测试仪)测试的是半导体的有效寿命,实际 上包括体寿命和表面寿命。 测试少子寿命可有下式表示:
B
D=(4.63-1.56)=3.07。即,y=x+3.07,则设置后测试结果接近体寿命。 这样只是简单设置,要想得到更接近的值,需要做大量的实验和数据,统计结果,分 析后会得到更为接近体寿命的系数及数值。

少子寿命 测 试及 表 面处 理 和钝 化 方法 解析

少子寿命 测 试及 表 面处 理 和钝 化 方法 解析

少子寿命测试及表面处理和钝化方法解析少子寿命测试及表面处理和钝化方法解析少数载流子寿命(简称少子寿命)是半导体材料的一项重要参数,它对半导体器件的性能、太阳能电池的效率都有重要的影响,少子寿命高的话,电池效率相应的也高一点,少子寿命低的话,电池效率也会相应的变低。

鉴于目前 Semilab 少子寿命测试已在中国拥有众多的用户,并得到广大用户的一致认可。

现就少子寿命测试中,用户反映的一些问题做出如下说明,供您在工作中参考:1、Semilabμ-PCD 微波光电导少子寿命的原理微波光电导衰退法(Microwave photoconductivity decay)测试少子寿命,主要包括激光注入产生电子-空穴对和微波探测信号的变化这两个过程。

904nm 的激光注入(对于硅,注入深度大约为30um)产生电子-空穴对,导致样品电导率的增加,当撤去外界光注入时,电导率随时间指数衰减,这一趋势间接反映少数载流子的衰减趋势,从而通过微波探测电导率随时间变化的趋势就可以得到少数载流子的寿命。

少子寿命主要反映的是材料重金属沾污及缺陷的情况。

Semilab μ-PCD 符合ASTM 国际标准F 1535 - 002、少子寿命测试的几种方法通常少数载流子寿命是用实验方法测量的,各种测量方法都包括非平衡载流子的注入和检测两个基本方面。

最常用的注入方法是光注入和电注入,而检测非平衡载流子的方法很多,如探测电导率的变化,探测微波反射或透射信号的变化等,这样组合就形成了许多寿命测试方法。

近30 年来发展了数十种测量寿命的方法,主要有:直流光电导衰退法;高频光电导衰退法;表面光电压法;少子脉冲漂移法;微波光电导衰减法等。

对于不同的测试方法,测试结果可能会有出入,因为不同的注入方法,表面状况的不同,探测和算法等也各不相同。

因此,少子寿命测试没有绝对的精度概念,也没有国际认定的标准样片的标准,只有重复性,分辨率的概念。

对于同一样品,不同测试方法之间需要作比对试验。

实验二 光电导衰退测量少数载流子的寿命

实验二 光电导衰退测量少数载流子的寿命

实验二光电导衰退测量少数载流子的寿命实验项目性质:综合实验所涉及课程:半导体物理、半导体材料计划学时:2学时一、实验目的1.理解非平衡载流子的注入与复合过程;2.了解非平衡载流子寿命的测量方法;2.学会光电导衰退测量少子寿命的实验方法。

二、实验原理半导体中少数载流子的寿命对双极型器件的电流增益、正向压降和开关速度等起着决定性作用。

半导体太阳能电池的换能效率、半导体探测器的探测率和发光二极管的发光效率也和载流子的寿命有关。

因此,半导体中少数载流子寿命的测量一直受到广泛的重视。

处于热平衡状态的半导体,在一定的温度下,载流子浓度是一定的,但这种热平衡状态是相对的,有条件的。

如果对半导体施加外界作用,破坏了热平衡的条件,这就迫使它处于与热平衡状态相偏离的状态,称为非平衡状态。

处于非平衡状态的半导体,其载流子浓度也不再是n0和p0,可以比它们多出一部分。

比平衡状态多出来的这部分载流子称为非平衡载流子,有时也称为过剩载流子。

要破坏半导体的平衡态,对它施加的外部作用可以是光,也可以是电或是其它的能量传递方式。

常用到的方式是电注入,最典型的例子就是PN结。

用光照使得半导体内部产生非平衡载流子的方法,称为非平衡载流子的光注入,光注入时,非平衡载流子浓度Δn=Δp。

当外部的光注入撤除以后,注入的非平衡载流子并不能一直存在下去,它们要逐渐消失,也是原来激发到导带的电子又回到价带,电了和空穴又成对的消失了。

最后,载流子浓度恢复到平衡时的值,半导体又回到平衡态,过剩载流子逐渐消失,这一过程称为非平衡载流子的复合。

实验表明,光照停止后,Δp随时间按指数规律减少。

这说明非平衡载流子不是立刻全部消失,而是有一个过程,即它们在导带和价带中有一定的生存时间,有的长些,有的短些。

非平衡载流子的平均生存时间称为非平衡载流子的寿命,用τ表示。

由于相对于非平衡多数载流子,非平衡少数载流子的影响处于主导的、决定的地位,因而非平衡载流子的寿命通常称为少数载流子寿命。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表面复合对少子寿命测量影响的定量分析
我们测量硅单晶、铸造多晶以及单晶硅片、多晶硅片的少子寿命,都希望得到与真实体寿命b t 相接近的测量值(表观寿命),而不是一个受表面影响很大的表面复合寿命s t 。

因为在寿命测量中只有b t 才能真正反映半导体材料的内在质量,而表面复合寿命只能反映样品的表面状态,是随表面状态变化而变化的变数。

通过仪器测量出的寿命值我们一般称为表观寿命,它与样品体寿命及表面复合寿命有如下关系,公式(1)由SEMI MF28-0707给出的计算公式t 0 =S
F R τ--11(t 0或b t 表示体寿命)推演出来:
S
b F t t t 111+= (1)
即仪器测量值F
t
,它实际上是少子体寿命b t 和表面复合寿命s t 的并联值。

光注入到硅片表面的光生少子向体内扩散,一方面被体内的复合中心(如铁原子)复合,另一方面扩散到非光照面,被该表面的复合中心复合。

光生少子在体内平均存在的时间由体复合中心的多少而决定,这个时间就称为体寿命。

如果表面很完美,则表面复合寿命趋于无穷大,那么表观寿命即等于体寿命。

但实际上的表面复合寿命与样品的厚度及表面复合速度有关。

由MF1535-0707中给出s
l
D l sp
diff s 222+=+=p t t t (2)可知,其中: diff
t =D
l 22
p ——少子从光照区扩散到表面所需的时间 sp t =
2l
s
——少子扩散到表面后,被表面(复合中心、缺陷能级)复合所需要的时间
l ——样品厚度
D ——少子扩散系数,电子扩散系数Dn=33.5cm 2/s ,空穴扩散系数Dp=12.4 cm 2/s
S ——表面复合速度,单位cm/s
硅晶体的表面复合速度随着表面状况在很大范围内变化。

如表1所示:
表1
表面 状态 HF 酸中剥离氧化层后的表面
仔细制备的热氧化硅表面
良好抛光面
线切割面(?)
研磨面,复合速度饱和
表面复合速度
0~1 1~10
102 103 104 105 106 107
据文献记载,硅抛光面在HF 酸中剥离氧化层后复合速度可低至0.25cm/s ,仔细制备的干氧热氧化表面复合速度可低至1.5-2.5cm/s ,但是要达到这样的表面状态往往不容易,也不稳定,除非表面被钝化液或氧化膜保护。

一般良好的抛光面表面复合速度都会达到 104 cm/s ,最容易得到而且比较稳定的是研磨面,因为它的表面复合速度已达到饱和,就像饱和浓度的盐水那样,再加多少盐进去浓度依然不变。

现在很多光伏企业为了方便用切割片直接测量寿命,即切割后的硅片不经清洗、抛光、钝化等减少和稳定表面复合的工艺处理,直接放进寿命测试仪中测量,俗称裸测,这种测量简单、方便、易操作。

为了定量分析表面复合对测量值F
t
的影响,我们以最常用厚度为180μm
的P 型硅片为例进行定量分析。

因为切割面实质上也是一种研磨面,是金属丝带动浆料研磨的结果,一般切割、研磨面的表面复合速度为S=107cm/s ,但线切割的磨料较细,我们将其表面复合的影响估计的最轻,也应该是S≥105cm/s。

因为良好的抛光面S≈104cm/s,我们按照2007版的国际标准MF1535-0707、MF28-0707提供的公式:b t =
S
F R τ--1
1
,其中Rs 是表面复合速率,表面复合寿命S s R 1=t ,
由以上公式即可推演出常用公式:S
b F t t t 111+= 表面复合寿命s
l
D l sp
diff s 222+=+=p t t t 我们以以下的计算结果来说明,当切割面的表面复合速度为S=105cm/s 时,
l =180μm 厚的硅片当它的体寿命由0.1μS 上升到50μS (或更低、更高)时,
我们测出的表观寿命受表面影响的程度,以及真实体寿命b t 与实测值F
t
相差多
大,其计算值如表2所示:
由sp
t =2l s 可得sp t =0.09μS ,diff t =D
l 22p 可得diff t =0.98μS ,则s t =0.98+0.09=1.07(μS ),由(1)式可得F
t
=
1.071.07b
b
t t +。

表2
b
τ(μS )
F t (μS )
b
t (μS )
F t
(μS )
0.1 0.091 7 0.93 0.5 0.34 8 0.94 1 0.52 9 0.956 2 0.70 10 0.97 3 0.79 20 1.02 4 0.84 30 1.03 5 0.88 40 1.04 6
0.91
50
1.05
从计算结果可以看出,体寿命在5μS 以下的硅片实测值可以发现相对寿命的明显变化,而在体寿命b t >5μS 后,测量值的变化较小,则进入偏离真实体寿命值很大,相对变化又很小的检测“盲区”。

以上情况是硅片裸测时必须非常注意的。

我们测量少子寿命时往往会感到材料参数的测量值偏差会较大,因此我们一下子不能马上测得一个体寿命的绝对准确数,但也应该尽量争取做到相对准确,在裸测硅片少子寿命时准确度很差,而且硅片数量多,容易损坏,因此在切片之前尽量用单晶硅块、锭、棒来测量寿命,既准确又省工。

这里还要提到按国际标准和国家标准的分工,测硅块不宜采用微波反射法,这是因为微波法光波长短,贯穿深度浅(≈30μS ),反射时受表面损伤的影响很大,因此得到的往往是偏低很多的寿命值,容易误判单晶或多晶的质量,建议使用直流光电导和高频光电导法测量。

实验已经证明测量块状晶体少子寿命时,随着波长的减小,寿命测量也在减小,测量寿命对比表如表3:
表3
寿命测量结果对比
单位:μs 仪器型号 WT-1000 LT-1C
光源波长 0.904μm 0.905μm0.940μm 1.07μm
备注N型 43Ω•cm 片厚1.08mm 68.84 75
P型 1.8Ω•cm 片厚 3mm 23.62 23
N型 63Ω•cm 片厚10mm 69.32 67.2 60~75120 ~ 180
N型 42Ω•cm 片厚10mm 108.09 112 ~ 106 130 ~ 180 250 ~ 300
西安测
A 2.11~2.49 4.6 ~ 5.4
B 3.14 ~ 3.91 8.8 ~ 10.8 12
样片(带锯切割片)厚3mm
C 1.45 ~ 1.66 4.0~ 4.8
上海测
研磨片56.47Ω•cm39.2 360
研磨片57Ω•cm85.6 450
研磨片145.6Ω•cm28.8 90 研磨片50.28Ω•cm40.2 320 研磨片19Ω•cm 厚1.5mm0.27 2.18 320 广州昆德测
因为在块状单晶的寿命测量标准MF28中明确规定可用光源波长要≥1.0μm,而微波反射光源波长为0.904μm,因此明显地不适合用在块状晶体的寿命测量,为了测量出与真实值接近的寿命值,选用正确的测量方法非常重要。

广州市昆德科技有限公司
王世进田蕾。

相关文档
最新文档