基本初等函数的导数公式及导数运算法则练习 选修2-2

合集下载

高中数学 1.2.2基本初等函数的导数公式及导数的运算法则(二)课后习题 新人教A版选修2-2

高中数学 1.2.2基本初等函数的导数公式及导数的运算法则(二)课后习题 新人教A版选修2-2

1.已知f(x)=ax3+3x2+2,若f'(-1)=4,则a的值为()A. B. C. D.解析:∵f'(x)=3ax2+6x,∴f'(-1)=3a-6=4.∴a=.答案:B2.函数y=(e x+e-x)的导数是()A.(e x-e-x)B.(e x+e-x)C.e x-e-xD.e x+e-x解析:设u=e-x,v=-x,则u'x=(e v)'(-x)'=e v·(-1)=-e-x,即y'=(e x-e-x).答案:A3.函数f(x)=x cos x-sin x的导函数是()A.奇函数B.偶函数C.既是奇函数又是偶函数D.既不是奇函数,又不是偶函数解析:∵f'(x)=x'cos x+x(cos x)'-cos x=-x sin x,∴f'(-x)=x sin(-x)=-x sin x=f'(x).∴f'(x)为偶函数.答案:B4.已知函数y=f(x)满足f(1)=2,f'(1)=-1,则曲线g(x)=e x f(x)在x=1处的切线斜率是()A.-eB.eC.2eD.3e解析:g'(x)=e x f(x)+e x f'(x),g'(1)=e f(1)+e f'(1)=e.答案:B5.曲线y=在点(4,e2)处的切线与坐标轴所围三角形的面积为()A.4e2B.2e2C.e2D.e2解析:由导数的几何意义,切线的斜率k=y'|x=4=|x=4=e2,所以切线方程为y-e2=e2(x-4),令x=0,得y=-e2;令y=0,得x=2.所以切线与坐标轴所围三角形的面积为S=×2e2=e2.答案:C6.已知函数f(x)=(x-1)(x-2)(x-3),则f'(1)=.解析:方法一:∵f(x)=(x2-3x+2)(x-3)=x3-6x2+11x-6,∴f'(x)=3x2-12x+11,故f'(1)=3-12+11=2.方法二:∵f'(x)=(x-1)'·(x-2)(x-3)+(x-1)·[(x-2)(x-3)]',∴f'(1)=(1-2)×(1-3)=2.答案:27.已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为.解析:设切点为(x0,y0),则y0=x0+1,y0=ln(x0+a),即x0+1=ln(x0+a).∵y'=,∴=1,即x0+a=1.∴x0+1=ln 1=0,∴x0=-1,∴a=2.答案:28.已知函数f(x)=ln(ax+1)+,x≥0,其中a>0,若f'(1)=0,求a的值.解:f'(x)=[ln(ax+1)]'+'=,∴f'(1)==0.∴a=1.因此a的值为1.9.若函数f(x)=在x=c处的导数值与函数值互为相反数,求c的值.解:∵f(x)=,∴f(c)=.又∵f'(x)=,∴f'(c)=.依题意知f(c)+f'(c)=0,∴=0.∴2c-1=0,得c=.B组1.已知点P在曲线y=上,α为曲线在点P处的切线的倾斜角,则α的取值范围是()A. B.C. D.解析:y'=-=-,设t=e x∈(0,+∞),则y'=-=-,∵t+≥2,∴y'∈[-1,0),α∈.答案:D2.已知f(x)=x3+3xf'(0),则f'(1)=.解析:f'(x)=x2+3f'(0),∴f'(0)=3f'(0),∴f'(0)=0,∴f'(1)=1.答案:13.设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f'(1)=.解析:令t=e x,则x=ln t,所以函数为f(t)=ln t+t,即f(x)=ln x+x,所以f'(x)=+1, 即f'(1)=+1=2.答案:24.等比数列{a n}中,a1=2,a8=4,函数f(x)=x(x-a1)·(x-a2)…(x-a8),则f'(0)等于. 解析:f'(x)=(x-a1)(x-a2)…(x-a8)+x[(x-a1)·(x-a2)…(x-a8)]',∴f'(0)=a1a2…a8=(a1a8)4=84=212.答案:2125.已知曲线f(x)=x3-3x,过点A(0,16)作曲线f(x)的切线,求曲线的切线方程.解:设切点为(x0,y0),则由导数定义得切线的斜率k=f'(x0)=3-3,∴切线方程为y=(3-3)x+16,又切点(x0,y0)在切线上,∴y0=3(-1)x0+16,即-3x0=3(-1)x0+16,解得x0=-2,∴切线方程为9x-y+16=0.6.已知函数f(x)=ax2+bx+3(a≠0),其导函数f'(x)=2x-8.(1)求a,b的值;(2)设函数g(x)=e x sin x+f(x),求曲线g(x)在x=0处的切线方程.解:(1)∵f(x)=ax2+bx+3(a≠0),∴f'(x)=2ax+b,又知f'(x)=2x-8,∴a=1,b=-8.(2)由(1)可知g(x)=e x sin x+x2-8x+3,∴g'(x)=e x sin x+e x cos x+2x-8,∴g'(0)=e0sin 0+e0cos 0+2×0-8=-7,又知g(0)=3,∴g(x)在x=0处的切线方程为y-3=-7(x-0).即7x+y-3=0.7.设函数f(x)=ax-,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.(1)求f(x)的解析式;(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形的面积为定值,并求此定值.(1)解:由7x-4y-12=0得y=x-3.当x=2时,y=,∴f(2)=,①又f'(x)=a+,f'(2)=,②由①②得解之,得故f(x)=x-.(2)证明:设P(x0,y0)为曲线上任一点,由y'=1+知曲线在点P(x0,y0)处的切线方程为y-y0=(x-x0),即y-(x-x0).令x=0得y=-,从而得切线与直线x=0的交点坐标为.令y=x得y=x=2x0,从而得切线与直线y=x的交点坐标为(2x0,2x0).所以点P(x0,y0)处的切线与直线x=0,y=x所围成的三角形面积为|2x0|=6.故曲线y=f(x)上任一点处的切线与直线x=0,y=x所围成的三角形的面积为定值,此定值为6.。

-12学年高中数学122基本初等函数的导数公式及导数运算法则1同步练习新人教A版选修2-2

-12学年高中数学122基本初等函数的导数公式及导数运算法则1同步练习新人教A版选修2-2

-12学年高中数学122基本初等函数的导数公式及导数运算法则1同步练习新人教A版选修2-2高中数学中的基本初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。

对于这些函数,我们可以利用导数公式和导数运算法则求出它们的导数。

一、常数函数的导数公式和导数运算法则:常数函数的导数恒为零,即对于常数c,有f(x)=c,f’(x)=0。

导数运算法则:常数函数与其他函数进行加减乘除运算时,可以直接将常数提到导数的外面。

二、幂函数的导数公式和导数运算法则:幂函数的导数公式:对于幂函数f(x)=x^n,其中n为常数,f’(x)=n*x^(n-1)。

导数运算法则:1.对于幂函数f(x)=x^n,其中n为常数,可以将n视为常数,然后按照常数倍法则进行求导。

2.若幂函数中的指数为常数,则其导数也是幂函数。

三、指数函数的导数公式和导数运算法则:指数函数的导数公式:对于指数函数f(x)=a^x,其中a为常数且a>0且a≠1,f’(x)=a^x*lna。

导数运算法则:1.对于指数函数f(x)=a^x,可以将指数函数转化为自然指数函数进行求导。

2.若指数函数中的底数为常数,则其导数是指数函数乘以底数的自然对数。

四、对数函数的导数公式和导数运算法则:对数函数的导数公式:对于对数函数f(x)=log_a(x),其中a为常数且a>0且a≠1,f’(x)=1/(x*lna)。

导数运算法则:1. 对于对数函数f(x)=log_a(x),可以将对数函数转化为自然对数函数进行求导。

2.若对数函数中的底数为常数,则其导数是常数除以自变量的乘积再乘以底数的自然对数的相反数。

五、三角函数的导数公式和导数运算法则:1. sin函数的导数公式:(sinx)’=cosx。

2. cos函数的导数公式:(cosx)’=-sinx。

3. tan函数的导数公式:(tanx)’=sec^2(x)。

4. cot函数的导数公式:(cotx)’=-csc^2(x)。

数学:1.2.2《基本初等函数的导数公式及导数的运算法则》课件(新人教A版选修2—2)

数学:1.2.2《基本初等函数的导数公式及导数的运算法则》课件(新人教A版选修2—2)
' 3 3 '
'
2x 3
'
3
'
3x 2.
所以,函数 y x 2x 3的导数是 y 3x 2.
' 2
2
例3
日常生活中的饮用水 经过 净化的 . 随着水 , 所需净化费 .已知将 1吨水净 x % 时所需费
通常是
纯净度的提高 用不断增加 化到纯净度为 用 单位 : 元 为 cx 5284 100 x
可以看作函数
和u
0 . 05 x 1 的复合函数
y y u
' x
.由复合函数求导法则有
'
e
0 . 05 x 1
u '
0 .0 5 x 1
0 . 05 e
u
0 . 05 e
.
3 函数
y sin π x φ 可以看作函数 .
'
f x f 3. g x
'
'
x g x f x g x g x 2 g x
0 .
例2
根据基本初等函 的导数公式 数
3
和导数运算法则求函数 y x 2x , 3 的导数.
解 x
因为y x 2x 3
一般地 , 对于两个函数 变量 u , y 可以表示成
y f u 和 u g x , 如果通过 x 的函数 , 那么称这个函数为函 fun

数 y f u 和 u g x 的 复合函数 ( composite ction ), 记作 y f g x .

_高中数学第一章导数及其应用2

_高中数学第一章导数及其应用2

[提示] ΔΔyx=x+Δx2+xΔ+2xΔx-x2+2x
=2x+Δx+xx-+2Δx
∴ lim Δx→0
2x+Δx+xx-+2Δx
=2x-x22.
Байду номын сангаас
[问题3] F(x)的导数与f(x)、g(x)的导数有何关系? [提示] F(x)的导数等于f(x)、g(x)导数和.
[问题 4] 试说明 y=cos3x-π4如何复合的. [提示] 令 u=g(x)=3x-π4,y=f(u)=cos u,
(3)y′=(2x2+3)′·(3x-2)+(2x2+3)·(3x-2)′
=4x·(3x-2)+(2x2+3)·3
=18x2-8x+9.
(4)y′=xl+n x1′-(2x)′
=1xx+x+1- 12ln
x -2xln
2
=1+x1x+-1ln2
x -2xln
2.
二. 复合函数的导数
例题 2 求下列函数的导数:
(1)y=1-12x3;
(2)y=cos x2;
(3)y=sin3x-π4; (4)y=lg(2x2+3x+1).
• [思路点拨] 解答本题可先分析复合函数的复合过 程,然后运用复合函数的求导法则求解.
解析: (1)设 y=u13,u=1-2x, 则 y′x=y′u·u′x =u13′·(1-2x)′ =-3u-4·(-2) =1-62x4. (2)设 y=cos u,u=x2, 则 y′x=y′u·u′x=(cos u)′·(x2)′ =-sin u·2x =-2x·sin x2.
(4)开始学习求复合函数的导数要一步步写清楚,熟 练后中间步骤可省略.
特别提醒:只要求会求形如f(ax+b)的复合函数的导 数.

高中数学第一章导数及其应用1.2.2基本初等函数的导数公式及导数的运算法则(二)练习新人教A版选修2_2

高中数学第一章导数及其应用1.2.2基本初等函数的导数公式及导数的运算法则(二)练习新人教A版选修2_2

1.2.2 基本初等函数的导数公式及导数的运算法则(二)[A 基础达标]1.函数y =(x +1)2(x -1)在x =1处的导数等于( ) A .1 B .2 C .3D .4解析:选D.y ′=[(x +1)2]′(x -1)+(x +1)2(x -1)′ =2(x +1)(x -1)+(x +1)2=3x 2+2x -1, 所以y ′|x =1=4.2.函数y =cos(-x )的导数是( ) A .cos x B .-cos x C .-sin xD .sin x解析:选C.法一:[cos(-x )]′=-sin(-x )·(-x )′=sin(-x )=-sin x . 法二:y =cos(-x )=cos x ,所以[cos(-x )]′=(cos x )′=-sin x .3.(2018·郑州高二检测)若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( ) A .(0,+∞) B .(-1,0)∪(2,+∞) C .(2,+∞)D .(-1,0)解析:选C.因为f ′(x )=2x -2-4x =2(x -2)(x +1)x,又x >0,所以f ′(x )>0即x-2>0,解得x >2.4.对于函数f (x )=e xx 2+ln x -2kx,若f ′(1)=1,则k 等于( )A.e 2B.e 3 C .-e 2D .-e 3解析:选A.因为f ′(x )=e x(x -2)x 3+1x +2kx2,所以f ′(1)=-e +1+2k =1,解得k =e2,故选A. 5.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2e xf ′(1)+3ln x ,则f ′(1)=( )A .-3B .2eC.21-2eD.31-2e解析:选D.因为f ′(1)为常数, 所以f ′(x )=2e xf ′(1)+3x,所以f ′(1)=2e f ′(1)+3, 所以f ′(1)=31-2e.6.若f (x )=log 3(2x -1),则f ′(2)=________. 解析:因为f ′(x )=[log 3(2x -1)] ′= 1(2x -1)ln 3(2x -1)′=2(2x -1)ln 3,所以f ′(2)=23ln 3.答案:23ln 37.已知函数f (x )=ax 4+bx 2+c ,若f ′(1)=2,则f ′(-1)=________. 解析:法一:由f (x )=ax 4+bx 2+c ,得f ′(x )=4ax 3+2bx .因为f ′(1)=2, 所以4a +2b =2, 即2a +b =1.则f ′(-1)=-4a -2b =-2(2a +b )=-2. 法二:因为f (x )是偶函数, 所以f ′(x )是奇函数, 所以f ′(-1)=-f ′(1)=-2. 答案:-28.已知f (x )=exx,若f ′(x 0)+f (x 0)=0,则x 0的值为________.解析:因为f ′(x )=(e x )′x -e x x ′x 2=e x(x -1)x2(x ≠0). 所以由f ′(x 0)+f (x 0)=0, 得e x0(x 0-1)x 20+e x0x 0=0. 解得x 0=12.答案:129.求下列函数的导数: (1)y =cos(1+x 2); (2)y =sin 2⎝ ⎛⎭⎪⎫2x +π3; (3)y =ln(2x 2+x ); (4)y =x ·2x -1.解:(1)设u =1+x 2,y =cos u ,所以y ′x =y ′u ·u ′x =(cos u )′·(1+x 2)′ =-sin u ·2x =-2x sin(1+x 2). (2)设y =u 2,u =sin v ,v =2x +π3,则y ′x =y ′u ·u ′v ·v ′x =2u ·cos v ·2 =4sin v ·cos v=2sin 2v =2sin ⎝ ⎛⎭⎪⎫4x +2π3. (3)设u =2x 2+x ,则y ′x =y ′u ·u ′x =(ln u )′·(2x 2+x )′ =1u ·(4x +1)=4x +12x 2+x. (4)y ′=x ′·2x -1+x ·(2x -1)′. 先求t =2x -1的导数. 设u =2x -1,则t =u 12,t ′x =t ′u ·u ′x =12·u -12·(2x -1)′=12×12x -1×2=12x -1 . 所以y ′=2x -1+x 2x -1=3x -12x -1. 10.已知抛物线y =ax 2+bx +c 通过点P (1,1),且在点Q (2,-1)处与直线y =x -3相切,求实数a 、b 、c 的值.解:因为曲线y =ax 2+bx +c 过点P (1,1), 所以a +b +c =1.① 因为y ′=2ax +b ,所以4a +b =1.②又因为曲线过点Q (2,-1), 所以4a +2b +c =-1.③ 联立①②③,解得a =3,b =-11,c =9.[B 能力提升]11.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)·…·(x -a 8),则f ′(0)=( )A .26B .29C .212D .215解析:选 C.因为f ′(x )=x ′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x =(x -a 1)(x -a 2)·…·(x -a 8)+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.因为数列{a n }为等比数列,所以a 1a 8=a 2a 7=a 3a 6=a 4a 5=8,所以f ′(0)=84=212.12.给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″ (x )=(f ′(x ))′.若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎪⎫0,π2上不是凸函数的是( )A .f (x )=sin x +cos xB .f (x )=ln x -2xC .f (x )=-x 3+2x -1D .f (x )=-x e -x解析:选D.若f (x )=sin x +cos x ,则f ″(x )=-sin x -cos x ,在x ∈⎝⎛⎭⎪⎫0,π2上,恒有f ″(x )<0;若f (x )=ln x -2x ,则f ″(x )=-1x 2,在x ∈⎝⎛⎭⎪⎫0,π2上,恒有f ″(x )<0;若f (x )=-x 3+2x -1,则f ″(x )=-6x ,在x ∈⎝⎛⎭⎪⎫0,π2上,恒有f ″(x )<0;若f (x )=-xe-x,则f ″(x )=2e-x-x e-x=(2-x )e -x,在x ∈⎝⎛⎭⎪⎫0,π2上,恒有f ″(x )>0,不是凸函数.13.已知曲线y =e 2x·cos 3x 在点(0,1)处的切线与直线l 的距离为5,求直线l 的方程.解:因为y ′=(e 2x)′·cos 3x +e 2x·(cos 3x )′=2e 2x·cos 3x -3e 2x·sin 3x , 所以y ′|x =0=2,所以经过点(0,1)的切线方程为y -1=2(x -0), 即y =2x +1.设符合题意的直线方程为y =2x +b ,根据题意,得5=|b -1|5,解得b =6或-4. 所以符合题意的直线方程为y =2x +6或y =2x -4. 14.(选做题)已知函数f (x )=ax 2+ln x 的导数为f ′(x ). (1)求f (1)+f ′(1);(2)若曲线y =f (x )存在垂直于y 轴的切线,求实数a 的取值范围. 解:(1)由题意,函数的定义域为(0,+∞), 由f (x )=ax 2+ln x , 得f ′(x )=2ax +1x,所以f (1)+f ′(1)=3a +1.(2)因为曲线y =f (x )存在垂直于y 轴的切线,故此时切线斜率为0,问题转化为在x ∈(0,+∞)内导函数f ′(x )=2ax +1x存在零点,即f ′(x )=0⇒2ax +1x=0有正实数解,即2ax 2=-1有正实数解,故有a <0,所以实数a 的取值范围是(-∞,0).。

1.2.2导数公式及运算法则

1.2.2导数公式及运算法则
在复合函数中,内层函数 u=g(x)的值域必须是外层函 数 y=f(u)的定义域的子集.
2.复合函数的求导法则 复合函数对自变量的导数,等于已知函数对中间变量
的导数,乘以中间变量对自变量的导数,即 yx′= yu′·ux′,
并且在利用复数的求导法则求导数后,最后结果要把中间 变量换成自变量的函数.复合函数,可以是一个中间变量, 也可以是两个或多个中间变量,应该按照复合次序从外向 内逐层求导.
2.函数 y=21(ex+e-x)的导数是(
)
A.12(ex-e-x) B.21(ex+e-x)
C.ex-e-x D.ex+e-x 解析 y′=21ex+e-x′=12[(ex)′+(e-x)′]=
21(ex-e-x). 3.[2017·泉州高二检测]函数 f(x)=π2x2 的导数是( )
A.f′(x)=4πx B.f′(x)=2πx
C.f′(x)=2π2x D.f′(x)=2πx2+2π2x
解析 由 f(x)=π2x2 得 f′(x)=2π2x,故选 C.
loga
xf
' ( x)
x
1 ln
a
(a
0且aΒιβλιοθήκη 1)f (x) ln xf '(x) 1 x
导数可以进行四则运算吗?
探究新知 一.导数的运算法则
设两个函数分别为f(x)和g(x)
法则
[f(x)±g(x)]′=f′(x)±g′(x)
语言法叙则述 两[个f(x函)g数(x的)]'=和f('或(x差)g()x的)+导f数(x),g'等(x)于
随堂达标自测
1.下列函数不是复合函数的是( )
A.y=-x3-1x+1 C.y=ln1x

1.2.2导数运算法则1

1.2.2导数运算法则1

我们今后可以直接使用的基本初等函数的导数公式 n n 1
公式2.若f ( x) x , 则f '( x) nx ; 公式 ,则 '( xf) '( x0; 公式1. 3.若 若f f( (x x) ) c sin xf, 则 ) cos x;
n n 1 公式 2. 若 f ( x ) x , 则 f '( x ) nx ; x; 公式 4. 若 f ( x ) cos x , 则 f '( x ) sin 公式1.若f ( x) c, 则f '( x) 0; x 公式 3. 若 f ( x ) sin x, 则 f x'( x )a xcos x ; n, 则 n 1a 公式 5. 若 f ( x ) a f '( ) ln ( 公式2.若f ( x) x , 则f '( x) nx ; a 0); 公式 4.若 若f f( (x x) ) e cos x,f则 f '( x)e x x sin x; 公式6. , 则 '( x ) 3. sin x, 则f '( x) ;cos x; 公式5.若f ( x) a x , 则f '( x) a x ln a ( a 0); 1 公式 4. 若 f ( x ) cos x , 则 f '( x ) sin x;( a 0, 且a 1); 公式7.若f ( x) log x , 则 f '( x ) a 公式6.若f ( x) e xx, 则 f '( x) e xx; x ln a 公式5.若f ( x) a , 则f '( x) a ln a( a 0); 1 1 x x ln x则 ,则 f'('( x'( ) 公式7. ,则 f) ) ( a 0, 且a 1); 6.若f ( x) log e , x x e ;; a xf x x ln a 1 公式8.若f ( x) log a x, 则f '( x) 1 ( a 0, 且a 1); 公式8.若f ( x) ln x, 则f '( x) ; x ln a x 1 公式8.若f ( x) ln x, 则f '( x) ;

选修2-2——基本初等函数的导数公式及导数的运算法则(二)

选修2-2——基本初等函数的导数公式及导数的运算法则(二)

1.2.2 基本初等函数的导数公式及导数的运算法则(二)1.问题导航(1)导数的四则运算法则是什么?在使用运算法则时的前提条件是什么? (2)复合函数的定义是什么,它的求导法则又是什么? 2.例题导读通过P 15例2学会利用导数的运算法则及导数公式求函数的导数,P 15例3为导数的实际应用问题,P 17例4为复合函数的求导问题,注意复合函数的求导法则.1.导数的四则运算法则(1)条件:f (x ),g (x )是可导的. (2)结论:①[f (x )±g (x )]′=f ′(x )±g ′(x ). ②[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x ).③⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )](g (x )≠0). 2.复合函数的求导公式 (1)复合函数的定义:①一般形式是y =f (g (x )).②可分解为y =f (u )与u =g (x ),其中u 称为中间变量.(2)求导法则:复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为:y ′x=y ′u ·u ′x .1.判断(正确的打“√”,错误的打“×”) (1)函数f (x )=x e x 的导数是f ′(x )=e x (x +1).( ) (2)函数f (x )=sin(-x )的导数为f ′(x )=cos x .( ) 答案:(1)√ (2)×2.函数y =x ln x 的导数为( ) A .y ′=ln x +1 B .y ′=ln x -1 C .y ′=ln x D .y ′=1 解析:选A.y ′=x ′ln x +x (ln x )′=ln x +1. 3.y =sin 2x 的导数是( ) A .y ′=2sin x B .y ′=2cos x C .y ′=sin 2x D .y ′=cos 2x解析:选C.y ′=(sin 2x )′ =2sin x cos x =sin 2x . 4.求下列函数的导数:(1)若f (x )=2x +3,则f ′(x )=________;(2)函数f (x )=2sin x -cos x ,则f ′(x )=________;(3)函数f (x )=-2x +1,则f ′(x )=________.答案:(1)2 (2)2cos x +sin x (3)2(x +1)21.应用导数公式的注意事项(1)两个导数的和差运算只可推广到有限个函数的和差的导数运算. (2)两个函数可导,则它们的和、差、积、商(商的分母不为零)必可导. (3)若两个函数不可导,则它们的和、差、积、商不一定不可导.(4)对于较复杂的函数式,应先进行适当的化简变形,化为较简单的函数式后再求导,可简化求导过程.2.复合函数求导的一般方法(1)分析清楚复合函数的复合关系是由哪些基本函数复合而成,适当选定中间变量. (2)分步计算中的每一步都要明确是对哪个变量求导,而其中特别要注意的是中间变量. (3)根据基本函数的求导公式及导数的运算法则,求出各函数的导数,并把中间变量转换成自变量的函数.(4)复合函数求导熟练以后,中间步骤可以省略,不必再写出函数的复合过程,对于经过多次复合及四则运算而成的复合函数,可以直接应用公式和法则,从最外层开始由外及里逐层求导.应用导数的运算法则求导求下列函数的导数:(1)y =x 4-3x 2-5x +6;(2)y =x ·tan x ;(3)y =(x +1)(x +2)(x +3);(4)y =x -1x +1.[解] (1)y ′=(x 4-3x 2-5x +6)′=(x 4)′-3(x 2)′-5(x )′+6′=4x 3-6x -5.(2)y ′=(x ·tan x )′=⎝⎛⎭⎫x sin x cos x ′=(x sin x )′cos x -x sin x (cos x )′cos 2x=(sin x +x cos x )cos x +x sin 2x cos 2x =sin x cos x +x cos 2x.(3)法一:y ′=[(x +1)(x +2)(x +3)]′=[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′ =[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)·(x +2) =(x +2+x +1)·(x +3)+(x +1)(x +2) =(2x +3)(x +3)+x 2+3x +2 =3x 2+12x +11;法二:∵(x +1)(x +2)(x +3) =(x 2+3x +2)(x +3) =x 3+6x 2+11x +6,∴y ′=[(x +1)(x +2)(x +3)]′ =(x 3+6x 2+11x +6)′ =3x 2+12x +11.(4)法一:y ′=⎝ ⎛⎭⎪⎫x -1x +1′=(x -1)′(x +1)-(x -1)(x +1)′(x +1)2=x +1-(x -1)(x +1)2=2(x +1)2. 法二:∵y =x -1x +1=x +1-2x +1=1-2x +1,∴y ′=⎝⎛⎭⎫1-2x +1′=⎝⎛⎭⎫-2x +1′=-2′(x +1)-2(x +1)′(x +1)2=2(x +1)2.求函数的导数的策略:(1)先区分函数的运算特点,即函数的和、差、积、商,再根据导数的运算法则求导数. (2)对于三个以上函数的积、商的导数,依次转化为“两个”函数的积、商的导数计算.1.(1)设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈⎣⎡⎦⎤0,512π,则导数f ′(1)的取值范围是( )A .[-2,2]B .[2,3]C .[3,2]D .[2,2]解析:选D.∵f ′(x )=sin θ·x 2+3cos θ·x ,∴f ′(1)=sin θ+3cos θ=2sin ⎝⎛⎭⎫θ+π3,∵θ∈⎣⎡⎦⎤0,512π,∴sin ⎝⎛⎭⎫θ+π3∈⎣⎡⎦⎤22,1, ∴2sin ⎝⎛⎭⎫θ+π3∈[2,2],故选D.(2)已知f (x )=e xx,若f ′(x 0)+f (x 0)=0,则x 0的值为________.解析:∵f ′(x )=(e x )′x -e x ·x ′x 2=e x (x -1)x 2(x ≠0).∴由f ′(x 0)+f (x 0)=0,得 e x 0(x 0-1)x 20+e x 0x 0=0.解得x 0=12.答案:12复合函数的导数运算(1)若函数f (x )=1(1-3x )4的导数为f ′(x ),则f ′(1)=________.[解析] 设y =u -4,u =1-3x ,∴f ′(x )=y ′u ·u ′x =(-4)(1-3x )-5(1-3x )′=12(1-3x )5, ∴f ′(1)=-38.[答案] -38(2)求下列函数的导数:①y =1-2x cos x ;②y =3log 2(x 2-2x +3).[解] ①由于y =1-2x cos x 是两个函数y =1-2x 与y =cos x 的乘积, y ′=(1-2x )′cos x -1-2x sin x =(-2)21-2x cos x -1-2x sin x =-cos x 1-2x-1-2x sin x .②令y =3u ,u =log 2v ,v =x 2-2x +3,则y ′u =3u ln 3,u ′v =1v ln 2,v ′x =2x -2,所以y ′x =(2x -2)·3log 2(x 2-2x +3)·ln 3(x 2-2x +3)ln 2=2log 23·(x -1)3log 2(x 2-2x +3)x 2-2x +3.(1)求复合函数的导数的步骤:分层—选择中间变量,写出构成它的内、外层函数 ↓分别求导—分别求各层函数对相应变量的导数 ↓相乘—把上述求导的结果相乘 ↓变量回代—把中间变量回代(2)求复合函数的导数的注意点:①内、外层函数通常为基本初等函数.②求每层函数的导数时注意分清是对哪个变量求导,这是求复合函数导数时的易错点.2.函数y =cos 2x +sin x 的导数为( )A .-2sin 2x +cos x2xB .2sin 2x +cos x2xC .-2sin 2x +sin x2xD .2sin 2x -cos x2x解析:选A.y ′=-sin 2x ·(2x )′+cos x ·(x )′=-2sin 2x +12·1x cos x=-2sin 2x +cos x2x .导数运算的综合应用求满足下列条件的函数f (x ).(1)f (x )是三次函数,且f (0)=3,f ′(0)=0,f ′(1)=-3,f ′(2)=0; (2)f ′(x )是一次函数,且x 2f ′(x )-(2x -1)f (x )=1. [解] (1)设f (x )=ax 3+bx 2+cx +d (a ≠0), 则f ′(x )=3ax 2+2bx +c .由f (0)=3,得d =3,由f ′(0)=0,得c =0, 由f ′(1)=-3,f ′(2)=0可建立方程组 ⎩⎪⎨⎪⎧3a +2b =-3,12a +4b =0,解得⎩⎪⎨⎪⎧a =1,b =-3, ∴f (x )=x 3-3x 2+3.(2)由f ′(x )为一次函数可知f (x )为二次函数, 设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b . 把f (x )、f ′(x )代入方程,得x 2(2ax +b )-(2x -1)(ax 2+bx +c )=1, 即(a -b )x 2+(b -2c )x +c -1=0.要使方程对任意x 都成立,则需a =b ,b =2c ,c =1. 解得a =2,b =2,c =1,∴f (x )=2x 2+2x +1.利用导数的运算法则及复合函数的求导法则求得函数的导数,再结合导数的几何意义、三角函数、不等式等知识点综合考查求函数的解析式,参数的取值范围,不等式的求解与证明等是考查导数运算应用的常规考法,同时也体现了导数的优越性.3.已知两边取对数可以使“积”的形式化为“和”的形式,函数f (x )=ln y 就变成了复合函数,它是由f =ln u 和u =y 复合而成的.根据上面的信息,求y =(x -1)(x -2)·…·(x -10)(x >10)的导数.解:两边同时取自然对数,得ln y =ln(x -1)+ln(x -2)+…+ln(x -10). 两边对x 求导,得 1y ·y ′=1x -1+1x -2+…+1x -10. ∴y ′=⎝⎛⎭⎫1x -1+1x -2+…+1x -10·(x -1)·(x -2)·…·(x -10).已知抛物线y =ax +bx -5在点(2,1)处的切线为y =-3x +7,求b 的值. [解] ∵y ′=2ax +b ,当x =2时,y ′=4a +b ,∴4a +b =-3. 又点(2,1)在曲线上,∴4a +2b -5=1,联立组成方程组⎩⎪⎨⎪⎧4a +b =-3,4a +2b -5=1,解得⎩⎪⎨⎪⎧a =-3,b =9. [错因与防范](1)在求解切线问题时,注意切点既在曲线上,又在切线上,因容易找不全条件导致求解困难.(2)已知曲线上某点的切线,有两层意思:一是在该点的导数值等于切线的斜率;二是该点的坐标满足已知曲线的方程.4.若f (x )=x +ln(x -5),g (x )=ln(x -1),解不等式f ′(x )>g ′(x ).解:f ′(x )=1+1x -5,g ′(x )=1x -1.由f ′(x )>g ′(x ),得1+1x -5>1x -1,即(x -3)2(x -5)(x -1)>0, ∴x >5或x <1.又两函数定义域满足⎩⎪⎨⎪⎧x -5>0,x -1>0,∴x >5.∴不等式f ′(x )>g ′(x )的解集为(5,+∞).1.f (x )=ln xx的导数是( )A .f ′(x )=1+ln x x 2B .f ′(x )=1+ln xx C .f ′(x )=1-ln x x 2D .f ′(x )=1+ln xx 2解析:选C.f ′(x )=(ln x )′x -(ln x )x ′x 2=1-ln xx 2.2.(2015·高考天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析:f ′(x )=a ⎝⎛⎭⎫ln x +x ·1x =a (1+ln x ). 由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3. 答案:33.函数y =sin n x cos nx 的导数为________. 解析:y ′=(sin n x )′cos nx +sin n x (cos nx )′=n sin n -1x (sin x )′cos nx +sin n x (-sin nx )·(nx )′=n sin n -1x cos x ·cos nx -sin nx sin nx ·n=n sin n -1x (cos x cos nx -sin x sin nx )=n sin n -1x cos[(n +1)x ].答案:n sin n -1x cos[(n +1)x ][A.基础达标]1.已知f (x )=x -5+3sin x ,则f ′(x )等于( )A .-5x -6-3cos xB .x -6+3cos xC .-5x -6+3cos xD .x -6-3cos x解析:选C.利用求导公式和求导法则求解.f ′(x )=-5x -6+3cos x .故选C. 2.函数y =x 3cos x 的导数是( ) A .3x 2cos x +x 3sin x B .3x 2cos x -x 3sin x C .3x 2cos x D .-x 3sin x解析:选B.y ′=(x 3cos x )′=3x 2cos x +x 3(-sin x )=3x 2cos x -x 3sin x .3.已知f ⎝⎛⎭⎫1x =x1+x ,则f ′(x )等于( )A.11+x B .-11+xC.1(1+x )2 D .-1(1+x )2解析:选D.令1x =t ,则f (t )=1t1+1t=11+t,∴f (x )=11+x ,f ′(x )=⎝⎛⎭⎫11+x ′=-1(1+x )2.4.函数y =12(e x +e -x )的导数是( )A.12(e x -e -x )B.12(e x +e -x ) C .e x-e -x D .e x +e -x解析:选A.y ′=⎣⎡⎦⎤12(e x +e -x )′=12(e x -e -x ). 5.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1 D .-2 解析:选B.设切点为P (x 0,y 0), 则y 0=x 0+1,y 0=ln(x 0+a ),又∵切线的斜率为1,∴1x 0+a=1,∴x 0+a =1,∴y 0=0,x 0=-1,∴a =2,故选B. 6.f (x )=ln(x 2+1)的导数是________.解析:f ′(x )=1x 2+1·2x 2x 2+1=xx 2+1. 答案:xx 2+17.f (x )=(2x +a )2,且f ′(2)=20,则a =________. 解析:∵f ′(x )=8x +4a , f ′(2)=20,即16+4a =20. ∴a =1. 答案:18.函数y =x -cos xx +sin x在x =2处的导数是________.解析:∵y ′=⎝ ⎛⎭⎪⎫x -cos x x +sin x ′=(1+sin x )(x +sin x )-(1+cos x )(x -cos x )(x +sin x )2=(x +1)sin x +(1-x )cos x +1(x +sin x )2,∴y ′|x =2=3sin 2-cos 2+1(2+sin 2)2.答案:3sin 2-cos 2+1(2+sin 2)29.已知抛物线y =ax 2+bx +c 通过点P (1,1),且在点Q (2,-1)处与直线y =x -3相切,求实数a 、b 、c 的值.解:∵曲线y =ax 2+bx +c 过点P (1,1), ∴a +b +c =1.①∵y ′=2ax +b ,∴4a +b =1.②又∵曲线过点Q (2,-1),∴4a +2b +c =-1.③ 联立①②③,解得a =3,b =-11,c =9. 10.求下列函数的导数.(1)y =a ax cos(ax )+b bx sin(bx ); (2)y =log a (log a x ).解:(1)y ′=(a ax )′cos(ax )+a ax [cos(ax )]′+(b bx )′·sin(bx )+b bx [sin(bx )]′=a ax ln a ·(ax )′cos(ax )+a ax [-sin(ax )](ax )′+b bx ln b ·(bx )′·sin(bx )+b bx cos(bx )(bx )′=a ax +1[cos(ax )ln a -sin(ax )]+b bx +1[sin(bx )ln b +cos(bx )].(2)y ′=1log a x log a e ·(log a x )′=log a e log a x ·1x ·log a e =log 2a e x log a x. [B.能力提升]1.已知A ,B ,C 是直线l 上的三点,向量OA →,OB →,OC →满足OA →=[f (x )+2f ′(1)]OB →-ln(x +1)OC →,则f ′(1)的值为( )A .0B .ln 2 C.12D .2 解析:选C.由于A ,B ,C 三点共线,于是有f (x )+2f ′(1)-ln(x +1)=1,即f (x )=ln(x +1)-2f ′(1)+1,则f ′(x )=1x +1,于是f ′(1)=12.2.已知函数f (x )=ax 2+bx +c 的图象过原点,它的导函数y =f ′(x )的图象如图所示,则( )A .-b2a >0,4ac -b 24a>0B .-b2a <0,4ac -b 24a>0C .-b2a >0,4ac -b 24a<0D .-b2a <0,4ac -b 24a<0解析:选A.函数f (x )=ax 2+bx +c 的图象过原点,则c =0,于是f (x )=ax 2+bx ,则f ′(x )=2ax +b ,结合f ′(x )的图象可知,a <0,b >0.所以-b 2a >0,4ac -b 24a =-b 24a>0,故选A.3.(2015·高考陕西卷)设曲线y =e x 在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.解析:y ′=e x ,曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1,设P (m ,n ),y =1x(x >0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m2(m >0),因为两切线垂直,所以k 1 k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).答案:(1,1)4.若曲线f (x )=ax 2+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析:由题意知该函数的定义域为(0,+∞),f ′(x )=2ax +1x,∵存在垂直于y 轴的切线,∴此时斜率为0,问题转化为x >0范围内导函数f ′(x )=2ax +1x存在零点.法一:(图象法)再将之转化为g (x )=-2ax 与h (x )=1x存在交点.当a =0时不符合题意;当a >0时,如图①所示,数形结合可得显然没有交点;当a <0时,如图②所示,此时正好有一个交点,故有a <0,应填(-∞,0).图① 图②法二:(分离变量法)上述也可等价于方程2ax +1x =0在(0,+∞)内有解,显然可得a =-12x 2∈(-∞,0). 答案:(-∞,0)5.(2015·郑州高二检测)已知函数f (x )=axx 2+b,且f (x )的图象在x =1处与直线y =2相切.(1)求函数f (x )的解析式;(2)若P (x 0,y 0)为f (x )图象上的任意一点,直线l 与f (x )的图象相切于P 点,求直线l 的斜率k 的取值范围.解:(1)对函数f (x )求导,得f ′(x )=a (x 2+b )-ax (2x )(x 2+b )2=ab -ax 2(x 2+b )2.因为f (x )的图象在x =1处与直线y =2相切.所以⎩⎪⎨⎪⎧f ′(1)=0,f (1)=2,即⎩⎪⎨⎪⎧ab -a =0,1+b ≠0,a1+b=2,所以a =4,b =1,所以f (x )=4xx 2+1.(2)因为f ′(x )=4-4x 2(x 2+1)2,所以直线l 的斜率k =f ′(x 0)=4-4x 20(x 20+1)2=4⎣⎡⎦⎤2(x 20+1)2-1x 20+1,令t =1x 20+1,t ∈(0,1],则k =4(2t 2-t )=8⎝⎛⎭⎫t -142-12,所以k ∈⎣⎡⎦⎤-12,4. 6.在等比数列{a n }中,a 1=2,a 2=4,若函数f (x )=x (x -a 1)·(x -a 2)·…·(x -a n ).求f ′(0). 解:f ′(x )=x ′[(x -a 1)(x -a 2)·…·(x -a n )]+x ·[(x -a 1)(x -a 2)·…·(x -a n )]′ =(x -a 1)(x -a 2)·…·(x -a n )+x [(x -a 1)(x -a 2)·…·(x -a n )]′∴f ′(0)=(-a 1)(-a 2)·…·(-a n )=(-1)na 1a 2·…·a n 由题意知a 1=2,a 2=4,∴a n =2n .∴f ′(0)=(-1)n ·21+2+3+…+n=(-1)n·2n (1+n )2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本初等函数的导数公式及导数运算法则练习姓名 班级 1.曲线y =13x 3-2在点⎝⎛⎭⎪⎫-1,-73处切线的倾斜角为( ) A .30° B .45° C .135° D .60° 2.设f (x )=13x 2-1x x,则f ′(1)等于( )A .-16B.56 C .-76 D.763.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( )A .4x -y -3=0B .x +4y -5=0C .4x -y +3=0D .x +4y +3=04.已知f (x )=ax 3+9x 2+6x -7,若f ′(-1)=4,则a 的值等于( )A.193B.163 C.103 D.1335.已知物体的运动方程是s =14t 4-4t 3+16t 2(t 表示时间,s 表示位移),则瞬时速度为0的时刻是( )A .0秒、2秒或4秒B .0秒、2秒或16秒C .2秒、8秒或16秒D .0秒、4秒或8秒6.(2010·新课标全国卷文,4)曲线y =x 3-2x +1在点(1,0)处的切线方程为( )A .y =x -1B .y =-x -1C .y =2x -2D .y =-2x -27.若函数f (x )=e xsin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为( )A.π2B .0C .钝角D .锐角8.曲线y =x sin x 在点⎝ ⎛⎭⎪⎫-π2,π2处的切线与x 轴、直线x =π所围成的三角形的面积为 ( )A.π22B .π2C .2π2 D.12(2+π)29.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2011(x )等于( )A .sin xB .-sin xC .cos xD .-cos x10.f (x )与g (x )是定义在R 上的两个可导函数,若f (x )、g (x )满足f ′(x )=g ′(x ),则f (x )与g (x )满足( )A .f (x )=g (x )B .f (x )-g (x )为常数C .f (x )=g (x )=0D .f (x )+g (x )为常数11.函数y =(x +1)2(x -1)在x =1处的导数等于( )A .1B .2C .3D .412.若对任意x ∈R ,f ′(x )=4x 3,f (1)=-1,则f (x )=( )A .x 4B .x 4-2 C .4x 3-5D .x 4+213.设函数f (x )=x m+ax 的导数为f ′(x )=2x +1,则数列{1f (n )}(n ∈N *)的前n 项和是( ) A.nn +1 B.n +2n +1 C.n n -1 D.n +1n14.二次函数y =f (x )的图象过原点,且它的导函数y =f ′(x )的图象是过第一、二、三象限的一条直线,则函数y =f (x )的图象的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限15.函数y =(2+x 3)2的导数为( )A .6x 5+12x 2B .4+2x 3C .2(2+x 3)2D .2(2+x 3)·3x16.(2010·江西文,4)若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=( )A .-1B .-2C .2D .017.设函数f (x )=(1-2x 3)10,则f ′(1)=( )A .0B .-1C .-60D .6018.函数y =sin2x -cos2x 的导数是( )A .22cos ⎝⎛⎭⎪⎫2x -π4B .cos2x -sin2xC .sin2x +cos2xD .22cos ⎝⎛⎭⎪⎫2x +π419.(2010·高二潍坊)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D.1220.设函数f (x )是R 上以5为周期的可导偶函数,则曲线y =f (x )在x =5处的切线的斜率为( )A .-15B .0 C.15D .521.设f (x )=ax 2-b sin x ,且f ′(0)=1,f ′⎝ ⎛⎭⎪⎫π3=12,则a =________,b =________.22.设f (x )=x 3-3x 2-9x +1,则不等式f ′(x )<0的解集为________. 23.曲线y =cos x 在点P ⎝⎛⎭⎪⎫π3,12处的切线的斜率为______.24.已知函数f (x )=ax +b e x图象上在点P (-1,2)处的切线与直线y =-3x 平行,则函数f (x )的解析式是____________.25.若f (x )=x ,φ(x )=1+sin2x ,则f [φ(x )]=_______,φ[f (x )]=________. 26.设函数f (x )=cos(3x +φ)(0<φ<π),若f (x )+f ′(x )是奇函数,则φ=________. 27.函数y =(1+2x 2)8的导数为________. 28.函数y =x 1+x 2的导数为________. 三、解答题29.求下列函数的导数:(1)y =x (x 2+1x +1x 3);(2)y =(x +1)(1x -1);(3)y =sin 4x 4+cos 4x 4;(4)y =1+x 1-x +1-x 1+x .30.求下列函数的导数:(1)y =x sin 2x ; (2)y =ln(x +1+x 2); (3)y =e x+1e x -1; (4)y =x +cos xx +sin x..31.求下列函数的导数:(1)y =cos 2(x 2-x ); (2)y =cos x ·sin3x ; (3)y =x log a (x 2+x -1); (4)y =log 2x -1x +1.32.设f (x )=2sin x 1+x ,如果f ′(x )=2(1+x )·g (x ),求g (x ).33.求下列函数的导数:(其中f (x )是可导函数)(1)y =f ⎝ ⎛⎭⎪⎫1x ;(2)y =f (x 2+1).34.已知两条曲线y =sin x 、y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.17.已知曲线C 1:y =x 2与C 2:y =-(x -2)2.直线l 与C 1、C 2都相切,求直线l 的方程.18.求满足下列条件的函数f (x ):(1)f (x )是三次函数,且f (0)=3,f ′(0)=0,f ′(1)=-3,f ′(2)=0; (2)f ′(x )是一次函数,x 2f ′(x )-(2x -1)f (x )=1.基本初等函数的导数公式及导数运算法则答案一、选择题1.曲线y =13x 3-2在点⎝ ⎛⎭⎪⎫-1,-73处切线的倾斜角为( ) A .30° B .45° C .135°D .60°[答案] B[解析] y ′|x =-1=1,∴倾斜角为45°. 2.设f (x )=13x 2-1x x,则f ′(1)等于( )A .-16B.56 C .-76D.76[答案] B3.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( ) A .4x -y -3=0 B .x +4y -5=0 C .4x -y +3=0D .x +4y +3=0[答案] A[解析] ∵直线l 的斜率为4,而y ′=4x 3,由y ′=4得x =1而x =1时,y =x 4=1,故直线l 的方程为:y -1=4(x -1)即4x -y -3=0.4.已知f (x )=ax 3+9x 2+6x -7,若f ′(-1)=4,则a 的值等于( ) A.193B.163 C.103D.133[答案] B[解析] ∵f ′(x )=3ax 2+18x +6,∴由f ′(-1)=4得,3a -18+6=4,即a =163.∴选B.5.已知物体的运动方程是s =14t 4-4t 3+16t 2(t 表示时间,s 表示位移),则瞬时速度为0的时刻是( )A .0秒、2秒或4秒B .0秒、2秒或16秒C .2秒、8秒或16秒D .0秒、4秒或8秒[答案] D[解析] 显然瞬时速度v =s ′=t 3-12t 2+32t =t (t 2-12t +32),令v =0可得t =0,4,8.故选D. 6.(2010·新课标全国卷文,4)曲线y =x 3-2x +1在点(1,0)处的切线方程为( ) A .y =x -1B .y =-x -1C .y =2x -2D .y =-2x -2[答案] A[解析] 本题考查了导数的几何意义,切线方程的求法,在解题时应首先验证点是否在曲线上,然后通过求导得出切线的斜率,题目定位于简单题.由题可知,点(1,0)在曲线y =x 3-2x +1上,求导可得y ′=3x 2-2,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得过点(1,0)的曲线y =x 3-2x +1的切线方程为y =x -1,故选A.7.若函数f (x )=e xsin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为( ) A.π2B .0C .钝角D .锐角[答案] C[解析] y ′|x =4=(e x sin x +e x cos x )|x =4=e 4(sin4+cos4)=2e 4sin(4+π4)<0,故倾斜角为钝角,选C.8.曲线y =x sin x 在点⎝ ⎛⎭⎪⎫-π2,π2处的切线与x 轴、直线x =π所围成的三角形的面积为 ( )A.π22 B .π2C .2π2D.12(2+π)2[答案] A[解析] 曲线y =x sin x 在点⎝ ⎛⎭⎪⎫-π2,π2处的切线方程为y =-x ,所围成的三角形的面积为π22. 9.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2011(x )等于( ) A .sin x B .-sin x C .cos xD .-cos x[答案] D[解析] f0(x)=sin x,f1(x)=f0′(x)=(sin x)′=cos x,f2(x)=f1′(x)=(cos x)′=-sin x,f3(x)=f2′(x)=(-sin x)′=-cos x,f4(x)=f3′(x)=(-cos x)′=sin x,∴4为最小正周期,∴f2011(x)=f3(x)=-cos x.故选D.10.f(x)与g(x)是定义在R上的两个可导函数,若f(x)、g(x)满足f′(x)=g′(x),则f(x)与g(x)满足( )A.f(x)=g(x) B.f(x)-g(x)为常数C.f(x)=g(x)=0 D.f(x)+g(x)为常数[答案] B[解析] 令F(x)=f(x)-g(x),则F′(x)=f′(x)-g′(x)=0,∴F(x)为常数.11.函数y=(x+1)2(x-1)在x=1处的导数等于( )A.1 B.2C.3 D.4[答案] D[解析] y′=[(x+1)2]′(x-1)+(x+1)2(x-1)′=2(x+1)·(x-1)+(x+1)2=3x2+2x-1,∴y′|x=1=4.12.若对任意x∈R,f′(x)=4x3,f(1)=-1,则f(x)=( )A.x4B.x4-2C.4x3-5 D.x4+2[答案] B[解析] ∵f′(x)=4x3.∴f(x)=x4+c,又f(1)=-1∴1+c=-1,∴c=-2,∴f(x)=x4-2.13.设函数f(x)=x m+ax的导数为f′(x)=2x+1,则数列{1f(n)}(n∈N*)的前n项和是( )A.nn+1B.n+2n+1C.nn-1D.n+1n[答案] A[解析] ∵f(x)=x m+ax的导数为f′(x)=2x+1,∴m=2,a=1,∴f(x)=x2+x,即f (n )=n 2+n =n (n +1), ∴数列{1f (n )}(n ∈N *)的前n 项和为: S n =11×2+12×3+13×4+…+1n (n +1)=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=nn +1, 故选A.14.二次函数y =f (x )的图象过原点,且它的导函数y =f ′(x )的图象是过第一、二、三象限的一条直线,则函数y =f (x )的图象的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] C[解析] 由题意可设f (x )=ax 2+bx ,f ′(x )=2ax +b ,由于f ′(x )的图象是过第一、二、三象限的一条直线,故2a >0,b >0,则f (x )=a ⎝ ⎛⎭⎪⎫x +b 2a 2-b 24a, 顶点⎝ ⎛⎭⎪⎫-b2a,-b 24a 在第三象限,故选C.15.函数y =(2+x 3)2的导数为( ) A .6x 5+12x 2B .4+2x 3C .2(2+x 3)2D .2(2+x 3)·3x[答案] A[解析] ∵y =(2+x 3)2=4+4x 3+x 6, ∴y ′=6x 5+12x 2.16.(2010·江西文,4)若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=( ) A .-1 B .-2 C .2D .0[答案] B[解析] 本题考查函数知识,求导运算及整体代换的思想,f ′(x )=4ax 3+2bx ,f ′(-1)=-4a -2b =-(4a +2b ),f ′(1)=4a +2b ,∴f ′(-1)=-f ′(1)=-2要善于观察,故选B.17.设函数f (x )=(1-2x 3)10,则f ′(1)=( ) A .0B .-1C .-60D .60[答案] D[解析] ∵f ′(x )=10(1-2x 3)9(1-2x 3)′=10(1-2x 3)9·(-6x 2)=-60x 2(1-2x 3)9,∴f ′(1)=60. 18.函数y =sin2x -cos2x 的导数是( ) A .22cos ⎝ ⎛⎭⎪⎫2x -π4B .cos2x -sin2xC .sin2x +cos2xD .22cos ⎝⎛⎭⎪⎫2x +π4 [答案] A[解析] y ′=(sin2x -cos2x )′=(sin2x )′-(cos2x )′ =2cos2x +2sin2x =22cos ⎝⎛⎭⎪⎫2x -π4.19.(2010·高二潍坊检测)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D.12 [答案] A[解析] 由f ′(x )=x 2-3x =12得x =3.20.设函数f (x )是R 上以5为周期的可导偶函数,则曲线y =f (x )在x =5处的切线的斜率为( ) A .-15B .0 C.15D .5[答案] B[解析] 由题设可知f (x +5)=f (x ) ∴f ′(x +5)=f ′(x ),∴f ′(5)=f ′(0) 又f (-x )=f (x ),∴f ′(-x )(-1)=f ′(x ) 即f ′(-x )=-f ′(x ),∴f ′(0)=0 故f ′(5)=f ′(0)=0.故应选B. 二、填空题21.设f (x )=ax 2-b sin x ,且f ′(0)=1,f ′⎝ ⎛⎭⎪⎫π3=12,则a =________,b =________.[答案] 0 -1[解析] f ′(x )=2ax -b cos x ,由条件知 ⎩⎪⎨⎪⎧-b cos0=12π3a -b cos π3=12,∴⎩⎪⎨⎪⎧b =-1a =0.22.设f (x )=x 3-3x 2-9x +1,则不等式f ′(x )<0的解集为________.[答案] (-1,3)[解析] f ′(x )=3x 2-6x -9,由f ′(x )<0得3x 2-6x -9<0,∴x 2-2x -3<0,∴-1<x <3. 23.曲线y =cos x 在点P ⎝ ⎛⎭⎪⎫π3,12处的切线的斜率为______.[答案] -32[解析] ∵y ′=(cos x )′=-sin x , ∴切线斜率k =y ′|x =π3=-sin π3=-32.24.已知函数f (x )=ax +b e x图象上在点P (-1,2)处的切线与直线y =-3x 平行,则函数f (x )的解析式是____________.[答案] f (x )=-52x -12e x +1[解析] 由题意可知,f ′(x )|x =-1=-3, ∴a +b e -1=-3,又f (-1)=2,∴-a +b e -1=2,解之得a =-52,b =-12e ,故f (x )=-52x -12e x +1.25.若f (x )=x ,φ(x )=1+sin2x ,则f [φ(x )]=_______,φ[f (x )]=________. [答案]2⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫x +π4,1+sin2x[解析] f [φ(x )]=1+sin2x =(sin x +cos x )2=|sin x +cos x |=2⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫x +π4.φ[f (x )]=1+sin2x .26.设函数f (x )=cos(3x +φ)(0<φ<π),若f (x )+f ′(x )是奇函数,则φ=________. [答案]π6[解析] f ′(x )=-3sin(3x +φ),f (x )+f ′(x )=cos(3x +φ)-3sin(3x +φ)=2sin ⎝⎛⎭⎪⎫3x +φ+5π6. 若f (x )+f ′(x )为奇函数,则f (0)+f ′(0)=0, 即0=2sin ⎝⎛⎭⎪⎫φ+5π6,∴φ+5π6=k π(k ∈Z ).又∵φ∈(0,π),∴φ=π6.27.函数y =(1+2x 2)8的导数为________. [答案] 32x (1+2x 2)7[解析] 令u =1+2x 2,则y =u 8,∴y ′x =y ′u ·u ′x =8u 7·4x =8(1+2x 2)7·4x =32x (1+2x 2)7.28.函数y =x 1+x 2的导数为________. [答案] (1+2x 2)1+x21+x2[解析] y ′=(x 1+x 2)′=x ′1+x 2+x (1+x 2)′=1+x 2+x 21+x2=(1+2x 2)1+x21+x 2.三、解答题29.求下列函数的导数:(1)y =x (x 2+1x +1x3);(2)y =(x +1)(1x-1);(3)y =sin 4x 4+cos 4x 4;(4)y =1+x 1-x +1-x 1+x .[解析] (1)∵y =x ⎝ ⎛⎭⎪⎫x 2+1x +1x 3=x 3+1+1x2,∴y ′=3x 2-2x3;(3)∵y =sin 4x4+cos 4x4=⎝⎛⎭⎪⎫sin 2x 4+cos 2x 42-2sin 2x 4cos 2x4=1-12sin 2x 2=1-12·1-cos x 2=34+14cos x ,∴y ′=-14sin x ;(4)∵y =1+x 1-x +1-x 1+x =(1+x )21-x +(1-x )21-x=2+2x 1-x =41-x-2,∴y ′=⎝ ⎛⎭⎪⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.30.求下列函数的导数:(1)y =x sin 2x ; (2)y =ln(x +1+x 2); (3)y =e x+1e x -1; (4)y =x +cos xx +sin x .[解析] (1)y ′=(x )′sin 2x +x (sin 2x )′ =sin 2x +x ·2sin x ·(sin x )′=sin 2x +x sin2x . (2)y ′=1x +1+x2·(x +1+x 2)′=1x +1+x2(1+x1+x2)=11+x2.(3)y ′=(e x+1)′(e x-1)-(e x+1)(e x-1)′(e x -1)2=-2e x(e x -1)2 .(4)y ′=(x +cos x )′(x +sin x )-(x +cos x )(x +sin x )′(x +sin x )2=(1-sin x )(x +sin x )-(x +cos x )(1+cos x )(x +sin x )2=-x cos x -x sin x +sin x -cos x -1(x +sin x )2. 31.求下列函数的导数:(1)y =cos 2(x 2-x ); (2)y =cos x ·sin3x ; (3)y =x log a (x 2+x -1); (4)y =log 2x -1x +1. [解析] (1)y ′=[cos 2(x 2-x )]′ =2cos(x 2-x )[cos(x 2-x )]′=2cos(x 2-x )[-sin(x 2-x )](x 2-x )′ =2cos(x 2-x )[-sin(x 2-x )](2x -1) =(1-2x )sin2(x 2-x ).(2)y ′=(cos x ·sin3x )′=(cos x )′sin3x +cos x (sin3x )′ =-sin x sin3x +3cos x cos3x =3cos x cos3x -sin x sin3x .(3)y ′=log a (x 2+x -1)+x ·1x 2+x -1log a e(x 2+x -1)′=log a (x 2+x -1)+2x 2+x x 2+x -1log a e.(4)y ′=x +1x -1⎝ ⎛⎭⎪⎫x -1x +1′log 2e =x +1x -1log 2e x +1-x +1(x +1)2=2log 2ex 2-1. 32.设f (x )=2sin x 1+x 2,如果f ′(x )=2(1+x 2)2·g (x ),求g (x ).[解析] ∵f ′(x )=2cos x (1+x 2)-2sin x ·2x(1+x 2)2=2(1+x 2)2[(1+x 2)cos x -2x ·sin x ], 又f ′(x )=2(1+x 2)2·g (x ).∴g (x )=(1+x 2)cos x -2x sin x .33.求下列函数的导数:(其中f (x )是可导函数)(1)y =f ⎝ ⎛⎭⎪⎫1x;(2)y =f (x 2+1).[解析] (1)解法1:设y =f (u ),u =1x,则y ′x =y ′u ·u ′x =f ′(u )·⎝ ⎛⎭⎪⎫-1x 2=-1x2f ′⎝ ⎛⎭⎪⎫1x .解法2:y ′=⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫1x ′=f ′⎝ ⎛⎭⎪⎫1x ·⎝ ⎛⎭⎪⎫1x ′=-1x2f ′⎝ ⎛⎭⎪⎫1x .(2)解法1:设y =f (u ),u =v ,v =x 2+1,34.已知两条曲线y =sin x 、y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.[解析] 由于y =sin x 、y =cos x ,设两条曲线的一个公共点为P (x 0,y 0),∴两条曲线在P (x 0,y 0)处的斜率分别为若使两条切线互相垂直,必须cos x 0·(-sin x 0)=-1, 即sin x 0·cos x 0=1,也就是sin2x 0=2,这是不可能的, ∴两条曲线不存在公共点,使在这一点处的两条切线互相垂直.17.已知曲线C 1:y =x 2与C 2:y =-(x -2)2.直线l 与C 1、C 2都相切,求直线l 的方程. [解析] 设l 与C 1相切于点P (x 1,x 21),与C 2相切于点Q (x 2,-(x 2-2)2).对于C 1:y ′=2x ,则与C 1相切于点P 的切线方程为y -x 21=2x 1(x -x 1),即y =2x 1x -x 21.① 对于C 2:y ′=-2(x -2),与C 2相切于点Q 的切线方程为y +(x 2-2)2=-2(x 2-2)(x -x 2), 即y =-2(x 2-2)x +x 22-4.②∵两切线重合,∴2x 1=-2(x 2-2)且-x 21=x 22-4, 解得x 1=0,x 2=2或x 1=2,x 2=0. ∴直线l 的方程为y =0或y =4x -4. 18.求满足下列条件的函数f (x ):(1)f (x )是三次函数,且f (0)=3,f ′(0)=0,f ′(1)=-3,f ′(2)=0; (2)f ′(x )是一次函数,x 2f ′(x )-(2x -1)f (x )=1. [解析] (1)设f (x )=ax 3+bx 2+cx +d (a ≠0) 则f ′(x )=3ax 2+2bx +c由f (0)=3,可知d =3,由f ′(0)=0可知c =0, 由f ′(1)=-3,f ′(2)=0可建立方程组⎩⎪⎨⎪⎧f ′(1)=3a +2b =-3f ′(2)=12a +4b =0,解得⎩⎪⎨⎪⎧a =1b =-3,所以f (x )=x 3-3x 2+3.(2)由f ′(x )是一次函数可知f (x )是二次函数, 则可设f (x )=ax 2+bx +c (a ≠0)f ′(x )=2ax +b ,把f (x )和f ′(x )代入方程,得x 2(2ax +b )-(2x -1)(ax 2+bx +c )=1整理得(a -b )x 2+(b -2c )x +c =1 若想对任意x 方程都成立,则需⎩⎪⎨⎪⎧ a -b =0b -2c =0c =1解得⎩⎪⎨⎪⎧a =2b =2c =1,所以f(x)=2x2+2x+1.。

相关文档
最新文档