【名师点睛】 2017年九年级数学中考综合30题提高练习(含答案)

合集下载

【名师点睛】2017-2018学年 九年级数学上册 圆 综合练习卷(含答案)

【名师点睛】2017-2018学年 九年级数学上册 圆 综合练习卷(含答案)

2017-2018学年九年级数学上册圆综合练习卷一、选择题:1、下列说法中,错误的是()①弦是直径;②半圆是弧;③长度相等的两条弧是等弧;④能够互相重合的弧是等弧;⑤大于半圆的弧是劣弧,小于半圆的弧是优弧A.1个B.2个C. 3个D.4个2、小宏用直角三角板检查某些工件的弧形凹面是否是半圆,下列工件的弧形凹面一定是半圆的是()A. B. C. D.3、如图,∠A是⊙O的圆周角,∠A=40°,则∠BOC的度数为()A.50°B.80°C.90°D.120°4、如图,已知⊙O中∠AOB度数为100°,C是圆周上的一点,则∠ACB的度数为()A.130°B.100°C.80°D.50°5、下列四个命题中,正确的个数是()①经过三点一定可以画圆;②任意一个三角形一定有一个外接圆;③三角形的内心是三角形三条角平分线的交点;④三角形的外心到三角形三个顶点的距离都相等;⑤三角形的外心一定在三角形的外部.A.4个B.3个C.2个D.1个6、如图,⊙O的半径为2,弦AB=,点C在弦AB上,AC=AB,则OC的长为()A. B. C. D.7、⊙O的半径为10cm,两平行弦AC,BD的长分别为12cm,16cm,则两弦间的距离是()PA.2cmB.14cmC.6cm或8cmD.2cm或14cm D8、如图,在⊙O中,AD,CD是弦,连接OC并延长,交过点A的切线于点B,若∠ADC=25°,则∠ABO的度数为()A.50°B.40°C.30°D.20°9、如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是()A.55°B.60°C.65°D.70°10、如图,∠ABC=80°,O为射线BC上一点,以点O为圆心,OB长为半径作⊙O,要使射线BA与⊙O相切,应将射线BA绕点B按顺时针方向旋转()A.40°或80°B.50°或100°C.50°或110°D.60°或120°11、如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC以及腰AB均相切,切点分别是D,C,E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是()A.9B.10C.12D.1412、如图,在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连接CD.如果∠BAC=20°,则∠BDC=()A.80°B.70°C.60°D.50°13、如图,以AB为直径的半圆绕A点,逆时针旋转60o,点B旋转到点B’的位置,已知AB=6,则图中阴影部分的面积为()A.6B.5C.4D.314、如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD的长为()A. 2.5B. 1.6C. 1.5D. 1二、填空题:15、将量角器按如图所示的方式放置在三角形纸板上,使顶点C在半圆上,点A、B的读数分别为、,则∠ACB的大小为度.16、如图,一块直角三角板ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是58°,则∠ACD的度数为 .17、如图,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为D,已知CD=4,OD=3,求AB的长是.18、如图,半径为5的⊙A中,弦BC、ED所对的圆心角分别是∠BAC、∠EAD,已知DE=6,∠BAC+∠EAD=180°,则圆心A到弦BC的距等于。

2017年秋季九年级上册数学半期考试试题(含答案)

2017年秋季九年级上册数学半期考试试题(含答案)

密封线内不要答题. 县(区) 学校 班级 姓名 准考证号2017年秋季九年级上册半期数学试卷一、选择题(每小题3分,共30分)1、关于x 的一元二次方程02=++c bx ax 和y 与x 的二次函数c bx ax y ++=2,均要求a 的取值范围为( )(A)0≠a (B)0<a (C)0>a (D)0=a2、下列图形中,既是轴对称图形,又是中心对称图形的是( )3、下列关于x 的一元二次方程中,没有实数根的方程是( ) (A )x 2-4=0 (B )25x 2-10x +1=0(C )x 2-x +2=0 (D )x 2-2x -2=04、如图,四边形ABCD 内接于⊙O ,若它的一个外角∠DCE=70°,则∠BOD=( )(A )35° (B )70° (C )110° ( D )140°5、如图,△OAB 绕点O 逆时针旋转750得到△OCD ,若∠A=1050,∠D=400,则∠α的度数是( )(A )35° (B )40° (C )45° (D )50°6.如图中∠BOD 的度数是( )(A )1500 (B )1250 (C )1100 (D )5507.把抛物线3)1(22+--=x y 的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是( )(A )6)1(22+--=x y (B ) 6-)1(22--=x y (C )6)1(22++-=x y (D )6-)1(22+-=x y 8、如图,点E 在y 轴上,圆E 与x 轴交于点A ,B,与y 轴交于点C ,D,若C(0,9),D(0,-1),则线段AB 的长度为( )(A )3 (B )4 (C )6 ( D )8 8、对于命题:①当1<k 时,关于x 一元二次方程0122=+-x kx 有两个不相等的实数根;②当042=-ac b 时,抛物线)0(2≠++=a c bx ax y 的顶点在x 轴上;③相等的圆心角所对的弧也相等;④090的圆周角所对的弦是直径。

初三数学提分试卷及答案

初三数学提分试卷及答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √16C. √25D. √362. 下列函数中,自变量的取值范围是全体实数的是()A. y = x^2 + 2x + 1B. y = √(x - 1)C. y = 1/xD. y = 2^x3. 已知一次函数y = kx + b,当x=1时,y=3;当x=2时,y=5,则该函数的解析式为()A. y = 2x + 1B. y = 3x - 1C. y = 2x + 3D. y = 3x + 14. 下列图形中,是轴对称图形的是()A. 正方形B. 等腰三角形C. 平行四边形D. 长方形5. 在等腰三角形ABC中,AB=AC,若∠BAC=40°,则∠ABC的度数是()A. 40°B. 50°C. 60°D. 70°6. 已知一元二次方程x^2 - 5x + 6 = 0,则该方程的两个根之和是()A. 5B. 6C. 7D. 87. 下列各数中,无理数是()A. √9B. √16C. √25D. √(2/3)8. 下列命题中,正确的是()A. 两个平行的直线在同一平面内B. 两个相交的直线在同一平面内C. 两个平行的直线不在同一平面内D. 两个相交的直线不在同一平面内9. 已知直角三角形ABC中,∠C=90°,AB=5,BC=3,则AC的长度是()A. 2B. 3C. 4D. 510. 下列函数中,单调递增的是()A. y = -x^2B. y = x^2C. y = 2xD. y = -2x二、填空题(每题5分,共25分)11. 2的平方根是________,-3的立方根是________。

12. 若a > b,则a - b的值是________。

13. 已知一次函数y = 2x - 3,当x=2时,y的值为________。

14. 在直角坐标系中,点P(2, -3)关于x轴的对称点坐标是________。

人教版九年级数学上册全册综合提升卷(附答案)

人教版九年级数学上册全册综合提升卷(附答案)

期末综合提升卷时间:90分钟分值:100分第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.下列汽车标志中既是轴对称图形又是中心对称图形的是()图12.抛物线y=x2-2x+2的顶点坐标是()A.(1,1) B.(2,2) C.(1,2) D.(1,3)3.线段MN在平面直角坐标系中的位置如图2所示,将MN绕点M逆时针旋转90°得到线段M1N1,则点N的对应点N1的坐标为()图2A.(0,0) B.(-5,-4) C.(-3,1) D.(-1,-3)4.若x =-2是关于x 的一元二次方程x 2-52ax +a 2=0的一个根,则a 的值为( )A .1或4B .-1或-4C .-1或4D .1或-45.如图3,已知⊙O 的半径为13,弦AB 的长为24,则点O 到AB 的距离是( )图3A .6B .5C .4D .36.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图4所示的折线统计图,那么符合这一结果的试验最有可能的是( )4A .袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球B .掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6C .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”D .掷一枚质地均匀的硬币,落地时结果是“正面向上”7.如图5,正八边形ABCDEFGH 内接于圆,点P 是弧GH 上的任意一点,则∠CPE 的度数为( )5A.30°B.15°C.60°D.45°8.如图6,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y =x的图象被⊙P截得的弦AB的长为42,则a的值是()图6A.4 B.3+ 2 C.3 2 D.3+ 39.已知二次函数y=ax2+bx+c(a≠0)的图象如图7,则下列说法:①c=0;②该抛物线的对称轴是直线x=-1;③当x=1时,y=2a;④am2+bm+a>0(m≠-1).其中正确的个数是()图7A.1 B.2 C.3 D.410.如图8,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至全部移出大三角形停止.设小三角形移动的距离为x,两个三角形重叠部分的面积为y,则y关于x的函数图象是()8图9请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.平面直角坐标系内与点P(-2,3)关于原点对称的点的坐标是________.12.将抛物线y=-2x2先向下平移3个单位长度,再向右平移2个单位长度后所得抛物线的解析式为____________.13.抛物线的部分图象如图10所示,则当y<0时,x的取值范围是____________.图10图1114.一儿童行走在如图11所示的地板上,当他随意停下时,最终停在地板上阴影部分的概率是________.15.原价为100元的某商品,连续两次降价后售价为81元.若每次降价的百分率相同,则每次降低的百分率为________.图1216.如图12,△AOB为等腰三角形,顶点A的坐标为(2,5),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为________.三、解答题(共52分)17.(5分)已知抛物线y=ax2-2x+c的对称轴为直线x=-1,顶点为A,抛物线与y 轴正半轴交于点B,且△ABO的面积为1.(1)求抛物线的解析式;(2)若点P在x轴上,且PA=PB,求点P的坐标.18.(5分)已知关于x的一元二次方程x2+2x+2k-4=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值及该方程的根.19.(5分)△ABC与点O在10×10的网格中的位置如图13所示.(1)画出△ABC绕点O逆时针旋转90°后的图形;(2)画出△ABC绕点O逆时针旋转180°后的图形;(3)若⊙M能盖住△ABC,则⊙M的半径的最小值为________.图1320.(5分)如图14,BC 是⊙O 的直径,点A 在⊙O 上,AD ⊥BC ,垂足为D ,AE ︵=AB ︵,BE 分别交AD ,AC 于点F ,G.(1)△FAG 的形状是________;(2)如图②,若点E 和点A 在BC 的两侧,BE ,AC 的延长线交于点G ,AD 的延长线交BE 于点F ,其余条件不变,(1)中的结论还成立吗?请说明理由.图1421.(7分)已知一个矩形的周长为56厘米.(1)当矩形的面积为180平方厘米时,长、宽分别为多少? (2)矩形的面积能为200平方厘米吗?请说明理由.22.(7分)孙明和王军两人去桃园游玩,返回时打算顺便买些新鲜油桃.此时桃园仅三箱油桃,价钱相同,但质量略有区别,分为A 1级、A 2级、A 3级,其中A 1级最好,A 3级最差.挑选时,三箱油桃不同时拿出,只能一箱一箱地看,也不告知该箱的质量等级.两人采取了不同的选择方案:孙明无论如何总是买第一次拿出来的那箱.王军是先观察再确定,他不买第一箱油桃,而是仔细观察第一箱油桃的状况;如果第二箱油桃的质量比第一箱好,他就买第二箱油桃,如果第二箱的油桃不如第一箱好,他就买第三箱.(1)三箱油桃出现的先后顺序共有哪几种可能? (2)孙明与王军,谁买到A 1级的可能性大?为什么?23.(8分)如图15,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,点P 在CA 的延长线上,∠CAD =45°.(1)若AB =4,求CD ︵的长;(2)若BC ︵=AD ︵,AD =AP ,求证:PD 是⊙O 的切线.图1524.(10分)如图16所示,某公园在一块扇形OEF 草坪上的圆心O 处垂直于草坪的地上竖一根柱子OA ,在A 处安装一个自动喷水装置.喷头向外喷水.连喷头在内,柱高109米,水流在各个方向上沿形状相同的抛物线路径落下,喷出的水流在与O 点的水平距离4米处达到最高点B ,点B 距离地面2米.当喷头A 旋转120°时,这块草坪可以全被水覆盖.(1)建立适当的平面直角坐标系,使A 的坐标为(0,109),水流的最高点B 的坐标为(4,2),求出此平面直角坐标系中抛物线水流对应的函数解析式;(2)求喷水装置能喷灌的草坪的面积(结果用含π的式子表示);(3)在扇形OEF 的一块三角形区域地块△OEF 中,现要建造一个矩形GHMN 花坛,如图②的设计方案是使H ,G 分别在OF ,OE 上,MN 在EF 上.设MN =2x m ,当x 取何值时,矩形GHMN 花坛的面积最大?最大面积是多少?图16答案详析1.C A 项中的图形是轴对称图形,不是中心对称图形,故本选项不符合题意; B 项中的图形既不是轴对称图形,又不是中心对称图形,故本选项不符合题意; C 项中的图形是轴对称图形,也是中心对称图形,故本选项符合题意;D 项中的图形是轴对称图形,不是中心对称图形,故本选项不符合题意.故选C. 2.A ∵y =x 2-2x +2=x 2-2x +1-1+2=(x -1)2+1, ∴抛物线y =x 2-2x +2的顶点坐标是(1,1).3.C 如图,点N 的对应点N 1的坐标为(-3,1).4.B ∵x =-2是关于x 的一元二次方程x 2-52ax +a 2=0的一个根,∴4+5a +a 2=0,∴(a +1)(a +4)=0,解得a 1=-1,a 2=-4.5.B 过点O 作OC ⊥AB 于点C .由垂径定理,得AC =BC =12AB =12.在Rt △AOC 中,由勾股定理得OC =132-122=5.6.B A .袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球的概率为23,不符合题意;B .掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率为16,符合题意;C .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率为13,不符合题意;D .掷一枚质地均匀的硬币,落地时结果是“正面向上”的概率为12,不符合题意.7.D 连接OD ,OC ,OE ,如图所示.∵八边形ABCDEFGH 是正八边形, ∴∠COD =∠DOE =360°8=45°,∴∠COE =45°+45°=90°, ∴∠CPE =12∠COE =45°.8.B 作PC ⊥x 轴于点C ,交AB 于点D ,作PE ⊥AB 于点E ,连接PB ,如图.∵⊙P 的圆心坐标是(3,a ),∴OC =3,PC =a . 把x =3代入y =x 得y =3,∴D 点的坐标为(3,3), ∴CD =3,∴△OCD 为等腰直角三角形, ∴△PED 也为等腰直角三角形. ∵PE ⊥AB ,∴AE =BE =12AB =12×4 2=2 2.∵在Rt △PBE 中,PB =3, ∴PE =32-(2 2)2=1,∴PD =2PE =2,∴a =3+ 2.故选B.9.C ∵抛物线与y 轴交于原点,∴c =0,故①正确;该抛物线的对称轴是直线x =-2+02=-1,即直线x =-1,故②正确;当x =1时,y =a +b +c .∵图象的对称轴是直线x =-1,∴-b2a =-1,b =2a .又∵c =0,∴y =3a ,故③错误;当x =m 时对应的函数值为y =am 2+bm +c ,当x =-1时对应的函数值为y =a -b +c ,又x =-1时函数取得最小值,且m ≠-1,∴a -b +c <am 2+bm +c ,即a -b <am 2+bm .∵b =2a ,∴am 2+bm +a >0(m ≠-1),故④正确.10.B ①当x ≤1时,两个三角形重叠部分的面积为小三角形的面积,∴y =12×1×32=34,可排除选项D ;②当1<x ≤2时,重叠三角形的边长为2-x ,高为3(2-x )2,∴y =12(2-x )×3(2-x )2=34x 2-3x +3,是二次函数,图象为抛物线的一部分,可排除选项A.又34>0,∴抛物线开口向上,可排除C ,故选B. 11.(2,-3) 12.y =-2(x -2)2-313.x <-1或x >314.13 观察这个图可知,阴影区域(3块)的面积占总面积(9块)的13,故其概率为13. 15.10% 设每次降低的百分率是x . 根据题意列方程,得100×(1-x )2=81, 解得x 1=0.1=10%, x 2=1.9(不符合题意,舍去). 即每次降低的百分率是10%.16.(203,4 53) 过点A 作AC ⊥OB 于点C ,过点O ′作O ′D ⊥A ′B 于点D .∵A (2,5),∴OC =2,AC = 5.由勾股定理得OA =OC 2+AC 2=22+(5)2=3. ∵△AOB 为等腰三角形,OB 是底边, ∴OB =2OC =2×2=4.由旋转的性质得O ′B =OB =4,A ′B =AB =AO =3. ∵S △AOB =S △A ′O ′B , ∴OB ·AC =A ′B ·O ′D , ∴O ′D =4 53,∴BD =O ′B 2-O ′D 2=42-(4 53)2=83,∴OD =OB +BD =4+83=203,∴点O ′的坐标为(203,4 53).17.解:(1)∵抛物线的对称轴为直线x =-1, ∴--22a =-1,∴a =-1.∵△ABO 的面积为1, ∴12c ×1=1,∴c =2, ∴抛物线的解析式为y =-x 2-2x +2. (2)∵y =-x 2-2x +2=-(x +1)2+3, ∴A (-1,3).设P 点的坐标为(x ,0). ∵P A =PB ,B (0,2), ∴(x +1)2+32=x 2+22,解得x =-3,故点P 的坐标为(-3,0). 18.解:(1)依题意得Δ=22-4(2k -4)>0, 解得k <52.(2)因为k <52且k 为正整数,所以k =1或2.当k =1时,方程化为x 2+2x -2=0,Δ=12,此方程无整数根; 当k =2时,方程化为x 2+2x =0,解得x 1=0,x 2=-2. 所以k =2,方程的整数根为x 1=0,x 2=-2. 19.解:(1)如图,△A 1B 1C 1即为所求.(2)如图,△A 2B 2C 2即为所求.(3) 520.解:(1)等腰三角形 (2)成立.理由如下:∵BC 为⊙O 的直径,AD ⊥BC ,∴∠BAD +∠CAD =90°,∠C +∠CAD =90°, ∴∠BAD =∠C . ∵AE ︵=AB ︵,∴∠ABE =∠C ,∴∠ABE =∠BAD .∵∠BAD +∠CAD =90°,∠ABE +∠AGB =90°,∴∠CAD =∠AGB ,∴F A =AG , ∴△F AG 是等腰三角形.21.解:(1)设矩形的长为x 厘米,则另一边长为(28-x )厘米.依题意有 x (28-x )=180,解得x 1=10(舍去),x 2=18, 28-x =28-18=10.故长为18厘米,宽为10厘米. (2)不能.理由如下:设矩形的长为x 厘米,则宽为(28-x )厘米,依题意有x (28-x )=200, 即x 2-28x +200=0,则Δ=282-4×200<0, 原方程无实数根,故矩形的面积不能为200平方厘米. 22.解:(1)共有六种情况:A1,A2,A3;A2,A1,A3;A3,A1,A2; A1,A3,A2;A2,A3,A1;A3,A2,A1. (2)王军买到A1的可能性大,理由如下:孙明买到A1的情况有两种:A1,A2,A3;A1,A3,A2. 因此孙明买到A1的概率为26=13.王军买到A1的情况有三种:A2,A1,A3;A2,A3,A1;A3,A1,A2. 因此王军买到A1的概率为36=12.因此,王军买到A1的可能性大. 23.解:(1)如图,连接OC ,OD .∵∠COD =2∠CAD ,∠CAD =45°, ∴∠COD =90°.∵AB =4,∴OC =12AB =2,∴CD ︵的长=90180×π×2=π.(2)∵BC ︵=AD ︵,∴∠BOC =∠AOD .不忘初心,方得始终!∵∠COD =90°,∴∠AOD =45°. ∵OA =OD ,∴∠ODA =∠OAD . ∵∠AOD +∠ODA +∠OAD =180°, ∴∠ODA =67.5°.∵AD =AP ,∴∠ADP =∠APD .∵∠CAD =∠ADP +∠APD ,∠CAD =45°, ∴∠ADP =12∠CAD =22.5°,∴∠ODP =∠ODA +∠ADP =90°, ∴PD 是⊙O 的切线.24.解:(1)根据题意得出图象顶点坐标为(4,2),故设解析式为y =a (x -4)2+2, 将(0,109),代入得109=a (0-4)2+2,解得a =-118,∴抛物线水流对应的函数解析式为y =-118(x -4)2+2.(2)当y =0时,0=-118(x -4)2+2,解得x 1=10,x 2=-2(舍去),∴扇形的半径为10米,∴能喷灌的草坪的面积=120π×102360=100π3(米2).(3)如图,过点O 作OA ⊥EF 于点A ,交GH 于点B ,∵∠EOF =120°,OE =OF =10米,不忘初心,方得始终!∴∠OEF =∠OFE =30°,∴AO =12FO =5米,∴AF =5 3米.∵MN =2x 米,∴AM =BH =x 米,∴MF =(5 3-x )米.又∵2MH =FH , ∴FH 2-MH 2=MF 2, ∴MH =(5-33x )米.由题意得S 矩形GHMN =2x ·(5-33x )=-2 33x 2+10x , 当x =-b 2a =5 32时,S 矩形GHMN 的值最大,为2532米2.不忘初心,方得始终!不忘初心,方得始终!。

历年真题2017年广东省中考初三九年级毕业考试数学试卷后附答案下载

历年真题2017年广东省中考初三九年级毕业考试数学试卷后附答案下载

数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前广东省2017年初中毕业生学业考试数 学本试卷满分120分,考试时间100分钟第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.5的相反数是( ) A .15B .5C .15-D .5-2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元.将4000000000用科学记数法表示为 ( )A .90.410⨯B .100.410⨯C .9410⨯D .10410⨯3.已知70A ∠=,则A ∠的补角为( )A .110B .70 C .30 D .204.如果2是方程230x x k -+=的一个根,则常数k 的值为 ( )A .1B .2C .1-D .2- 5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是 ( )A .95B .90C .85D .806.下列所述图形中,既是轴对称图形又是中心对称图形的是 ( )A .等边三角形B .平行四边行C .正五边形D .圆 7.如图,在同一平面直角坐标系中,直线()110y k x k =≠与双曲线()210k y k x=≠相交于A ,B 两点,已知点A 的坐标为(1,2),则点B 的坐标为 ( ) A .(1,2)-- B .(2,1)-- C .(1,1)-- D .(2,2)--8.下列运算正确的是 ( )A .223a a a +=B .325a a a =C .426()a a =D .824a a a ÷= 9.如图,四边形ABCD 内接于O ,DA DC =,50CBE ∠=,则DAC ∠的大小为 ( )A .130B .100C .65 D .5010.如图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF .下列结论: ①ABF ADF S S =△△; ②4CDF CEF S S =△△; ③2ADF CEF S S =△△;④2ADF CDF S S =△△,其中正确的是 ( ) A .①③ B .②③ C .①④ D .②④第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题4分,共24分.把答案填毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)写在题中的横线上)11.分解因式:2a a += .12.一个n 边形的内角和是720,那么n = . 13.已知实数,a b 在数轴上的对应点的位置如图所示,则a b + 0(填“>”“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 .15.已知431a b +=,则整式863a b +-的值为 .16.如图1,矩形纸片ABCD 中,5AB =,3BC =.先按图2操作:将矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按图3操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG ,则,A H 两点间的距离为 .三、解答题(本大题共9小题,共66分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分6分)计算:101|7|(1π)3-⎛⎫---+ ⎪⎝⎭.18.(本小题满分6分)先化简,再求值:211()(4)22x x x +--+,其中x19.(本小题满分6分)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?20.(本小题满分7分)如图,在ABC △中,A B ∠∠>.(1)作边AB 的垂直平分线DE ,与,AB BC 分别相交于点,D E (用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE ,若50B ∠=,求AEC ∠的度数.21.(本小题满分7分)如图所示,已知四边形ABCD ,ADEF 都是菱形,BAD FAD ∠=∠,BAD ∠为锐角.数学试卷 第5页(共18页) 数学试卷 第6页(共18页)(1)求证:AD BF ⊥;(2)若BF BC =,求ADC ∠的度数.22.(本小题满分7分)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表 体重扇形统计图m = ();②在扇形统计图中,C 组所在扇形的圆心角的度数等于 度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?23.(本小题满分9分)如图,在平面直角坐标系中,抛物线2y x ax b =-++交x 轴于(1,0),(3,0)A B 两点,点P 是抛物线上在第一象限内的一点,直线BP 与y 轴相交于点C .(1)求抛物线2y x ax b =-++的解析式;(2)当点P 是线段BC 的中点时,求点P 的坐标; (3)在(2)的条件下,求sin OCB ∠的值.24.(本小题满分9分)如图,AB 是O 的直径,AB =,点E 为线段OB 上一点(不与,O B 重合),作CE OB ⊥,交O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF PC ⊥于点F ,连接CB . (1)求证:CB 是ECP ∠的平分线; (2)求证:CF CE =; (3)当34CF CP=时,求劣弧BC 的长度(结果保留π).-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________25.(本小题满分9分)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点,A C的坐标分别是(2,0)A和C,点D是对角线AC上一动点(不与,A C重合),连接BD,作D E D B⊥,交x轴于点E,以线段,DE DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得DEC△是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:DEDB=;②设AD x=,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.广东省2017年初中毕业生学业水平考试数学答案解析第Ⅰ卷一、选择题1.【答案】D【解析】根据相反数的定义有:5的相反数是5﹣,故选:D。

人教版数学九年级上册 圆 几何综合(提升篇)(Word版 含解析)

人教版数学九年级上册 圆 几何综合(提升篇)(Word版 含解析)

人教版数学九年级上册圆几何综合(提升篇)(Word版含解析)一、初三数学圆易错题压轴题(难)1.如图,抛物线的对称轴为轴,且经过(0,0),()两点,点P在抛物线上运动,以P为圆心的⊙P经过定点A(0,2),(1)求的值;(2)求证:点P在运动过程中,⊙P始终与轴相交;(3)设⊙P与轴相交于M,N(<)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.【答案】(1)a=,b=c=0;(2)证明见解析;(3)P的纵坐标为0或4+2或4﹣2.【解析】试题分析:(1)根据题意得出二次函数一般形式进而将已知点代入求出a,b,c的值即可;(2)设P(x,y),表示出⊙P的半径r,进而与x2比较得出答案即可;(3)分别表示出AM,AN的长,进而分别利用当AM=AN时,当AM=MN时,当AN=MN 时,求出a的值,进而得出圆心P的纵坐标即可.试题解析:(1)∵抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)和(,)两点,∴抛物线的一般式为:y=ax2,∴=a()2,解得:a=±,∵图象开口向上,∴a=,∴抛物线解析式为:y=x2,故a=,b=c=0;(2)设P(x,y),⊙P的半径r=,又∵y=x2,则r=,化简得:r=>x2,∴点P在运动过程中,⊙P始终与x轴相交;(3)设P(a,a2),∵PA=,作PH⊥MN于H,则PM=PN=,又∵PH=a2,则MH=NH==2,故MN=4,∴M(a﹣2,0),N(a+2,0),又∵A(0,2),∴AM=,AN=,当AM=AN时,=,解得:a=0,当AM=MN时,=4,解得:a=2±2(负数舍去),则a2=4+2;当AN=MN时,=4,解得:a=﹣2±2(负数舍去),则a2=4﹣2;综上所述,P的纵坐标为0或4+2或4﹣2.考点:二次函数综合题.2.如图,已知直线AB经过⊙O上的点C,并且OA=OB,CA=CB,(1)求证:直线AB是⊙O的切线;(2)OA,OB分别交⊙O于点D,E,AO的延长线交⊙O于点F,若AB=4AD,求sin∠CFE 的值.【答案】(1)见解析;(2)5【解析】【分析】(1)根据等腰三角形性质得出OC⊥AB,根据切线的判定得出即可;(2)连接OC、DC,证△ADC∽△ACF,求出AF=4x,CF=2DC,根据勾股定理求出DC=35x,DF=3x,解直角三角形求出sin∠AFC,即可求出答案.【详解】(1)证明:连接OC,如图1,∵OA=OB,AC=BC,∴OC⊥AB,∵OC过O,∴直线AB是⊙O的切线;(2)解:连接OC、DC,如图2,∵AB=4AD,∴设AD=x,则AB=4x,AC=BC=2x,∵DF为直径,∴∠DCF=90°,∵OC⊥AB,∴∠ACO=∠DCF=90°,∴∠OCF=∠ACD=90°﹣∠DCO,∵OF=OC,∴∠AFC=∠OCF,∴∠ACD=∠AFC,∵∠A=∠A,∴△ADC∽△ACF,∴122AC AD DC xAF AC CF x====,∴AF=2AC=4x,FC=2DC,∵AD=x,∴DF=4x﹣x=3x,在Rt△DCF中,(3x)2=DC2+(2DC)2,解得:DC35x,∵OA=OB,AC=BC,∴∠AOC=∠BOC,∴DC EC=,∴∠CFE=∠AFC,∴sin∠CFE=sin∠AFC=DCDF=35553xx=.【点睛】本题考查了等腰三角形的性质,切线的判定,解直角三角形,圆心角、弧、弦之间的关系,相似三角形的性质和判定的应用,能综合运用知识点进行推理和计算是解此题的关键,难度偏大.3.在平面直角坐标系xOy中,已知 A(-2,0),B(2,0),AC⊥AB于点A,AC=2,BD⊥AB于点B,BD=6,以AB为直径的半圆O上有一动点P(不与A、B两点重合),连接PD、PC,我们把由五条线段AB、BD、DP、PC、CA所组成的封闭图形ABDPC叫做点P的关联图形,如图1所示.(1)如图2,当P运动到半圆O与y轴的交点位置时,求点P的关联图形的面积.(2)如图3,连接CD、OC、OD,判断△OCD的形状,并加以证明.(3)当点P运动到什么位置时,点P的关联图形的面积最大,简要说明理由,并求面积的最大值.【答案】(1)12;(2)判断△OCD是直角三角形,证明见解析;(3)连接OC,交半圆O于点P,这时点P的关联图形的面积最大,理由风解析,82+【解析】试题分析:(1)判断出四边形AOPC是正方形,得到正方形的面积是4,根据BD⊥AB,BD=6,求出梯形OPDB的面积=()(26)2822OP DB OB+⨯+⨯==,二者相加即为点P的关联图形的面积是12.(2)根据CF=DF=4,∠DCF=45°,求出∠OCD=90°,判断出△OCD是直角三角形.(3)要使点P的关联图形的面积最大,就要使△PCD的面积最小,确定关联图形的最大面积是梯形ACDB的面积﹣△PCD的面积,根据此思路,进行解答.试题解析:(1)∵A(﹣2,0),∴OA=2,∵P是半圆O上的点,P在y轴上,∴OP=2,∠AOP=90°,∴AC=2,∴四边形AOPC是正方形,∴正方形的面积是4,又∵BD⊥AB,BD=6,∴梯形OPDB的面积=()(26)2822OP DB OB+⨯+⨯==,∴点P的关联图形的面积是12.(2)判断△OCD是直角三角形.证明:延长CP交BD于点F,则四边形ACFB为矩形,∴CF=DF=4,∠DCF=45°,∴∠OCD=90°,∴OC ⊥CD ,∴△OCD 是直角三角形.(3)连接OC 交半圆O 于点P ,则点P 即为所确定的点的位置.理由如下:连接CD ,梯形ACDB 的面积=()(26)41622AC DB AB +⨯+⨯==为定值, 要使点P 的关联图形的面积最大,就要使△PCD 的面积最小,∵CD 为定长,∴P 到CD 的距离就要最小,连接OC ,设交半圆O 于点P ,∵AC ⊥OA ,AC=OA ,∴∠AOC=45°,过C 作CF ⊥BD 于F ,则ACFB 为矩形, ∴CF=DF=4,∠DCF=45°,∴OC ⊥CD ,OC=22,∴PC 在半圆外,设在半圆O 上的任意一点P′到CD 的距离为P′H ,则P′H+P′O >OH >OC , ∵OC=PC+OP ,∴P′H >PC ,∴当点P 运动到半圆O 与OC 的交点位置时,点P 的关联图形的面积最大.∵CD=42,CP=222-,∴△PCD 的面积=()(26)41622AC DB AB +⨯+⨯==, ∴点P 的关联图形的最大面积是梯形ACDB 的面积﹣△PCD 的面积=16(842)842--=+.考点:圆的综合题.4.已知:在△ABC 中,AB=6,BC=8,AC=10,O 为AB 边上的一点,以O 为圆心,OA 长为半径作圆交AC于D点,过D作⊙O的切线交BC于E.(1)若O为AB的中点(如图1),则ED与EC的大小关系为:ED EC(填“”“”或“”)(2)若OA<3时(如图2),(1)中的关系是否还成立?为什么?(3)当⊙O过BC中点时(如图3),求CE长.【答案】(1)ED=EC;(2)成立;(3)3【解析】试题分析:(1)连接OD,根据切线的性质可得∠ODE=90°,则∠CDE+∠ADO=90°,由AB=6,BC=8,AC=10根据勾股定理的逆定理可证得∠ABC=90°,则∠A+∠C=90°,根据圆的基本性质可得∠A=∠ADO,即可得到∠CDE=∠C,从而证得结论;(2)证法同(1);(3)根据直角三角形的性质结合圆的基本性质求解即可.(1)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(2)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(3)CE=3.考点:圆的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.5.如图,点A在直线l上,点Q沿着直线l以3厘米/秒的速度由点A向右运动,以AQ为边作Rt△ABQ,使∠BAQ=90°,tan∠ABQ= 34,点C在点Q右侧,CQ=1厘米,过点C作直线m⊥l,过△ABQ的外接圆圆心O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=13CD,以DE、DF为邻边作矩形DEGF.设运动时间为t秒.(1)直接用含t的代数式表示BQ、DF;(2)当0<t <1时,求矩形DEGF 的最大面积; (3)点Q 在整个运动过程中,当矩形DEGF 为正方形时,求t 的值.【答案】(1)BQ=5t ,DF=23t;(2)16;(3)t 的值为35或3. 【解析】试题分析:(1)AB 与OD 交于点H ,根据题中的比例关系和勾股定理可表示出BQ 的长;根据垂直于同一条直线的两直线平行和三角形的中位线定理可求得AH 的长,再根据矩形的判定定理和矩形的性质可求CD 的长,即可表示出FD ;(2)根据题意表示出矩形的长和宽,然后构造二次函数,通过二次函数的最值可求解;(3)当矩形为正方形时,分别让其长与宽相等,列方程求解即可.试题解析:(1)5t BQ =,2DF=t 3; (2)DE=OD-OE=32t+1-52t=1-t ,()22211·t 13326S DF DE t t ⎛⎫==-=--+ ⎪⎝⎭,∴当t=12时,矩形DEGF 的最大面积为16; (3)当矩形DEGF 为正方形时,221133t t t t -=-=或,解得335t t ==或.6.如图,已知抛物线y=ax 2+bx+c (a >0,c <0)交x 轴于点A ,B ,交y 轴于点C ,设过点A ,B ,C 三点的圆与y 轴的另一个交点为D .(1)如图1,已知点A ,B ,C 的坐标分别为(-2,0),(8,0),(0,-4); ①求此抛物线的函数解析式;②若点M 为抛物线上的一动点,且位于第四象限,求△BDM 面积的最大值;(2)如图2,若a=1,c=-4,求证:无论b 取何值,点D 的坐标均不改变.【答案】(1)①y=x 2-x-4;②△BDM 的面积有最大值为36;(2)证明见解析.【解析】试题分析:(1)①只需运用待定系数法就可解决问题;②过点M 作ME ∥y 轴,交BD 于点E ,连接BC ,如图1.根据勾股定理的逆定理可得∠ACB=90°,从而可得AB 为直径,根据垂径定理可得OD=OC,即可得到D(0,4),然后运用待定系数法可求得直线BD的解析式为y=-x+4,设M(x,x2-x-4),则E(x,-x+4),从而得到ME=-x2+x+8,运用割补法可得S△BDM=S△DEM+S△BEM=-(x-2)2+36,然后根据二次函数的最值性就可求出△BDM 的面积的最大值;(2)连接AD、BC,如图2.若a=1,c=-4,则抛物线的解析式为y=x2+bx-4,可得C(0,-4),OC=4.设点A(x1,0),B(x2,0),则OA=-x1,OB=x2,且x1、x2是方程x2+bx-4=0的两根,根据根与系数的关系可得OA•OB=4.由A、D、B、C四点共圆可得∠ADC=∠ABC,∠DAB=∠DCB,从而可得△ADO∽∽△CBO,根据相似三角形的性质可得OC•OD=OA•OB=4,从而可得OD=1,即可得到D(0,1),因而无论b取何值,点D的坐标均不改变.试题解析:(1)①∵抛物线y=ax2+bx+c过点A(-2,0),B(8,0),C(0,-4),∴,解得.∴抛物线的解析式为y=x2-x-4;②过点M作ME∥y轴,交BD于点E,连接BC,如图1.∵A(-2,0),B(8,0),C(0,-4),∴OA=2,OB=8,OC=4,∴AB=10,AC=2,BC=4,∴AB2=AC2+BC2,∴∠ACB=90°,∴AB为直径.∵CD⊥AB,∴OD=OC,∴D(0,4).设直线BD的解析式为y=mx+n.∵B(8,0),D(0,4),∴,解得,∴直线BD的解析式为y=-x+4.设M(x,x2-x-4),则E(x,-x+4),∴ME=(-x+4)-(x2-x-4)=-x2+x+8,∴S△BDM=S△DEM+S△BEM=ME(x E-x D)+ME(x B-x E)=ME(x B-x D)=(-x2+x+8)×8=-x2+4x+32=-(x-2)2+36.∵0<x<8,∴当x=2时,△BDM的面积有最大值为36;(2)连接AD、BC,如图2.若a=1,c=-4,则抛物线的解析式为y=x2+bx-4,则C(0,-4),OC=4.设点A(x1,0),B(x2,0),则OA=-x1,OB=x2,且x1、x2是方程x2+bx-4=0的两根,∴OA•OB=-x1•x2=-(-4)=4.∵A、D、B、C四点共圆,∴∠ADC=∠ABC,∠DAB=∠DCB,∴△ADO∽△CBO,∴,∴OC•OD=OA•OB=4,∴4OD=4,∴OD=1,∴D(0,1),∴无论b取何值,点D的坐标均不改变.考点:圆的综合题7.我们把“有两条边和其中一边的对角对应相等的两个三角形”叫做“同族三角形”,如图1,在△ABC和△ABD中,AB=AB,AC=AD,∠B=∠B,则△ABC和△ABD是“同族三角形”.(1)如图2,四边形ABCD内接于圆,点C是弧BD的中点,求证:△ABC和△ACD是同族三角形;(2)如图3,△ABC内接于⊙O,⊙O的半径为32,AB=6,∠BAC=30°,求AC的长;(3)如图3,在(2)的条件下,若点D在⊙O上,△ADC与△ABC是非全等的同族三角形,AD>CD,求ADCD的值.【答案】(1)详见解析;(2)33+3;(3)ADCD=622+或62.【解析】【分析】(1)由点C是弧BD的中点,根据弧与弦的关系,易得BC=CD,∠BAC=∠DAC,又由公共边AC,可证得:△ABC和△ACD是同族三角形;(2)首先连接0A,OB,作点B作BE⊥AC于点E,易得△AOB是等腰直角三角形,继而求得答案;(3)分别从当CD=CB时与当CD=AB时进行分析求解即可求得答案.【详解】(1)证明:∵点C是弧BD的中点,即BC CD=,∴BC=CD,∠BAC=∠DAC,∵AC=AC,∴△ABC和△ACD是同族三角形.(2)解:如图1,连接OA,OB,作点B作BE⊥AC于点E,∵OA=OB=32,AB=6,∴OA 2+OB 2=AB 2,∴△AOB 是等腰直角三角形,且∠AOB=90°,∴∠C=∠AOB=45°, ∵∠BAC=30°,∴BE=AB=3, ∴AE=22AB BE -=33,∵CE=BE=3,∴AC=AE+CE=33+3.(3)解:∵∠B=180°﹣∠BAC ﹣∠ACB=180°﹣30°﹣45°=105°,∴∠ADC=180°﹣∠B=75°, 如图2,当CD=CB 时,∠DAC=∠BAC=30°,∴∠ACD=75°,∴AD=AC=33+3,CD=BC=2BE=32,∴AD 333CD 32+==62+; 如图3,当CD=AB 时,过点D 作DF ⊥AC ,交AC 于点F ,则∠DAC=∠ACB=45°,∴∠ACD=180°﹣∠DAC ﹣∠ADC=60°,∴DF=CD•sin60°=6×323 ∴2DF=36∴AD 36CD ==62综上所述:AD CD =622或62【点睛】本题考查圆的综合应用问题,综合运用弧与弦的关系,等腰三角形的性质结合图形作辅助线进行分析证明以及求解,难度较大.8.已知:AB 为⊙O 直径,弦CD ⊥AB ,垂足为H ,点E 为⊙O 上一点,AE BE =,BE 与CD 交于点F .(1)如图1,求证:BH =FH ;(2)如图2,过点F 作FG ⊥BE ,分别交AC 、AB 于点G 、N ,连接EG ,求证:EB =EG ; (3)如图3,在(2)的条件下,延长EG 交⊙O 于M ,连接CM 、BG ,若ON =1,△CMG 的面积为6,求线段BG 的长.【答案】(1)见解析;(2)见解析;(3)210 .【解析】【分析】(1)连接AE ,根据直径所对圆周角等于90°及弧与弦的关系即可得解;(2)根据题意,过点C 作CQ FG CS FB ⊥⊥,,连接CE BC 、,通过证明Rt CGQ Rt CBS ∆≅∆,CBE CGE ∆≅∆即可得解;(3)根据题意,过点G 作GT CD ⊥于T ,连接CN ,设CAB α∠=,证明()CMG CNG AAS ∆≅∆,再由面积法及勾股定理进行计算求解即可.【详解】解:(1)如下图,连接AE∵AB 为直径∴90AEB =︒∠∵AE BE =∴AE BE =∴45B ∠=︒又∵CD AB ⊥于H∴45HFB ∠=︒∴HF HB =;(2)如下图,过点C 作CQ FG CS FB ⊥⊥,,连接CE BC 、AB 为直径,∴90ACB QCS ∠=∠=︒∴GCQ BCS ∠=∠∴()Rt CGQ Rt CBS AAS ∆≅∆∴CG CB =同理()CBE CGE SAS ∆≅∆∴EG EB =;(3)如下图,过点G 作GT CD ⊥于T ,连接CN设CAB α∠=由(2)知:CM CB =∴CM CB =∵HB HF =∴45HBF HFB ∠=∠=︒∵GF BE ⊥∴45NFH NH BH CN BC ∠=︒∴=∴=,,∴CM CB CN ==则:2MEB α∠=902AEG α∠=︒-∴45EAG EGA α∠=∠=︒+∴45M MGC α∠=∠=︒+∴()CMG CNG AAS ∆≅∆∵CMG ∆面积为6∴6CAN GAN S S -=设2122BH NH x OA OB x AN x ====+=+,,则()CGT BCH AAS ∆≅∆∴C BH x ==∴6AN CH AN TH ⋅-⋅= ∴1(22)62x CT +⋅= 解得:2x = ∵2BC BH BA =⋅∴2210BC =⨯,则25BC =∴2210BG BC ==.【点睛】本题主要考查了圆和三角形的综合问题,熟练掌握圆及三角形的各项重要性质及判定方法是解决本题的关键.9.如图,在O 中,AB 为直径,过点A 的直线l 与O 相交于点C ,D 是弦CA 延长线上一点,BAC ∠,BAD ∠的平分线与O 分别相交于点E ,F ,G 是BF 的中点,过点G 作MN AE ,与AF ,EB 的延长线分别交于点M ,N .(1)求证:MN 是O 的切线; (2)若24AE =,18AM =. ①求O 的半径;②连接MC ,求tan MCD ∠的值. 【答案】(1)见解析;(2)①13;②2741 【解析】【分析】(1)如图1,连接 GO 、GA ,先根据角平分线的定义证明∠MAE=12(∠BAC+∠BAD )=90°,由圆周角定理和同圆的半径相等得∠OGA=∠FAG ,则OG ∥AM ,所以∠MGO=180-∠M=90,从而得结论;(2)①延长GO 交AE 于点P ,证明四边形 MGPA 为矩形,得GP=MA=18,∠GPA=90°,设OA=OG=r ,则OP=18-r ,根据勾股定理列方程解出即可;②如图3,过M 作MH ⊥l ,连接BC ,延长NE 交l 于I ,连接GO 交延长交AE 于P ,tan ∠MAH=tan ∠ABE=tan ∠BIA=125,BI=2BE=20,根据三角函数计算MH ,AH ,CI 的长,最后计算MH 和HC 的长,代入tan ∠MCD=MH HC,可得结论. 【详解】(1)证明:如图1,连接GO ,GA ,∵BAC ∠,BAD ∠的平分线与O 分别相交于点E ,F , ∴1()902MAE BAC BAD ∠=∠+∠=︒. ∵MN AE ,∴18090M MAE ∠=︒-∠=︒.∵G 是BF 的中点,∴FG BG =,∴FAG BAG ∠=∠.∵OA OG =,∴OGA BAG ∠=∠,∴OGA FAG ∠=∠,∴OG AM ∥,∴18090MGO M ∠=︒-∠=︒.∵OG 为O 半径, ∴MN 是O 的切线.(2)解:①如图2,连接GO 并延长交AE 于点P ,∵90MGO M MAE ∠=∠=∠=︒,∴四边形MGPA 为矩形,∴18GP MA ==,90GPA ∠=︒,即OP AE ⊥,∴1122AP AE ==. 设OA OG r ==,则18OP r =-,在Rt OAP △中,∵222OA OP AP =+,∴222(18)12r r =-+,解得:13r =,故O 的半径是13.②如图3,过M 作MH l ⊥,连接BC ,延长NE 交l 于I ,连接GO 并延长交AE 于P ,由①知:13OG =,18PG =,∴5OP =.∵AB 是O 的直径,∴90AEB AEI ∠=∠=︒.∵BAE EAC ∠=∠,∴ABE AIB ∠=∠,∵AM NI ∥,∴MAH BIA ABE ∠=∠=∠,∴12tan tan tan 5MAH ABE BIA ∠=∠=∠=,220BI BE ==. ∵12cos 13HM AMH AM ∠==,5sin 13AH AMH AM ∠==,5sin 13CI CBI BI ∠==, ∴181********MH ⨯==,185901313AH ⨯==,5100201313CI =⨯=, ∴100238261313AC AI CI =-=-=, ∴23890328131313HC AH AC =+=+=, ∴21627tan 32841MH MCD HC ∠===. 【点睛】 本题考查了切线的判定,圆周角定理,解直角三角形,勾股定理,矩形的性质和判定,正确作出辅助线是解题的关键.10.已知点A为⊙O外一点,连接AO,交⊙O于点P,AO=6.点B为⊙O上一点,连接BP,过点A作CA⊥AO,交BP延长线于点C,AC=AB.(1)判断直线AB与⊙O的位置关系,并说明理由.(2)若PC=43,求 PB的长.(3)若在⊙O上存在点E,使△EAC是以AC为底的等腰三角形,则⊙O的半径r的取值范围是___________.【答案】(1)AB与⊙O相切,理由见解析;(2)43PB=;(3)656r≤<【解析】【分析】(1)连接OB,有∠OPB=∠OBP,又AC=AB,则∠C=∠ABP,利用∠CAP=90°,即可得到结论成立;(2)由AB=AC,利用勾股定理先求出半径,作OH⊥BP与H,利用相似三角形的判定和性质,即可求出PB的长度;(3)根据题意得出OE=12AC=12AB=2216r2-,利用OE=22162r r-≤,即可求出取值范围.【详解】解:(1)连接OB,如图:∵OP=OB ,∴∠OPB=∠OBP=∠APC ,∵AC=AB ,∴∠C=∠ABP ,∵AC ⊥AO ,∴∠CAP=90°,∴∠C+∠APC=90°,∴∠ABP+∠OBP=90°,即OB ⊥AB ,∴AB 为切线;(2)∵AB=AC∴22AB AC =,∴2222CP AP OA OB -=-,设半径为r ,则2222(43)(6)6r r --=-解得:r=2;作OH ⊥BP 与H ,则△ACP ∽△HOP ,∴PH OP AP CP=,即443PH = ∴23PH =, ∴323PB PH ==; (3)如图,作出线段AC 的垂直平分线MN ,作OE ⊥MN ,∴四边形AOEM 是矩形, ∴OE=AM=12AC=1222162r - 又∵圆O 与直线MN 有交点,∴22162r r -, 2262r r -≤,∴22364r r -≤, ∴65r ≥ 又∵圆O 与直线AC 相离,∴r <6, 即565r ≤<. 【点睛】此题主要考查了圆的综合以及切线的判定与性质和勾股定理以及等腰三角形的性质等知识,得出EO 与AB 的关系进而求出r 取值范围是解题关键.。

2017年中考初三年级数学经典试题和答案

2017年中考初三年级数学经典试题和答案

2017年中考数学经典试题集一、填空题:1、已知01x ≤≤.(1)若62=-y x ,则y 的最小值是 ; (2).若223x y +=,1xy =,则x y -= .答案:(1)-3;(2)-1.2、用m 根火柴可以拼成如图1所示的x 个正方形,还可以拼成如图2所示的2y 个正方形,那么用含x 的代数式表示y ,得y =_____________.答案:y =53x -51.3、已知m 2-5m -1=0,则2m 2-5m +1m 2= .答案:28.4、____________________范围内的有理数经过四舍五入得到的近似数3.142.答案:大于或等于3.1415且小于3.1425.5、如图:正方形ABCD 中,过点D 作DP 交AC 于点M 、 交AB 于点N ,交CB 的延长线于点P ,若MN =1,PN =3,则DM 的长为 .答案:2.6、在平面直角坐标系xOy 中,直线3+-=x y 与两坐标轴围成一个△AOB。

现将背面完全相同,正面分别标有数1、2、3、21、31的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P 的横坐标,将该数的倒数作为点P 的纵坐标,则点P 落在△AOB 内的概率为 . 答案:53. 7、某公司销售A 、B 、C 三种产品,在去年的销售中,高新产品C 的销售金额占总销售金额的40%。

由于受国际金融危机的影响,今年A 、B 两种产品的销售金额都将比去年减少20%,因而高新产品C 是今年销售的重点。

若要使今年的总销售金额与去年持平,那么今年高新产品C 的销售金额应比去年增加 %. 答案:30.8、小明背对小亮按小列四个步骤操作:(1)分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌现有的张数相同; (2)从左边一堆拿出两张,放入中间一堆;(3)从右边一堆拿出两张,放入中间一堆;(4)左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆,当小亮知道小明操作的步骤后,便准确地说出中间一堆牌现有的张数,你认为中间一堆牌现有的张数是 . 答案:6.9、某同学在使用计算器求20个数的平均数时,错将88误输入为8,那么由此求出的平均数与实际平均数的差为 .… ……图1 图2第19题图P N M DCB A答案:-4.10、在平面直角坐标系中,圆心O 的坐标为(-3,4),以半径r 在坐标平面内作圆, (1)当r 时,圆O 与坐标轴有1个交点; (2)当r 时,圆O 与坐标轴有2个交点; (3)当r 时,圆O 与坐标轴有3个交点; (4)当r 时,圆O 与坐标轴有4个交点; 答案:(1)r=3; (2)3<r <4; (3)r=4或5; (4)r >4且r ≠5.二、选择题:1、图(二)中有四条互相不平行的直线L 1、L2、L3、L 4所截出的七个角。

2017年九年级中考一模考试数学试题参考答案及评分建议

2017年九年级中考一模考试数学试题参考答案及评分建议

2017年九年级中考一模考试数学试题参考答案及评分建议说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神酌情给分.一、选择题(本大题共有8小题,每小题3分,共24分)二、填空题(本大题共有10小题,每小题3分,共30分)9.41.410⨯ 10.2x ≠ 11.88 12.(2)a a +或22a a + 13.1k > 14.2 15.35 16.9π+ 17.50 18.17三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤)19.(1) 解:原式=13++ (4)分=4+(结果错误扣1分) (4)分(2) 解: 3)1()3(22+---x x x 24x 2x =-+. …………………3分∵ 0142=--x x ,∴ 241x x -=,∴ 原式=1+2=3. …………………4分 20.(1)解:()522=+x …………………………………………2分∴1222x x =-+=-- (4)分(2)解:由①得: 2.x -≤…………1分 由②得: 0.x < …………3分∴ 2.x ≤- (4)分21.解:(1)1500,(图略); ……………………4分(2)108° …………………………………………6分(3)万人1000%502000=⨯ (8)分22. 解:画树状图如下:2 4 52 4 52 5 5554甲乙 4 5 52. (4)分∴57,1212P P ==(甲胜)(乙胜). (6)分∴甲、乙获胜的机会不相同. …………………………… 8分23.(1)证明:∵∠BAD =∠CAE ∴∠EAB =∠DAC ,在△ABE 和△ACD 中∵AB =AC ,∠EAB =∠DAC ,AE =AD ,∴△ABE ≌△ACD (SAS ) ……………………5分(2)∵△ABE ≌△ACD ∴BE =CD ,又DE =BC ,∴四边形BCDE 为平行四边形.…7分∵AB =AC ,∴∠ABC =∠ACB ,∵△ABE ≌△ACD ∴∠ABE =∠ACD ∴∠EBC =∠DCB ∵四边形BCDE 为平行四边形 ∴ EB ∥DC∴∠EBC +∠DCB =180°∴∠EBC =∠DCB =90° ……………………9分∴四边形BCDE 是矩形. ……………………10分(此题也可连接EC ,DB ,通过全等,利用对角线相等的平行四边形是矩形进行证明) 24.解:设小张骑公共自行车上班平均每小时行驶x 千米, (1)分根据题意列方程得:1010445xx =⨯+……………………5分解得:15x = ………………………8分 经检验15x =是原方程的解且符合实际意义. ………………………9分 答:小张用骑公共自行车方式上班平均每小时行驶15千米. ………10分 25.(1)证明:如图,联结BD∵ AD ⊥AB ,∴ DB 是⊙O 的直径,︒=∠+∠+∠9021D ∵∠D =∠C ,∠ABF =∠C ,∴∠D=∠ABF ∴︒=∠+∠+∠9021ABF 即OB ⊥BF∴ BF 是⊙O 的切线…………………………5分 (2)联结OA 交BC 于点G ,∵AC =AB ,∴弧AC =弧AB ∴∠D =∠2=∠ABF ,OA ⊥BC,BG =CG …………7分 ∴54cos 2cos cos=∠=∠=∠ABF D在△ABD 中,∠DAB=90°∴5c o s A DB D D==∴3A B == …8分在△ABG 中,∠AGB=90°∴12c o s 25B G A B =∠=g∴5242==BG BC ………………………10分26.解:(1)当0k >时,(1)(21)4k k +--+=,解得43k =.当0k <时,(21)(1)4k k -+-+=,解得43k =-. ………………5分(2)当2x =-时,4y =;当20m -<<,函数的界高为244m -<,不符合题意; …………6分当02m ≤≤,函数的最大值为4,最小值为0,界高4,符合题意. …9分 当2m >时,函数的界高为24m >,不符合题意. …………10分 综上所述,实数m 的取值范围为02m ≤≤.27.(1 ………………………………………3分 (2)过B 作BE ⊥l 1于点E ,反向延长BE 交l 4于点F .则BE =1,BF =3,∵四边形ABCD 是矩形, ∴∠ABC =90°,∴∠ABE +∠FBC =90°,l 1 l 2 l 3 l 4又∵直角△ABE中,∠ABE+∠EAB=90°,∴∠FBC=∠EAB,∴△AEB∽△BFC,当AB是较短的边时,如图(a),AB=BC,则AE=BF=,在直角△ABE中,AB==;………………………6分当AB是长边时,如图(b),同理可得:BC=;故BC=或………………………………………9分(3)过点E作ON垂直于l1分别交l1,l3于点O,N,由题意得∠OAE=30°,则∠ED′N=60°,由图1知,△AED≌△DGC ∴AE=DG=1,故EO=,EN=,ED′=,由勾股定理可知菱形的边长为:==. (12)分28.解:(1)y=.………………………………………3分(2)设销售A类杨梅x吨,则销售B类杨梅(20﹣x)吨.①当2≤x<8时,w=﹣x2+7x+48;当x≥8时,w=﹣x+48.∴w关于x的函数关系式为:w=.…………7分②当2≤x<8时,﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合题意;当x≥8时,﹣x+48=30,解得x=18.∴当毛利润达到30万元时,直接销售的A类杨梅有18吨.…………9分(3)设用132万元共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,则3m+x+[12+3(m﹣x)]=132,化简得:x=3m﹣60.①当2≤x<8时,w=﹣x2+7x+3m﹣12.将3m=x+60代入得:w=﹣x2+8x+48=﹣(x﹣4)2+64∴当x=4时,有最大毛利润64万元,此时m=,m﹣x=;………11分②当x>8时,w=﹣x+3m﹣12.将3m=x+60代入得:w=48∴当x>8时,有最大毛利润48万元.………12分综上所述,购买杨梅共吨,其中A类杨梅4吨,B类吨,公司能够获得最大毛利润,最大毛利润为64万元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年九年级数学中考综合题30题1.如图,在△ABC中,以AB为直径的⊙O分别于BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为5,∠CDF=30°,求的长(结果保留π).2.如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.(1)求证:CF是⊙O的切线;(2)若∠F=30°,EB=4,求图中阴影部分的面积(结果保留根号和π)3.如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线的一点,AC平分∠FAB交⊙O于点C,过点C作CE⊥DF,垂足为点E.(1)求证:CE是⊙O的切线;(2)若AE=1,CE=2,求⊙O的半径.4.如图,AB为⊙O的弦,若OA⊥OD,AB、OD相交于点C,且CD=BD.(1)判定BD与⊙O的位置关系,并证明你的结论;(2)当OA=3,OC=1时,求线段BD的长.5.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠BCD.(1)求证:CB∥PD;(2)若BC=3,sin∠BPD=0.6,求⊙O的直径.6.如图,已知AB是⊙的直径,AC是弦,点P是BA延长线上一点,连接PC,BC.∠PCA=∠B(1)求证:PC是⊙O的切线;(2)若PC=6,PA=4,求直径AB的长.7.已知P是⊙O外一点,PO交⊙O于点C,OC=CP=2,弦AB⊥OC,∠AOC的度数为60°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.8.如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.(1)求证:DE是半圆⊙O的切线.(2)若∠BAC=30°,DE=2,求AD的长.9.如图,在矩形ABCD中,AB=8,AD=12,过点A,D两点的⊙O与BC边相切于点E,求⊙O的半径.10.如图,在⊙O中,半径OA⊥OB,过点OA的中点C作FD∥OB交⊙O于D、F两点,且CD=,以O为圆心,OC为半径作,交OB于E点.(1)求⊙O的半径OA的长;(2)计算阴影部分的面积.11.如图,AB是以BC为直径的半圆O的切线,D为半圆上一点,AD=AB,AD,BC的延长线相交于点E.(1)求证:AD是半圆O的切线;(2)连结CD,求证:∠A=2∠CDE;(3)若∠CDE=27°,OB=2,求的长.12.如图,⊙O是△ABC的外接圆,圆心O在这个三角形的高AD上,AB=10,BC=12.求⊙O的半径.13.如图,⊙O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交⊙O于点D.(1)求BC的长;(2)求弦BD的长.14.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,求EC的长.15.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2。

16.(1)如图1,将直角的顶点E放在正方形ABCD的对角线AC上,使角的一边交CD于点F,另一边交CB或其延长线于点G,求证:EF=EG;(2)如图2,将(1)中的“正方形ABCD”改成“矩形ABCD”,其他条件不变.若AB=m,BC=n,试求EF:EG的值;(3分)(3)如图3,将直角顶点E放在矩形ABCD的对角线交点,EF、EG分别交CD与CB于点F、G,且EC平分∠FEG.若AB=2,BC=4,求EG、EF 的长.17.将正方形ABCD放在如图所示的直角坐标系中,A点的坐标为(4,0),N点的坐标为(3,0),MN平行于y轴,E是BC的中点,现将纸片折叠,使点C落在MN上,折痕为直线EF.(1)求点G的坐标;(2)求直线EF的解析式;(3)设点P为直线EF上一点,是否存在这样的点P,使以P, F, G的三角形是等腰三角形?若存在,直接写出P点的坐标;若不存在,请说明理由.18.如图,在矩形ABCD中,B (16, 12),E, F分别是OC, BC上的动点,EC+CF=8.(1)当∠AFB=600时,△ABF沿着直线AF折叠,折叠后,落在平面内G点处,求G点的坐标.(2)当F运动到什么位置时,△AEF的面积最小,最小为多少?(3)当△AEF的面积最小时,直线EF与y轴相交于点M, P点在x轴上,OP与直线EF相切于点M,求P点的坐标.19.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.20.已知,四边形ABCD是正方形,∠MAN= 45º,它的两边,边AM、AN分别交CB、DC与点M、N,连接MN,作AH⊥MN,垂足为点H(1)如图1,猜想AH与AB有什么数量关系?并证明;(2)如图2,已知∠BAC =45º,AD⊥BC于点D,且BD=2,CD=3,求AD的长.小萍同学通过观察图①发现,△ABM和△AHM关于AM对称,△AHN和△ADN关于AN对称,于是她巧妙运用这个发现,将图形如图③进行翻折变换,解答了此题。

你能根据小萍同学的思路解决这个问题吗?21.两块等腰直角三角形纸片AOB和COD按图1所示放置,直角顶点重合在点O处,AB=25,CD=17.保持纸片AOB不动,将纸片COD绕点O逆时针旋转α(0°<α<90°)角度,如图2所示.(1)利用图2证明AC=BD且AC⊥BD;(2)当BD与CD在同一直线上(如图3)时,求AC的长和α的正弦值.22.如图,抛物线y=ax2+bx-5(a≠0)经过点A(4,-5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为D;(1)求这条抛物线的表达式;(2)联结AB、BC、CD、DA,求四边形ABCD的面积;(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标;23.在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣0.5x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.24.如图,已知一次函数y=0.5x+1的图象与x轴交于点A,与y轴交于点B;二次函数y=0.5x2+bx+c的图象与一次函数y=0.5x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0).(1)求二次函数的解析式;(2)求四边形BDEC的面积S;(3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由.25.已知抛物线y=ax2+bx+c与x轴交于A(-1,0),B(5,0),与y轴交于C(0,3).直线y=x+1与抛物线交于A、E两点,与抛物线对称轴交于点D.(1)求抛物线解析式及E点坐标;(2)在对称轴上是否存在一点M,使ACM为等腰三角形?若存在,请直接写出M点坐标;若不存在,请说明理由.(3)若一点P在直线y=x+1上从A点出发向AE方向运动,速度为单位/秒,过P点作PQ//y轴,交抛物线于Q点.设时间为t秒(0≤t≤6),PQ的长度为L,找出L与t的函数关系式,并求出PQ最大值.26.如图,已知在平面直角坐标系中,点A(4,0)是抛物线y=ax2+2x﹣c上的一点,将此抛物线向下平移6个单位后经过点B(0,2),平移后所得的新抛物线的顶点记为C,新抛物线的对称轴与线段AB的交点记为P.(1)求平移后所得到的新抛物线的表达式,并写出点C的坐标;(2)求∠CAB的正切值;(3)如果点Q是新抛物线对称轴上的一点,且△BCQ与△ACP相似,求点Q的坐标.27.如图,已知抛物线与x轴交于A(﹣1,0)、B(5,0)两点,与y轴交于点C(0,5).(1)求该抛物线所对应的函数关系式;(2)D是笫一象限内抛物线上的一个动点(与点C、B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连结BD、CD.设点D的横坐标为m,△BCD的面积为S.①求S关于m的函数关系式及自变量m的取值范围;②当m为何值时,S有最大值,并求这个最大值;③直线BC能否把△BDF分成面积之比为2:3的两部分?若能,请求出点D的坐标;若不能,请说明理由.28.对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围;(3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为 .29.如图,直线y=0.5x与抛物线y=ax2+b(a≠0)交于点A(-4,-2)和B(6,3),抛物线与y轴的交点为C.(1)求这个抛物线的解析式;(2)在抛物线上存在点M,使△MAB是以AB为底边的等腰三角形,求点M的坐标;(3)在抛物线上是否存在点P,使得△PAC的面积是△ABC的面积的四分之三?若存在,求出此时点P的坐标;若不存在,请说明理由.30.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,-3),动点P在抛物线上.(1)b =_________,c =_________,点B的坐标为_____________;(直接填写结果)(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.参考答案1.(1)证明:连接OD,如图所示.∵DF是⊙O的切线,D为切点,∴OD⊥DF,∴∠ODF=90°.∵BD=CD,OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∴∠CFD=∠ODF=90°,∴DF⊥AC.(2)解:∵∠CDF=30°,由(1)得∠ODF=90°,∴∠ODB=180°﹣∠CDF﹣∠ODF=60°.∵OB=OD,∴△OBD是等边三角形,∴∠BOD=60°,∴的长===π.2.(1)证明:如图连接OD.∵四边形OBEC是平行四边形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,在△COD和△COA中,,∴△COD≌△COA,∴∠CAO=∠CDO=90°,∴CF⊥OD,∴CF是⊙O的切线.(2)解:∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,∵OD=OB,∴△OBD是等边三角形,∴∠DBO=60°,∵∠DBO=∠F+∠FDB,∴∠FDB=∠EDC=30°,∵EC∥OB,∴∠E=180°﹣∠OBD=120°,∴∠ECD=180°﹣∠E﹣∠EDC=30°,∴EC=ED=BO=DB,∵EB=4,∴OB=OD═OA=2,在RT△AOC中,∵∠OAC=90°,OA=2,∠AOC=60°,∴AC=OA•tan60°=2,∴S阴=2•S△AOC﹣S扇形OAD=2××2×2﹣=2﹣.3.(1)证明:连接CO,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠FAB,∴∠OCA=∠CAE,∴OC∥FD,∵CE⊥DF,∴OC⊥CE,∴CE是⊙O的切线;(2)证明:连接BC,在Rt△ACE中,AC===,∵AB是⊙O的直径,∴∠BCA=90°,∴∠BCA=∠CEA,∵∠CAE=∠CAB,∴△ABC∽△ACE,∴=,∴,∴AB=5,∴AO=2.5,即⊙O的半径为2.5.4.证明:连接OB,∵OA=OB,CD=DB,∴∠OAC=∠OBC,∠DCB=∠DBC.∵∠OAC+∠ACO=90°,∠ACO=∠DCB,∴∠OBC+∠DBC=90°.∴OB⊥BD.即BD是⊙O的切线.(2)BD=4.5.(1)证明:∵∠D=∠1,∠1=∠BCD,∴∠D=∠BCD,∴CB∥PD;(2)解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∵CD⊥AB,∴弧BD=弧BC,∴∠BPD=∠CAB,∴sin∠CAB=sin∠BPD=,即=,∵BC=3,∴AB=5,即⊙O的直径是5.6.(1)证明:连接OC,如图所示:∵AB是⊙的直径,∴∠ACB=90°,即∠1+∠2=90°,∵OB=OC,∴∠2=∠B,又∵∠PCA=∠B,∴∠PCA=∠2,∴∠1+∠PCA=90°,即PC⊥OC,∴PC是⊙O的切线;(2)解:∵PC是⊙O的切线,∴PC2=PA•PB,∴62=4×PB,解得:PB=9,∴AB=PB﹣PA=9﹣4=5.7.(1)解:如图,连接OB.∵AB⊥OC,∠AOC=60°,∴∠OAB=30°,∵OB=OA,∴∠OBA=∠OAB=30°,∴∠BOC=60°,∵OB=OC,∴△OBC的等边三角形,∴BC=OC.又OC=2,∴BC=2;(2)证明:由(1)知,△OBC的等边三角形,则∠COB=60°,BC=OC.∵OC=CP,∴BC=PC,∴∠P=∠CBP.又∵∠OCB=60°,∠OCB=2∠P,∴∠P=30°,∴∠OBP=90°,即OB⊥PB.又∵OB是半径,∴PB是⊙O的切线.8.1)证明:连接OD,OE,BD,∵AB为圆O的直径,∴∠ADB=∠BDC=90°,在Rt△BDC中,E为斜边BC的中点,∴DE=BE,在△OBE和△ODE中,,∴△OBE≌△ODE(SSS),∴∠ODE=∠ABC=90°,则DE为圆O的切线;(2)在Rt△ABC中,∠BAC=30°,∴BC=AC,∵BC=2DE=4,∴AC=8,又∵∠C=60°,DE=CE,∴△DEC为等边三角形,即DC=DE=2,则AD=AC﹣DC=6.9.解:连接OE,并反向延长交AD于点F,连接OA,∵BC是切线,∴OE⊥BC,∴∠OEC=90°,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDFE是矩形,∴EF=CD=AB=8,OF⊥AD,∴AF=AD=×12=6,设⊙O的半径为x,则OE=EF﹣OE=8﹣x,在Rt△OAF中,OF2+AF2=OA2,则(8﹣x)2+36=x2,解得:x=6.25,∴⊙O的半径为:6.25.10.解;(1)连接OD,∵OA⊥OB,∴∠AOB=90°,∵CD∥OB,∴∠OCD=90°,在RT△OCD中,∵C是AO中点,CD=,∴OD=2CO,设OC=x,∴x2+()2=(2x)2,∴x=1,∴OD=2,∴⊙O的半径为2.(2)∵sin∠CDO==,∴∠CDO=30°,∵FD∥OB,∴∠DOB=∠ODC=30°,∴S圆=S△CDO+S扇形OBD﹣S扇形OCE=×+﹣=+.11.(1)证明:连接OD,BD,∵AB是⊙O的直径,∴AB⊥BC,即∠ABO=90°,∵AB=AD,∴∠ABD=∠ADB,∵OB=OD,∴∠DBO=∠BDO,∴∠ABD+∠DBO=∠ADB+∠BDO,∴∠ADO=∠ABO=90°,∴AD是半圆O的切线;(2)证明:由(1)知,∠ADO=∠ABO=90°,∴∠A=360°﹣∠ADO﹣∠ABO﹣∠BOD=180°﹣∠BOD,∵AD是半圆O的切线,∴∠ODE=90°,∴∠ODC+∠CDE=90°,∵BC是⊙O的直径,∴∠ODC+∠BDO=90°,∴∠BDO=∠CDE,∵∠BDO=∠OBD,∴∠DOC=2∠BDO,∴∠DOC=2∠CDE,∴∠A=∠CDE;(3)解:∵∠CDE=27°,∴∠DOC=2∠CDE=54°,∴∠BOD=180°﹣54°=126°,∵OB=2,∴的长==π.12.答案:6.25.13.(1);(2).14.15.16.17.18.略19.解:(1)证明:∵直角△ABC中,∠C=90°﹣∠A=30°.∵CD=4t,AE=2t,又∵在直角△CDF中,∠C=30°,∴DF=0.5CD=2t,∴DF=AE;解:(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)当t=7.5时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE∵CD=4t,∴DF=2t=AE,∴AD=4t,∴4t+4t=60,∴t=7.5时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=60°,∴∠DEA=30°,∴AD=0.5AE,AD=AC﹣CD=60﹣4t,AE=DF=0.5CD=2t,∴60﹣4t=t,解得t=12.综上所述,当t=7.5时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).20.(1)答:AB=AH. 证明:延长CB至E使BE=DN,连结AE∵四边形ABCD是正方形,∴∠ABC=∠D=90°,∴∠ABE=180°-∠ABC=90°又∵AB=AD∴△ABE≌△AEN(SAS)∴∠1=∠2,AE=AN∵∠BAD=90°,∠MAN=45°∴∠1+∠3=90°-∠MAN=45°∴∠2+∠3=45°即∠EAM=45°又AM=AM∴△EAM≌△NAM(SAS)又EM和NM是对应边∴AB=AH(全等三角形对应边上的高相等)(2)作△ABD关于直线AB的对称△ABE,作△ACD关于直线AC的对称△ACF,∵AD是△ABC的高,∴∠ADB=∠ADC=90°∴∠E=∠F=90°,又∠BAC=45°∴∠EAF=90°延长EB、FC交于点G,则四边形AEGF是矩形,又AE=AD=AF∴四边形AEGF是正方形由(1)、(2)知:EB=DB=2,FC=DC=3设AD=x,则EG=AE=AD=FG=x∴BG=x-2;CG=x-3;BC=2+3=5在Rt△BGC中,(x-2)2+(x-3)2=52解之得x1=6,x2=-1(舍去)∴AD的长为6.21.(1)证明:如图2中,延长BD交OA于G,交AC于E.∵∠AOB=∠COD=90°,∴∠AOC=∠DOB,在△AOC和△BOD中,,∴△AOC≌△BOD,∴AC=BD,∠CAO=∠DBO,∵∠DBO+∠GOB=90°,∵∠OGB=∠AGE,∴∠CAO+∠AGE=90°,∴∠AEG=90°,∴BD⊥AC.(2)解:如图3中,设AC=x,∵BD、CD在同一直线上,BD⊥AC,∴△ABC是直角三角形,∴AC2+BC2=AB2,∴x2+(x+17)2=252,解得x=7,∵∠ODC=∠α+∠DBO=45°,∠ABC+∠DBO=45°,∴∠α=∠ABC,∴sinα=sin∠ABC==.22.23.24.25.解:(1)y=-0.6x2+2.4x+3,E(10/3,13/3);(2)M(2,-1),(2,1),(2,3+),(2,3-);(3)L=-0.6t2+1.4t+2(0≤t≤10/3);L=0.6t2-1.4t-4(10/3<t≤5).当t=5时,L最大=4.26.27.28.29.30.。

相关文档
最新文档