广西南宁市三中2020年九年级毕业班数学模拟试题(三)
2020年广西南宁三中初中部大学区中考数学三模试卷(含答案解析)

2020年广西南宁三中初中部大学区中考数学三模试卷一、选择题(本大题共12小题,共36.0分)1.若直线l上一点P和直线l外一点Q的距离为8cm,则点Q到直线l的距离是()A. 等于8cmB. 小于或等于8cmC. 大于8cmD. 以上三种都有可能2.“m的3倍与n的平方的差”用代数式表示正确的是A. (m−3n)2B. (3m−n)2C. 3m−n 2D. m−3n 23.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A. 圆锥,正方体,三棱锥,圆柱B. 圆锥,正方体,四棱锥,圆柱C. 圆锥,正方体,四棱柱,圆柱D. 正方体,圆锥,圆柱,三棱柱4.2019年6月8日,全国铁路发送旅客约9560000次,将数据9560000科学记数法表示为()A. 9.56×106B. 95.6×105C. 0.956×107D. 956×1045.下列说法正确的是()A. 为了解全国中小学生的心理健康状况,应采用普查B. 确定事件一定会发生C. 某校6位同学在新冠肺炎防疫知识竞赛中成绩分别为98、97、99、99、98、96,那么这组数据的众数为98D. 数据6、5、8、7、2的中位数是66.计算a2−(a+1)(a−1)的结果是()A. 1B. −1C. 2a2+1D. 2a2−17.关于x的一元二次方程4x2−3x+m=0有两个相等的实数根,那么m的值是()A. 98B. 916C. −98D. −9168.如图,在平面直角坐标系xOy中,点A的坐标为(0,3),点B的坐标为(2,1),点C的坐标为(2,−3).则经画图操作可知,△ABC的外心坐标应是()A. (0,0)B. (1,0)C. (−2,−1)D. (2,0)9.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:“有100个和尚分100只馒头正好分完,如果大和尚一人分3只小和尚3人分一只,试问大、小和尚各有几人?”请算算大和尚有A. 75人B. 50人C. 30人D. 25人(k≠0),它们在同一直角坐标系中的图象10.已知二次函数y=kx2+k(k≠0)与反比例函数y=kx大致是()A. B.C. D.11.如图,某底面为圆形的古塔剖面和山坡的剖面在同一平面上,古塔EF与地面BD垂直,古塔的底面直径CD=8米,BC=10米,斜坡AB=26米,斜坡坡面AB的坡度i=5:12,在坡脚的点A处测得古塔顶端点E的仰角∠GAE=47∘,则古塔EF的高度约为(参考数据:sin47°≈0.73,cos47°≈0.68,tan47°≈1.07)A. 30.66米B. 35.51米C. 40.66米D. 27.74米12.等腰三角形ABC中,AB=AC=12,BC=7.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则三角形BEC的周长等于()A. 12B. 13C. 19D. 31二、填空题(本大题共6小题,共18.0分)3的立方根是__________.13.√2714.分解因式:16−x2=______.15.李师傅随机抽查了本单位今年四月份里6天的日用水量(单位:吨)结果如下:7,8,8,7,6,6,根据这些数据,估计四月份本单位用水总量为______吨.16.在一次函数y=(2−k)x+1中,y随x的增大而增大,则k的取值范围为________.17.如图,将正方形纸片ABCD折叠,使得点A落在边CD上的E点,折痕为FG.若BG=2cm,DE=3cm,则FG的长为______.18.如图,△P1OA1,△P2A1A2,△P3A2A3…△P n A n−1A n都是等腰直角三角形,点P1、P2、P3…P n都(x>0)的图象上,斜边OA1、A1A2、A2A3…A n−1A n都在x轴上.则点A10的坐标是在函数y=4x______.三、解答题(本大题共8小题,共66.0分)19.计算:(12)−1−(2019+π)0+4sin60°−√12.20.先化简,再求值:a2−6a+9a2−4⋅a+2a−3−a−1a−2,其中a=−4.21.如图,AC//BD.(1)利用尺规作AB的垂直平分线(保留作图痕迹,不写作法);(2)若AB的垂直平分线分别交AC、BD于点M、N,连接BM,求证△BMN是等腰三角形.22.有三张正面分别标有数字:−1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落上的概率.在双曲线y=2x23.如图,在▱ABCD中,对角线AC和BD相交于点O,△ABO是等边三角形,AB=4.求▱ABCD的面积.24.新欣商场经营某种新型电子产品,购进时的价格为20元/件.根据市场预测,在一段时间内,销售价格为40元/件时,销售量为200件,销售单价每降低1元,就可多售出20件.(1)写出销售量y(件)与销售单价x(元)之间的函数关系式;(2)写出销售该产品所获利润W(元)与销售单价x(元)之间的函数关系式,并求出商场获得的最大(3)若商场想获得不低于4000元的利润,同时要完成不少于320件的该产品销售任务,该商场应该如何确定销售价格.25.如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE//BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.26.如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(−4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积.【答案与解析】1.答案:B解析:本题考查了点到直线的距离的定义及垂线段最短的性质.根据点到直线的距离的定义与垂线段最短的性质,易得答案.根据题意,点Q到直线l的距离为点Q到直线l的垂线段的长度,其垂足是点Q到直线l上所有点中距离最小的点;此题不能明确PQ与l是否垂直,则点Q到直线l的距离应小于等于PQ的长度,即不大于8cm.故选:B.2.答案:C解析:本题考查了列代数式的知识,列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“差”等,从而明确其中的运算关系,正确地列出代数式.m的3倍是3m,n的平方n2,m的3倍与n的平方的差为3m−n2,据此解答.解:m的3倍与n的平方的差为3m−n2.故选C.3.答案:D解析:解:根据几何体的平面展开图,则从左到右,其对应的几何体名称分别为:正方体,圆锥,圆柱,三棱柱.故选:D.根据常见的几何体的展开图进行判断,即可得出结果.本题考查了常见几何体的展开图;熟记常见几何体的平面展开图的特征,是解决此类问题的关键.解析:解:将数据9560000科学记数法表示为9.56×106.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.答案:D解析:解:A.为了解全国中小学生的心理健康状况,应采用抽样调查,此选项错误;B.确定事件一定会发生,或一定不会发生,此选项错误;C.某校6位同学在新冠肺炎防疫知识竞赛中成绩分别为98、97、99、99、98、96,那么这组数据的众数为98和99,此选项错误;D.数据6、5、8、7、2的中位数是6,此选项正确;故选:D.根据题意,逐一判断求解可得.本题考查了抽样调查,众数和中位数的定义,属于基础题.6.答案:A解析:先利用平方差公式计算,再根据整式的加减运算法则,即可得出答案.本题主要考查平方差公式的运用,熟练掌握公式结构特征是解题的关键.解:a2−(a+1)(a−1),=a2−(a2−1),=a2−a2+1,=1.故选A.解析:解:∵关于x的一元二次方程4x2−3x+m=0有两个相等的实数根,∴△=(−3)2−4×4m=9−16m=0,.解得:m=916故选:B.由方程有两个相等的实数根,即可得出关于m的一元一次方程,解之即可得出m的值.本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.8.答案:C解析:本题考查三角形外接圆与外心,坐标与图形的性质,数形结合的数学思想,根据△ABC的外心即是三角形三边垂直平分线的交点,在平面直角坐标系中作AB与BC的中垂线,两中垂线的交点即为△ABC的外心,进而可得外心的坐标即可解答.解:∵△ABC的外心即是三角形三边垂直平分线的交点,∴由作图可知,EF与MN的交点O′即为所求的△ABC的外心,∴△ABC的外心坐标是(−2,−1).故选C.9.答案:D解析:【试题解析】。
广西南宁市2020年中考数学一模试卷(含解析)

2020 年广西南宁市中考数学一模试卷( 04 月)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上,在试卷上作答无效,选择题需使用1.2019的相反数是(2.如图是由 4 个相同的小立方体搭成的几何体,则它的主视图是(全长约 55000 米. 55000 这个数用科学记数法可表示为(A . 5.5×103 B .55×103 C . 0.55 ×105 D . 5.5 ×1044.如图是邻居张大爷去公园锻炼及原路返回时离家的距离 图象,根据图象信息,下列说法正确的是( )绝密 ★ 启用前 、选择题(本大题共 12 小题,每小题 3分,共 36 分) 2B 铅笔填涂 A . B . C .|2019| D .﹣20192018 年 10 月 24 日正式开通营运, 它是迄今为止世界上最长的跨海大桥,y (千米)与时间 t (分钟)之间的函数B .张大爷在公园锻炼了 40 分钟C .张大爷去时走上坡路,回家时走下坡路D .张大爷去时速度比回家时的速度慢 5.下列事件为必然事件的是( )A .五边形的外角和是 360 °B .打开电视机,它正在播广告C .明天太阳从西方升起列运算中,正确的是(若抛物线 y= ﹣ x 2向右平移 3个单位,再向下平移 2 个单位,所得的抛物线的解析式为(若一个圆锥的底面圆的半径为 1,母线长为 3,则该圆锥侧面展开图的圆心角是(10.如图,⊙ O 的直径 AB=20cm ,CD 是⊙O 的弦, AB ⊥CD ,垂足为 E ,OE :EB=3:2,则 CD 的长是( )D .抛掷一枚硬币, 定正面朝上A . 3a+2b=5abB .2a 3+3a 2=5a 5C .3a 2b ﹣ 3ba 2=0D .5a 2﹣ 4a 2=17.的解集在数轴上表示为(C . 8.A .y=﹣( x+3) 2+2 B . y= ﹣( x ﹣3)2+2 C . y =﹣( x ﹣3)2﹣ 2 D . y= ﹣( x+3 ) 2﹣ 29.A .90° B .120°C .150 °D . 180° 不等式组 A. B . D .11.如图,△OAB 与△OCD 是以点 O 为位似中心的位似图形, 相似比为 1:2,∠ OCD=90°,CO=CD .若D .(2,1)12.如图, Rt △ABC 的边 BC 在 x 轴正半轴上,点 D 为 AC 的中点, DB 的延长线交 y 轴负半轴于点 E ,反比例函数 y= ( x >0)的图象经过点 A ,若S △BEC =6,则 k 的值为(D .12二、填空题(本大题共 6 小题,每小题 3分,共 18分)13.在 2,1,﹣4,﹣1,0 这五个数中,最小的数是. 14.要使分式 有意义,则字母 x 的取值范围是 .15.分解因式: x 2﹣ 9= .16.如图,一个含有 30°角的直角三角形的两个顶点放在一个矩形的对边上,若 ∠1=20 °,则 ∠ 2= .C . 15cmD . 16cm C .10 B . 14c m 1)17.如图,在数学活动课中,小敏为了测量校园内旗杆AB 的高度.站在教学楼的 C 处测得旗杆底端 B 的俯角为45°,测得旗杆顶端 A 的仰角为30°.若旗杆与教学楼的距离为9m ,则旗杆AB 的高度是m (结果保留根号)行最后一个数是2017 .三、解答题(本大题共8 小题,共66 分)19.计算:(﹣2020)0+|﹣2|﹣4ocs30 °+(﹣)﹣2.20.先化简,再求值:÷(1+ ),其中x=﹣2.21.如图,方格纸中的每个小方格都是边长为 1 个单位的正方形,△ ABC 的顶点均在格点上.建立平面直角坐标系后,点 A 的坐标为(﹣4,1),点 B 的坐标为(﹣1,1).(1)请画出△ABC 关于y 轴对称的△A1B1C1.(2)将△ABC 绕点O 逆时针旋转90°后得到△A2B2C2,试在图中画出图形△A2B2C2,并计算点 C 旋转到点C2 所经过的路径长.(结果保留π)22.2019 年南宁市教育局组织全市中小学时候参加安全知识网络竞赛,在安全知识竞赛结束后,赛后发现所有参赛学生会的成绩都高于50 分.为了了解本次大赛的成绩分布情况,某校随机抽取了其中200 名学生的成绩(成绩x 取整数,总分为100 分)作为样本进行统计分析,得到如下不完整的统计图表,请根据图标中的信息解答下列各题:成绩(分)频数频数50<x≤6010b60<x≤70200.1070<x≤80300.1580<x≤90a0.3090< x≤100800.401)频数分布表中a=,b=;本次比赛成绩的中位数会落在分数段;2)请补全频数分布直方图;(3)该校安全知识竞赛成绩满分共有4人,其中男生2名,女生2名,为了激励学生增强安全意识,现需要从这 4 人中随机抽取 2 人介绍学习经验,请用“列表法”或“画树状图”,求恰好选到一男一女的概率.23.如图,已知Rt△ABC 中,∠ACB=90°,以BC 为直径作⊙O交AB 于点D,E是AC 上一点,且 DE=CE ,连接 OE .(1)请判断 DE 与⊙O 的位置关系,并证明你的结论;(2)求证: E 为 AC 的中点.其中芒果干与桂圆干是大家非常喜爱的两种特产,某旅行经销店欲购进一批芒果干与桂圆干,已知购买 1袋芒果干和 1袋桂圆干共需 75元,3 袋芒果干和 2 袋桂圆干共 需 205 元.1)求芒果干与桂圆干的进货单价;2)若芒果干与桂圆干的售价如表:该旅游经销店打算用不超过 干共 100 袋,如何进货能够使两种特产全部售完后获得最大利润,最大利润是多少?(不考虑其他 因素) 商品售价(元 芒果干65 桂圆干 28ABCD ,P 为直线 CD 上的一点, 以 PC 为边作正方形 PCNM ,使点 N 在直线BC上,DC 上,当 P 为 DC 的中点时,判断△PMD 的形状,并说明理由;和点 B (1, 0),交 y 轴于点 C .1)求抛物线的函数表达式及抛物线的对称轴;2700 元的货款购进芒果干与桂圆 25.已知正方形 连接 MB 、 M D .1) 如图 1,若点 P 在线段 DC 的延长线上,求证: MB=MD ;时,求 ∠ DMB 的度数.2,若点 如图 P 在线段 2) 26.抛物线 y=ax 2+bx+3 交 x 轴于点 A (﹣3, 0)(2)如图a,点P 是抛物线上第二象限内的一动点,若以AP,AO 为邻边的平行四边形第四个顶点恰好落在抛物线上,求出此时点P 的坐标;3)如图b,点 D 是抛物线上第二象限内的一动点,过点O,D 的直线y=kx 交AC 于点E,若S△ CDE:参考答案与试题解析分析】 主视图有 2 列,每列小正方形数目分别为 1, 2.故选: B .【点评】 此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.3.举世瞩目的港珠澳大桥于 2018 年 10 月 24 日正式开通营运,它是迄今为止世界上最长的跨海 大桥,全长约 55000 米. 55000 这个数用科学记数法可表示为() 、选择题(本大题共 12 小题,每小题 3分,共 36 分)1.2019 的相反数是( )A .B .﹣ 【解答】 解: 2019 的相反数是﹣2019,C .|2019|D .﹣ 2019 故选: D .2.如图是由 4 个相同的小立方体搭成的几何体,则它的主视图是(C .解答】 解:如图所示:它的主视图是:A . 5.5 ×103B .55×103C . 0.55 ×105D . 5.5 ×104【分析】科学记数法的表示形式为a×10 n的形式,其中1≤a||<10,n 为整数.确定n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10 时,n 是正数;当原数的绝对值小于1时,n 是负数.【解答】解:55000 这个数用科学记数法可表示为 5.5 ×104,故选: D .【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤a|| <10,n为整数,表示时关键要正确确定a的值以及n 的值.y (千米)与时间t(分钟)之间的函数B.张大爷在公园锻炼了40 分钟4.如图是邻居张大爷去公园锻炼及原路返回时离家的距离C.张大爷去时走上坡路,回家时走下坡路D.张大爷去时速度比回家时的速度慢【考点】E6:函数的图象.【分析】根据图象可以得到张大爷去时所用的时间和回家所用的时间,在公园锻炼了多少分钟,也可以求出去时的速度和回家的速度,根据可以图象判断去时是否走上坡路,回家时是否走下坡路.【解答】解:如图,A、张大爷去时所用的时间为15 分钟,回家所用的时间为 5 分钟,故选项错误;B、张大爷在公园锻炼了40﹣15=25 分钟,故选项错误;C、据 A 张大爷去时走下坡路,回家时走上坡路,故选项错误.D、张大爷去时用了15 分钟,回家时候用了 5 分钟,因此去时的速度比回家时的速度慢,故选项正确.故选 D .5.下列事件为必然事件的是(A.五边形的外角和是360 °B.打开电视机,它正在播广告C.明天太阳从西方升起D.抛掷一枚硬币,一定正面朝上【考点】X1 :随机事件.【分析】分别利用必然事件以及不可能事件、随机事件的定义分析得出答案.【解答】解: A 、五边形的外角和是360°,是必然事件,符合题意;B、打开电视机,它正在播广告,是随机事件,不合题意;C、明天太阳从西方升起,是不可能事件,不合题意;D、抛掷一枚硬币,一定正面朝上,是随机事件,不合题意;故选: A .6.下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5 C.3a2b﹣3ba2=0 D.5a2﹣4a2=1【考点】35:合并同类项.【分析】先根据同类项的概念进行判断是否是同类项,然后根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行判断.【解答】解:A、3a和2b不是同类项,不能合并, A 错误;B、2a3和3a2不是同类项,不能合并, B 错误;C、3a2b﹣3ba2=0,C 正确;D、5a2﹣4a2=a2,D 错误,故选:C.考点】C4:在数轴上表示不等式的解集分析】根据在数轴上表示不等式解集的方法进行解答即可.解答】解:原不等式组的解集为1< x≤2,1 处是空心圆点且折线向右; 2 处是实心圆点且折线向左,故选: B .8.若抛物线y= ﹣x 2向右平移3个单位,再向下平移 2 个单位,所得的抛物线的解析式为(A.y=﹣(x+3)2+2 B.y=﹣(x﹣3)2+2 C.y=﹣(x﹣3)2﹣2 D.y=﹣(x+3)2﹣ 2 【考点】H6:二次函数图象与几何变换.【分析】根据平移规律,可得答案.【解答】解:由题意,得y=﹣(x﹣3)2﹣2,故选:C.9.若一个圆锥的底面圆的半径为1,母线长为3,则该圆锥侧面展开图的圆心角是()A.90° B.120°C.150 °D.180°【考点】MP :圆锥的计算.【分析】根据圆锥的底面周长等于圆锥的侧面展开图的弧长,首先求得展开图的弧长,然后根据弧长公式即可求解.【解答】解:圆锥侧面展开图的弧长是:2π× 1=2(πcm),设圆心角的度数是n 度.则=2π,解得:n=120.故选 B .10.如图,⊙O 的直径AB=20cm ,CD 是⊙O 的弦,AB ⊥ CD ,垂足为E,OE:EB=3:2,考点】M2:垂径定理;KQ :勾股定理.则CD15cm D.16cm分析】根据垂径定理与勾股定理即可求出答案.【解答】解:连接OC,设OE=3x,EB=2x ,∴ OB=OC=5x ,∵ AB=20∴ 10x=20∴ x=2 ,∴ 由勾股定理可知:CE=4x=8 ,∴ CD=2CE=16故选(D)11.如图,△OAB 与△OCD 是以点O 为位似中心的位似图形,相似比为1:2,∠ OCD=90°,CO=CD .若B(1,0),则点 C 的坐标为()A.(1,2) B .(1,1)C.(,)D.(2,1)【考点】SC:位似变换;D5 :坐标与图形性质.【分析】首先利用等腰直角三角形的性质得出 A 点坐标,再利用位似是特殊的相似,若两个图形△ABC 和△A′ B′以C原′点为位似中心,相似比是k,△ABC 上一点的坐标是(x,y),则在△ A′ B′ C′ 中,它的对应点的坐标是(kx ,ky )或(﹣kx ,ky),进而求出即可.【解答】解:∵∠ OAB= ∠OCD=9°0 ,AO=AB ,CO=CD ,等腰Rt△OAB 与等腰Rt△OCD 是位似图形,点 B 的坐标为(1,0),∵ 等腰 Rt △ OAB 与等腰 Rt △OCD 是位似图形, O 为位似中心,相似比为 1:2,∴ 点 C 的坐标为:(1, 1).故选: B .12.如图, Rt △ABC 的边 BC 在 x 轴正半轴上,点 D 为 AC 的中点, 点 E ,反比例函数 y= (x >0)的图象经过点 A ,若 S △BEC =6,则 kG5:反比例函数系数 k 的几何意义.再由函数所在的象限确定 k 的值.解答】 解: ∵BD 为 Rt △ABC 的斜边 AC 上的中线, ∴ BD=DC ,∠DBC=∠ACB , 又∵∠ DBC= ∠ EBO , ∴∠ EBO= ∠ ACB , 又∵∠ BOE=∠CBA=90° , ∴△ BOE ∽△ CBA , 又 ∵S △ BEC =6 ,∴ BC?EO=6 ,即 BC × OE=12=B ×O AB=|k| .又∵反比例函数图象在第一象限,, ,即 BC ×OE=B ×O AB . DB 的延长线交 y 轴负半轴于的值为( )分析】 先根据题意证明 △BOE ∽△ CBA ,根据相似比及面积公式得出 BO × AB 的值即为 |k|的值, k >0.考点】D .12∴k 等于12.故选 D .二、填空题(本大题共 6 小题,每小题3分,共18分)13.在2,1,﹣4,﹣1,0 这五个数中,最小的数是﹣4 .【考点】18:有理数大小比较.【分析】先根据各数的符号找出其中的负数,再根据其绝对值的大小,找出其中最小的数.【解答】解:∵正数大于负数和0,∴可排除2、1和0,又∵|﹣4|>|﹣1|,∴﹣4<﹣1∴ 最小的数是﹣ 4 .故答案为:﹣4.14.要使分式有意义,则字母x 的取值范围是x≠﹣ 3 .【考点】62:分式有意义的条件.【分析】根据分母不能为零,可得答案.【解答】解:由题意,得x+3 ≠0,解得x≠=﹣3,故答案为:x≠﹣3.15.分解因式:x2﹣9= (x+3 )(x﹣3).【考点】54:因式分解﹣运用公式法.【分析】本题中两个平方项的符号相反,直接运用平方差公式分解因式.【解答】解:x2﹣9=(x+3)(x﹣3).故答案(x+3)(x﹣3).16.如图,一个含有30 °角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=20°,则∠2=110【分析】将矩形各顶点标上字母,根据平行线的性质可得∠2=∠DEG= ∠1+∠FEG,从而可得出答案.【解答】解:如图,∵四边形ABCD 是矩形,∴AD ∥BC,∴∠ 2=∠DEG= ∠1+∠FEG=11°0 .故答案为:110°.17.如图,在数学活动课中,小敏为了测量校园内旗杆AB 的高度.站在教学楼的 C 处测得旗杆底端 B 的俯角为45°,测得旗杆顶端 A 的仰角为30°.若旗杆与教学楼的距离为9m ,则旗杆AB 的高度是 3 +9 m(结果保留根号)【考点】TA :解直角三角形的应用﹣仰角俯角问题.【分析】根据在Rt△ ACD 中,tan∠ACD= ,求出AD 的值,再根据在Rt△BCD 中,tan∠ BCD= ,求出BD 的值,最后根据AB=AD+BD ,即可求出答案.【解答】解:在Rt△ ACD 中,∵ tan∠ACD= ,∴ tan30 °= ,∴=,∴ AD=3 m ,在Rt△ BCD 中,∵∠ BCD=4°5 ,∴ BD=CD=9m ,∴ AB=AD+BD=3 +9 (m ).故答案为: 3 +9.18.如图,按此规律,第673 行最后一个数是2017.【考点】37:规律型:数字的变化类.【分析】每一行的最后一个数字分别是1,4,7,10⋯,易得第n 行的最后一个数字为1+3(n﹣1)=3n﹣2,由此建立方程求得最后一个数是2017 在哪一行.【解答】解:∵每一行的最后一个数分别是1,4,7,10⋯,∴第n 行的最后一个数字为1+3(n﹣1)=3n﹣2,∴3n﹣2=2017解得n=673 .因此第673 行最后一个数是2017.故答案为:673.三、解答题(本大题共8 小题,共66 分)19.计算:(﹣2020)0+|﹣2|﹣4ocs30 °+(﹣)﹣2.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】直接利用零指数幂的性质、负指数幂的性质、特殊角的三角函数值、绝对值的性质分别化简,然后根据实数的运算法则求得计算结果.【解答】解:(﹣2017)0+|﹣2|﹣4ocs30 +°(﹣)﹣2=12﹣ 2 .20.先化简,再求值: ÷(1+ ),其中 x=﹣ 2.考点】 6D :分式的化简求值.21.如图,方格纸中的每个小方格都是边长为 1 个单位的正方形, △ ABC 的顶点均在格点上.建立 平面直角坐标系后,点 A 的坐标为(﹣ 4, 1),点 B 的坐标为(﹣ 1, 1). 1)请画出 △ABC 关于 y 轴对称的 △A 1B 1C 1.2)将△ ABC 绕点 O 逆时针旋转 90°后得到△A 2B 2C 2,试在图中画出图形 △A 2B 2C 2,并计算点 C考点】 R8:作图﹣旋转变换; MN :弧长的计算; P7:作图﹣轴对称变换.=1+2﹣4 × +9分析】先根据分式的混合运算顺序和法则化简原式, 再将 x 代入求值即可得.÷(1解答】 解:原式 = ++====)旋转到点 C 2 所经过的路径长. (结果保留π)【分析】(1)根据轴对称的性质,找出点 A 、B 、C 关于 y 轴的对称点 A 1、B 1、C 1 的位置,然后顺 次连接即可;(2)分别找出点 A 、B 、C 绕点 O 逆时针旋转 90°的对应点 A 2、B 2、C 2的位置, 然后顺次连接即可, 根据点 C 所经过的路线是半径为 ,圆心角是 90°的扇形,然后根据弧长公式进行计算即可求解. 解答】 解:( 1)如图所示, △A 1B 1C 1 即为所求;( 2)如图所示, △A 2B 2C 2 即为所求;∵ OC= = ,∴点 C 旋转到点 C 2 所经过的路径长为: l= = .22.2019 年南宁市教育局组织全市中小学时候参加安全知识网络竞赛,在安全知识竞赛结束后,赛 后发现所有参赛学生会的成绩都高于 50 分.为了了解本次大赛的成绩分布情况, 某校随机抽取了其 中 200 名学生的成绩(成绩 x 取整数,总分为 100 分)作为样本进行统计分析,得到如下不完整的 统计图表,请根据图标中的信息解答下列各题:成绩(分)频数频数 50<x ≤ 6010 b 60<x ≤ 7020 0.10 70< x ≤8030 0.15 80<x ≤ 90a 0.30 90< x ≤10080 0.40 1)频数分布表中 a= 60 , b= 0.05 ;本次比赛成绩的中位数会落在 80≤x < 90 分数段;(2)请补全频数分布直方图;(3)该校安全知识竞赛成绩满分共有4人,其中男生 2 名,女生2名,为了激励学生增强安全意识,现需要从这 4 人中随机抽取 2 人介绍学习经验,请用“列表法”或“画树状图”,求恰好选到一男一女的概率.【分析】(1)根据第二组的频数是20,频率是0.10,求得数据总数,再用数据总数乘以第四组频率可得 a 的值,用第三组频数除以数据总数可得 b 的值;根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(2)根据(1)的计算结果即可补全频数分布直方图;(3)画树状图得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.【解答】解:(1)样本容量是:20÷0.10=200,a=200 ×0.30=60,b=10 ÷200=0.05;因为一共有200 个数据,按照从小到大的顺序排列后,第100 个与第101 个数据都落在第四个分数段,所以这次比赛成绩的中位数会落在80≤x<90 分数段;W4:中V8 :频数(率)分布直方图;位数.2)补全频数分布直方图,如下:3)画树状图如下:所有等可能的情况有12种,其中一男一女有8 种,∴ 恰好选到一男一女的概率= = .故答案为60,0.05;80≤x<90.23.如图,已知Rt△ABC 中,∠ACB=90°,以BC 为直径作⊙O交AB 于点D,E是AC 上一点,且DE=CE ,连接OE.(1)请判断DE 与⊙O 的位置关系,并证明你的结论;(2)求证:E为AC 的中点.【考点】MB :直线与圆的位置关系;KD :全等三角形的判定与性质;S9:相似三角形的判定与性质.【分析】(1)连接OD,根据全等三角形的性质得到∠ ODE= ∠ ACB=90° ,于是得到结论;(2)根据全等三角形的性质得到∠DOE= ∠COE= COD ,根据圆周角定理得到∠ B= COD,等量代换得到∠COE=∠B,推出OE∥AB ,根据平行线分线段成比例定理得到,于是得到结论.【解答】解:(1)DE 与⊙O 相切,理由:连接OD ,在△ODE 与△ OCE 中,,∴△ODE ≌△ OCE ,∴∠ ODE= ∠ACB=90° ,∴OD ⊥DE ,∴ DE 与⊙ O 相切;( 2)证明:由( 1)证得 △ ODE ≌△ OCE ,∴∠ DOE= ∠COE=COD ,∴∠ B= COD , ∴∠ COE= ∠B , ∴OE ∥AB ,∴,∴,∵ OC=OB ,=124.南宁盛产各种特色食品,其中芒果干与桂圆干是大家非常喜爱的两种特产,某旅行经销店欲购 进一批芒果干与桂圆干,已知购买1袋芒果干和 1袋桂圆干共需 75元,3 袋芒果干和 2 袋桂圆干共需 205 元. (1)求芒果干与桂圆干的进货单价;( 2)若芒果干与桂圆干的售价如表:该旅游经销店打算用不超过 2700 元的货款购进芒果干与桂圆 干共 100 袋,如何进货能够使两种特产全部售完后获得最大利润,最大利润是多少?(不考虑其他 因素)商品售价(元 /袋)芒果干 65桂圆干 考点】 FH :一次函数的应用.28∴CE=AE ,【分析】(1)设芒果干的进货单价为 x 元,桂圆干的进货单价为 y 元,根据购买 1 袋芒果干和 1 袋 桂圆干共需 75元, 3袋芒果干和 2 袋桂圆干共需 205元,建立方程组求出其解即可;( 2)设该旅游经销店购进芒果干 m 袋,获得的利润为 W 元,根据进价不超过 2700 元建立不等式 组求出 m 的取值范围;再根据利润 =m 袋芒果干的利润 +袋桂圆干的利润建立 W 与 m 之间的关系式, 由一次函数的性质求出其解即可.解答】 解:( 1)设芒果干的进货单价为 x 元,桂圆干的进货单价为 由题意解得:答:芒果干的进货单价为 55 元,桂圆干的进货单价为 (2)设该旅游经销店购进芒果干 m 袋,获得的利润为 W 元,由题意,得 55m+20≤2700 ,解得: m ≤20.W=(65﹣55) m+(28﹣20)=2m+800.∴k=2>0,∴W 随 m 的增大而增大,∴当 m=20 时,W 最大=2×20+800=840,此时 100﹣m=80.答:购进芒果干 20袋,桂圆干 80袋,全部售完后获得最大利润,最大利润是 840 元.25.已知正方形 ABCD ,P 为直线 CD 上的一点, 以 PC 为边作正方形 PCNM ,使点 N 在直线 BC 上, 连接 MB 、MD .(1)如图 1,若点 P 在线段 DC 的延长线上,求证: MB=MD ;(2)如图 2,若点 P 在线段 DC 上,当 P 为 DC 的中点时,判断 △PMD 的形状,并说明理由; (3)如图 3,若点 P 在线段 DC 上,连接 BD ,当 MP 平分 ∠DMB 时,求 ∠DMB 的度数.y 元,20 元;【考点】LO :四边形综合题.【分析】(1)根据正方形的性质证明△BNM ≌△ DPM ,可得MB=MD ;(2)根据小正方形的性质得:∠DPM= ∠CPM=9°0 ,由中点结合得:PD=PM ,所以△PMD 是等腰直角三角形;(3)如图3,作辅助线,构建等腰直角三角形EFD,设CD=a,PC=b,则PD=a﹣b,由PM ∥BC,得△ PME ∽△ CBE ,所以,代入可计算得:a= b,根据正方形对角线平分直角得:∠CDB=4°5 ,得△ DEF 是等腰直角三角形,求EF和CE 的长,得EF=EC,根据角平分线的逆定理得:BE 平分∠DBC,最后由平行线和已知的角平分线可得结论.【解答】证明:(1)如图1,∵四边形ABCD 和四边形CPMN 是正方形,∴ BC=DC ,CN=CP ,∠ P=∠ N=90°,∴ BC+CN=DC+PC ,即BN=DP ,∴△BNM ≌△ DPM,∴ MB=MD ;(2)△ PMD 是等腰直角三角形;理由如下:如图2,∵P是CD 的中点,∴PD=PC ,∵ 四边形CPMN 是正方形,∴PM=PC ,∠DPM= ∠ CPM=9°0 ,∴ PD=PM ,∴△ PMD 是等腰直角三角形;3)如图3,设PC与BM 相交于点E,过点E作EF⊥ BD ,垂足为F,设CD=a,PC=b,则PD=a﹣b,∵MP 平分∠DME ,MP⊥DE,∴PE=PD=a ﹣b,CE=a﹣(2a﹣2b)=2b﹣a,∵PM∥BC,∴△PME ∽△ CBE ,∴ ,即,∴ a= b ,∵∠ CDB=4°5 ,∴ EF=DE?sin45°= ?2(a﹣b)= (b﹣b)=2b﹣b,∵ CE=2b﹣a=2b﹣b,∴EF=EC,EF⊥BD ,EC⊥BC,∴BE 平分∠ DBC,∴∠ EBF= ∠EBC= ∠ DBC=22.5°,∵PM∥BC,∴∠ PME= ∠EBC=22.5°,∴∠ DMB=4°5 .26.抛物线y=ax2+bx+3 交x轴于点A(﹣3,0)和点B(1,0),交y 轴于点C.(1)求抛物线的函数表达式及抛物线的对称轴;(2)如图a,点P 是抛物线上第二象限内的一动点,若以AP,AO 为邻边的平行四边形第四个顶点恰好落在抛物线上,求出此时点P 的坐标;(3)如图b,点D 是抛物线上第二象限内的一动点,过点O,D的直线y=kx 交AC 于点E,若S△CDE:S△ CEO=2 :3,求k 的值.【分析】(1)把点 A 、B 的坐标分别代入函数解析式,列出关于系数的方程组,通过解方程组求得 它们的值即可;利用抛物线对称轴方程解答求得抛物线的对称轴方程; (2)根据平行四边形的对边平行且相等的性质得到: PQ ∥ AO ,PQ=AO=3 ,由抛物线的对称性质推 知点 P 的横坐标,然后根据二次函数图象上点的坐标特征求得点 P 的纵坐标即可; (3)欲求 k 的值,只需推知点 D 的坐标即可; 利用抛物线的解析式 y=x 2﹣ 2x+3 中求得 C (0,3).由待定系数法解得直线 AC 的解析式为: y=x+3 ,如图 b ,过点 D 作 DQ ⊥AB 于点 Q ,交 AC 于点 F ,点 F (x ,3x ),点 D 的坐标为( x ,﹣x 2﹣2x+3),利用两点间的距离公式不难求得 x 的值,则易得 点 D 的坐标.解答】 解:( 1)把 A (﹣3,0)和 B (1,0)代入 y=ax 2+bx+3 ,得故抛物线的解析式是: y=﹣ x 2﹣ 2x+3,( 2)如图 a ,∵以 AP 、AO 为邻边的平行四边形的第四个顶点 Q 恰好在抛物线上, ∴PQ ∥AO ,PQ=AO=3 . ∵点 P 、Q 都在抛物线上,∴P 、Q 关于直线 x=﹣ 1对称,则 DF ∥OC ,构建相似三角形: △DEF ∽△ OEC ,结合该相似三角形的对应边成比例推知 DF=2 .设对称轴 x= ﹣ ==﹣1;考点】 HF :二次函数综合题.∴P 点的横坐标是﹣ .(3)在抛物线 y=x 2﹣ 2x+3 中,当 x=0 时, y=3,则 C (0,3). 设直线 AC 的解析式为 y=kx+b ( k ≠0), 将 A (﹣ 3,0)、C ( 0,3)代入,得,','解得 ,故直线 AC 的解析式为: y=x+3 ,如图 b ,过点 D 作 DQ ⊥AB 于点 Q ,交 AC 于点 F ,则 DF ∥ OC .∵ S △ CDE : S △ CEO =2 :3,∴DE :OE=2:3.∵DF ∥OC ,∴△ DEF ∽△ OEC ,又 DE :OE=2 : 3,OC=3 ,∴DF=2.设点 F ( x ,3x ),点 D 的坐标为( x ,﹣ x 2﹣2x+3), DF= (﹣ x 2 ﹣2x+3 )﹣( x+3)=﹣x 2﹣3x .∴﹣x 2﹣ 3x=2,解得 x 1=﹣ 1,x 2=﹣2,当 x=﹣1 时, y=4.当 x=﹣2 时, y=3.即点 D 的坐标是(﹣ 1, 4)或(﹣ 2,3). 又点 D 在直线 y=kx 上,∴当 x=﹣ 时, y=﹣( )2﹣2×(﹣)+3= ∴点 P 的坐标是(﹣∴ k=﹣ 4 或k=﹣.。
2024年广西南宁市中考模拟数学试卷(三)

2024年广西南宁市中考模拟数学试卷(三)一、单选题1.2024-的相反数是( )A .2024-B .2024C .12024-D .120242.下列图形中,是中心对称图形的是( )A .B .C .D . 3.下列计算正确的是( )A .236a a a ⋅=B .22(3)6a a =C .632a a a ÷=D .22232a a a -= 4.如图是某工厂要设计生产的零件的主视图,这个零件可能是( )A .B .C .D . 5.数据2370000用科学记数法可表示为( )A .62.3710⨯B .52.3710⨯C .70.23710⨯D .423710⨯ 6.若点P (m ﹣1,5)与点Q (3,2﹣n )关于y 轴对称,则m +n 的值是( ) A .﹣5 B .1 C .5 D .117.在同一平面直角坐标系中,正比例函数y =kx 与一次函数y =-kx -k (k ≠0)的大致图象是( )A .B .C .D . 8.在平行四边形ABCD 中,AC ,BD 是两条对角线,现从以下四个关系:①AB =BC ,②AC =BD ,③AC ⊥BD ,④AB ⊥BC 中任取一个作为条件,即可推出平行四边形ABCD 是菱形的概率为( )A .14B .12 C .34 D .19.《孙子算经》是我国古代经典数学名著,其中有一道“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何?”学了方程(组)后,我们可以非常顺捷地解决这个问题.如果设鸡有x 只,兔有y 只,那么可列方程组为( )A .35,4494x y x y +=⎧⎨+=⎩B .35,4294x y x y +=⎧⎨+=⎩C .94,2435x y x y +=⎧⎨+=⎩D .35,2494x y x y +=⎧⎨+=⎩ 10.《九章算术》中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这个木材,锯口深1寸((1ED =寸),锯道长1尺(1AB =尺10=寸),问这块圆形木材的直径是多少.”如图,请根据所学知识计算:圆形木材的直径AC 是()A .13寸B .20寸C .26寸D .28寸11.定义一种新的运算:如果0a ≠.则有2||a b a ab b -=++-▲,那么1()22-▲的值是( ) A .3- B .5 C .34- D .3212.如图,OABC Y 的顶点(0,0)O ,(1,2)A ,点C 在x 轴的正半轴上,延长BA 交y 轴于点D .将ODA V 绕点O 顺时针旋转得到OD A ''△,当点D 的对应点D ¢落在OA 上时,D A ''的延长线恰好经过点C ,则点C 的坐标为( )A .B .C .1,0)D .1,0)二、填空题13.满足式子2≤3x ﹣7<8成立的所有整数解的和为.14.分解因式:244ax ax a -+=.15.学校要从王静,李玉两同学中选拔一人参加运动会志愿者工作,选拔项目为普通话,体育知识和旅游知识.并将成绩依次按4∶3∶3计分. 两人的各项选拔成绩如下表所示,则最终胜出的同学是.16.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45o ,测得该建筑底部C 处的俯角为17o .若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为m .(参考数据:sin170.29≈o ,cos170.96≈o , tan170.31≈o )17.如图,要用一个扇形纸片围成一个无底盖的圆锥(接缝处忽略不计),若该圆锥的底面圆周长为20πcm ,侧面积为240π2cm ,则这个扇形的圆心角的度数是度.18.如图,抛物线y =﹣x 2+2x+3交x 轴于A ,B 两点,交y 轴于点C ,点D 为抛物线的顶点,点C 关于抛物线的对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,则四边形EDFG周长的最小值为.三、解答题19.计算:2024()()()1625-+÷---20.先化简,再求值:22311213x x x x x x x+-⋅+-++,其中1x = 21.如图,已知E 是平行四边形ABCD 对角线AC 上的点,连接DE .(1)过点B 在平行四边形内部作射线BF 交AC 于点F ,且使CBF ADE ∠=∠(要求:用尺规作图,保留作图痕迹,不写作法与证明)(2)连接BE ,DF ,判断四边形BFDE 的形状并证明.22.学校组织七、八年级学生参加了“国家安全知识”测试(满分100分).已知七、八年级各有200人,现从两个年级分别随机抽取10名学生的测试成绩x (单位:分)进行统计: 七年级 86 94 79 84 71 90 76 83 90 87八年级 88 76 90 78 87 93 75 87 87 79整理如下:根据以上信息,回答下列问题:(1)填空:=a _______,b =________.A 同学说:“这次测试我得了86分,位于年级中等偏上水平”,由此可判断他是________年级的学生;(2)学校规定测试成绩不低于85分为“优秀”,估计该校这两个年级测试成绩达到“优秀”的学生总人数;(3)你认为哪个年级的学生掌握国家安全知识的总体水平较好?请给出一条理由. 23.某县贡桔成本为10元/斤,售价不低于15元/斤,不高于30元/斤.(1)每日贡桔销售量y (斤)与售价x (元/斤)之间的函数关系如图所示,求y 与x 之间的函数关系式;(2)若每天销售利润率不低于60%,且不高于80%,求每日销售的最大利润.24.如图,ABC V 是等腰直角三角形,90ACB ∠=︒,O 为AB 的中点,连接CO 交O e 于点E , O e 与AC 相切于点D .(1)求证:BC 是O e 的切线;(2)延长CO 交O e 于点G ,连接AG 交O e 于点F ,若AC =FG 的长.25.如图,在矩形ABCD 中,5cm AB =,3cm BC =.动点P ,Q 分别从点A ,B 出发,同时以1cm/s 的速度沿折线ADC 和BAD 分别向终点C ,D 运动.设运动时间为(s)(0)x x >,直线PQ ,BQ ,PC ,BC 所围成的图形的面积为2(cm )y .(1)当点P 与点D 重合时,AQ 的长为 cm ;(2)求y 关于x 的函数解析式,并写出自变量x 的取值范围;(3)当PBQ V 为直角三角形时,直接写出x 的值.26.综合与实践问题背景数学小组发现国旗上五角星的五个角都是顶角为36︒的等腰三角形,对此三角形产生了极大兴趣并展开探究.探究发现如图1,在ABC V 中,36A ∠=︒,AB AC =.(1)操作发现:将ABC V 折叠,使边BC 落在边BA 上,点C 的对应点是点E ,折痕交AC 于点D ,连接DE ,DB ,则BDE ∠=_______︒,设1AC =,BC x =,那么AE =______(用含x 的式子表示);(2)进一步探究发现:BC AC 底腰这个比值被称为黄金比.在(1)的条件下试证明:BC AC 底腰 拓展应用:当等腰三角形的底与腰的比等于黄金比时,这个三角形叫黄金三角形.例如,图1中的ABC V是黄金三角形.如图2,在菱形ABCD 中,72BAD ∠=︒,1AB =.求这个菱形较长对角线的长.。
南宁市2020年中考数学模拟试题及答案

南宁市2020年中考数学模拟试题及答案注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。
2.考生必须把答案写在答题卡上,在试卷上答题一律无效。
考试结束后,本试卷和答题卡一并交回。
3.本试卷满分120分,考试时间120分钟。
一、选择题(本题共12小题。
每小题3分,共36分。
在每小题给出的四个选项中,只有一项是正确的。
)1.下列计算正确的是()A.x2﹣3x2=﹣2x4B.(﹣3x2)2=6x2C.x2y•2x3=2x6y D.6x3y2÷(3x)=2x2y22.据统计,截止2019年2月,我市实际居住人口约4210000人,4210000这个数用科学记数法表示为()A.42.1×105B.4.21×105C.4.21×106D.4.21×1073.如右图是某个几何体的侧面展开图,则该几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱4.一元二次方程2x2﹣2x﹣1=0的较大实数根在下列哪两个相邻的整数之间()A.4,3 B.3,2 C.2,1 D.1,05.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.20 B.300 C.500 D.8006.下列图形中既是轴对称图形,又是中心对称图形的是()A. B.C. D.7.关于一次函数y=5x﹣3的描述,下列说法正确的是()A.图象经过第一、二、三象限B.向下平移3个单位长度,可得到y=5xC.函数的图象与x轴的交点坐标是(0,﹣3)D.图象经过点(1,2)8.如右图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN=110°,则∠BEG=()A.20°B.25°C.35°D.40°9.下列计算正确的有()个。
①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6 ③(x﹣2)2=x2﹣4④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.310.小李双休日爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t分钟,所走的路程为s米,s与t之间的函数关系式如图所示,下列说法错误的是()A.小李中途休息了20分钟B.小李休息前爬山的速度为每分钟70米C.小李在上述过程中所走的路程为6600米D.小李休息前爬山的平均速度大于休息后爬山的平均速度11. 如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A. 110°B. 90°C. 70°D. 50°12.图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是()A.4 B.6 C.4﹣2 D.10﹣4二、填空题(本题共6小题,满分18分。
2019-2020年南宁市初三中考数学一模模拟试卷

2019-2020年南宁市初三中考数学一模模拟试卷一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.(3分)﹣3的相反数是()A.3B.﹣3C.±3D.2.(3分)下列计算正确的是()A.2a+3b=5ab B.=±6C.a2b÷2ab=a2D.(2ab2)3=8a3b63.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.4.(3分)一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差5.(3分)如图,AB是⊙O的直径,直线P A与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°6.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2C.D.7.(3分)已知实数x、y满足:x﹣y﹣3=0和2y3+y﹣6=0.则﹣y2的值为()A.0B.C.1D.8.(3分)如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是()A.x>2B.0<x<4C.﹣1<x<4D.x<﹣1 或x>4二、填空题(本大题共10小题,每小题3分,共30分.)9.(3分)“五一”小长假期间,扬州市区8家主要封闭式景区共接待游客528600人次,同比增长20.56%.用科学记数法表示528600为.10.(3分)若有意义,则x的取值范围是.11.(3分)分解因式:mx2﹣4m=.12.(3分)若方程x2+kx+9=0有两个相等的实数根,则k=.13.(3分)一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.14.(3分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是.15.(3分)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为.16.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.17.(3分)如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=.18.(3分)如图,⊙O的直径AB=8,C为弧AB的中点,P为弧BC上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,连接BD,则BD的最小值是.三、解答题(本大题有10小题,共96分.)19.(8分)(1)计算:|﹣3|﹣tan30°+20180﹣()﹣1;(2)化简:(1+a)(1﹣a)+a(a﹣2).20.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.21.(8分)若关于x的分式方程=1的解是正数,求m的取值范围.22.(8分)小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是.23.(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)24.(10分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且ED⊥DB,FB ⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.25.(10分)观察下表:我们把某一格中所有字母相加得到的多项式称为特征多项式,例如:第1格的“特征多项式”为x+4y.回答下列问题:(1)第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为2,第2格的“特征多项式”的值为﹣6.①求x,y的值;②在①的条件下,第n格的“特征多项式的值”随着n的变化而变化,求“特征多项式的值”的最大值及此时n值.26.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,E为BC的中点,连接DE.(1)求证:DE为⊙O的切线;(2)如果⊙O的半径为3,ED=4,延长EO交⊙O于F,连接DF,与OA交于点G,求OG的长.27.(12分)在平面直角坐标系中,点O为原点,点A的坐标为(﹣8,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=45°,OE=OA,求直线EF的函数表达式;(2)如图3,若α为锐角,且tanα=,当EA⊥x轴时,正方形对角线EG与OF相交于点M,求线段AM的长;(3)当正方形OEFG的顶点F落在y轴正半轴上时,直线AE与直线FG相交于点P,是否存在△OEP的两边之比为:1?若存在,求出点P的坐标;若不存在,试说明理由.28.如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△P AD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.参考答案与试题解析一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:A.2.【分析】直接利用合并同类项法则以及算术平方根、整式的除法运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、2a+3b无法计算,故此选项错误;B、=6,故此选项错误;C、a2b÷2ab=a,故此选项错误;D、(2ab2)3=8a3b6,正确.故选:D.3.【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【解答】解:从上面看,图2的俯视图是正方形,有一条对角线.故选:C.4.【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是3,添加数字3后平均数仍为3,故A与要求不符;B、原来数据的众数是3,添加数字3后众数仍为3,故B与要求不符;C、原来数据的中位数是3,添加数字3后中位数仍为3,故C与要求不符;D、原来数据的方差==,添加数字3后的方差==,故方差发生了变化.故选:D.5.【分析】利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠P AO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】解:如图,∵AB是⊙O的直径,直线P A与⊙O相切于点A,∴∠P AO=90°.又∵∠P=40°,∴∠POA=50°,∴∠ABC=∠POA=25°.故选:B.6.【分析】求出AB=3,由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴==.故选:A.7.【分析】根据x﹣y﹣3=0和2y3+y﹣6=0,可以得到x与y的关系和y2﹣的值,从而可以求得所求式子的值.【解答】解:∵x﹣y﹣3=0和2y3+y﹣6=0,∴x=y+3,y2+﹣=0,∴y2﹣=﹣∴﹣y2==1+=1﹣(﹣)=1+=,故选:D.8.【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【解答】解:∵y3=(kx+b)(mx+n),y<0,∴(kx+b)(mx+n)<0,∵y1=kx+b,y2=mx+n,即y1•y2<0,有以下两种情况:(1)当y1>0,y2<0时,此时,x<﹣1;(2)当y1<0,y2>0时,此时,x>4,故选:D.二、填空题(本大题共10小题,每小题3分,共30分.)9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:528600=5.286×105,故答案为:5.286×10510.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.11.【分析】首先提取公因式m,进而利用平方差公式分解因式即可.【解答】解:mx2﹣4m=m(x2﹣4)=m(x+2)(x﹣2).故答案为:m(x+2)(x﹣2).12.【分析】根据根判别式△=b2﹣4ac的意义得到△=0,即k2﹣4×1×9=0,然后解方程即可.【解答】解:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±6.故答案为±6.13.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.14.【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8.故答案为:﹣8.15.【分析】根据平行线的性质可得出∠3=∠4+∠5,结合对顶角相等可得出∠3=∠1+∠2,代入∠1=30°、∠3=45°,即可求出∠2的度数.【解答】解:给各角标上序号,如图所示.∵∠3=∠4+∠5,∠1=∠4,∠2=∠5,∴∠3=∠1+∠2.又∵∠1=30°,∠3=45°,∴∠2=15°.故答案为:15°.16.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.17.【分析】依据题意可得,A,C之间的水平距离为6,点Q与点P的水平距离为7,A,B之间的水平距离为2,双曲线解析式为y=,依据点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m=6,点Q“、点Q'离x轴的距离相同,都为4,即点Q的纵坐标n=4,即可得到mn的值.【解答】解:由图可得,A,C之间的水平距离为6,2018÷6=336…2,由抛物线y=﹣x2+4x+2可得,顶点B(2,6),即A,B之间的水平距离为2,∴点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m=6,由抛物线解析式可得AO=2,即点C的纵坐标为2,∴C(6,2),∴k=2×6=12,∴双曲线解析式为y=,2025﹣2018=7,故点Q与点P的水平距离为7,∵点P'、Q“之间的水平距离=(2+7)﹣(2+6)=1,∴点Q“的横坐标=2+1=3,∴在y=中,令x=3,则y=4,∴点Q“、点Q'离x轴的距离相同,都为4,即点Q的纵坐标n=4,∴mn=6×4=24,故答案为:24.18.【分析】以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,依据∠ADC=135°,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据△ACQ中,AQ=4,【解答】解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,连接AC,BC,BQ.∵⊙O的直径为AB,C为的中点,∴∠APC=45°,又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的,又∵AB=8,C为的中点,∴△ACB是等腰直角三角形,∴AC=4,∴△ACQ中,AQ=4,∴BQ==4,∵BD≥BQ﹣DQ,∴BD的最小值为4﹣4.故答案为:4﹣4.三、解答题(本大题有10小题,共96分.)19.【分析】(1)根据实数的混合计算解答即可;(2)根据整式的混合计算解答即可.【解答】解:(1)原式==﹣1.(2)原式=1﹣a2+a2﹣2a=1﹣2a20.【分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数;(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数;【解答】解:(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,故答案为:200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.21.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程的解为正数确定出m的范围即可.【解答】解:去分母得:1+m=x﹣2,解得:x=m+3,由分式方程的解为正数,得到m+3>0,且m+3≠2,解得:m>﹣3且m≠﹣1.22.【分析】(1)画树状图列出所有等可能结果,从中找到到第二个路口时第一次遇到红灯的结果数,根据概率公式计算可得.(2)根据在第1个路口没有遇到红灯的概率为,到第2个路口还没有遇到红灯的概率为=()2可得答案.【解答】解:(1)画树状图如下:由树状图知,共有9种等可能结果,其中到第二个路口时第一次遇到红灯的结果数为2,所以到第二个路口时第一次遇到红灯的概率为;(2)∵在第1个路口没有遇到红灯的概率为,到第2个路口还没有遇到红灯的概率为=()2,∴到第n个路口都没有遇到红灯的概率为()n,故答案为:()n.23.【分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【解答】解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×=2(米),∵DH=1.5,∴CD=2 +1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==(4+)(米),答:拉线CE的长约为(4+)米.24.【分析】(1)由四边形ABCD为平行四边形,利用平行四边形的性质得到对边平行且相等,对角相等,再由垂直的定义得到一对直角相等,利用等式的性质得到一对角相等,利用ASA即可得证;(2)过D作DH垂直于AB,在直角三角形ADH中,利用30度所对的直角边等于斜边的一半得到AD=2DH,在直角三角形DEB中,利用斜边上的中线等于斜边的一半得到EB=2DH,易得四边形EBFD为平行四边形,利用平行四边形的对边相等得到EB=DF,等量代换即可得证.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,AD∥CB,AB∥CD,∴∠ADB=∠CBD,∵ED⊥DB,FB⊥BD,∴∠EDB=∠FBD=90°,∴∠ADE=∠CBF,在△AED和△CFB中,,∴△AED≌△CFB(ASA);(2)作DH⊥AB,垂足为H,在Rt△ADH中,∠A=30°,∴AD=2DH,在Rt△DEB中,∠DEB=45°,∴EB=2DH,∵ED⊥DB,FB⊥BD.∴DE∥BF,∵AB∥CD,∴四边形EBFD为平行四边形,∴FD=EB,∴DA=DF.25.【分析】(1)利用已知表格中x,y个数变化规律得出第2格的“特征多项式”以及第n 格的“特征多项式”;(2)①利用(1)中所求得出关于x,y的等式组成方程组求出答案;②利用二次函数最值求法得出答案.【解答】解:(1)由表格中数据可得:第4格的“特征多项式”为:16x+25y,第n格的“特征多项式”为:n2x+(n+1)2y(n为正整数);故答案为:16x+25y,n2x+(n+1)2y(n为正整数);(2)①由题意可得:,解得:答:x的值为﹣6,y的值为2.②设W=n2x+(n+1)2y当x=﹣6,y=2时:W=﹣6n2+2(n+1)2=,此函数开口向下,对称轴为,∴当时,W随n的增大而减小,又∵n为正整数∴当n=1时,W有最大值,W最大=﹣4×(1﹣)2+3=2,即:第1格的特征多项式的值有最大值,最大值为2.26.【分析】(1)首先连接OD,由BE=EC,CO=OA,得出OE∥AB,根据平行线与等腰三角形的性质,易证得△COE≌△DOE,即可得∠ODE=∠OCE=90°,则可证得ED 为⊙O的切线;(2)只要证明OE∥AB,推出,由此构建方程即可解决问题;【解答】解:(1)证明:连接OD,∵E为BC的中点,AC为直径,∴BE=EC,CO=OA,∴OE∥AB,∴∠COE=∠CAD,∠EOD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠COE=∠DOE,在△COE和△DOE中,,∴△COE≌△DOE(SAS),∴∠ODE=∠OCE=90°,∴ED⊥OD,∴ED是圆O的切线;(2)连接CD;由题意EC、ED是⊙O的切线,∴EC=ED,∵OC=OD,∴OE⊥CD,∵AC是直径,∴∠CDA=90°,∴CD⊥AB,∴OE∥AB,∴,在Rt△ECO中,EO==5,∵∠EOC=∠CAD,∴cos∠CAD=cos∠EOC=,∴AD=,设OG=x,则有,∴x=,∴OG=.27.【分析】(1)求出E、F两点坐标,利用待定系数法即可解决问题;(2)如图3中,作MH⊥OA于H,MK⊥AE交AE的延长线于K.只要证明四边形AOMK 是正方形,证明AE+OA=2AH即可解决问题;(3)如图2中,设F(0,2a),则E(﹣a,a).构建一次函数利用方程组求出交点P 坐标,分三种情形讨论求解即可;【解答】解:(1)∵OE=OA=8,α=45°,∴E(﹣4,4),F(0,8),设直线EF的解析式为y=kx+b,则有,解得∴直线EF的解析式为y=x+8.(2)如图3中,作MH⊥OA于H,MK⊥AE交AE的延长线于K.在Rt△AEO中,tan∠AOE==,OA=8,∴AE=4,∵四边形EOGF是正方形,∴∠EMO=90°,∵∠EAO=∠EMO=90°,∴E、A、O、M四点共圆,∴∠EAM=∠EOM=45°,∴∠MAK=∠MAH=45°,∵MK⊥AE,MH⊥OA,∴MK=MH,四边形KAOM是正方形,∵EM=OM,∴△MKE≌△MHO,∴EK=OH,∴AK+AH=2AH=AE+EK+OA﹣OH=12,∴AH=6,∴AM=AH=6.(3)如图2中,设F(0,2a),则E(﹣a,a).∵A(﹣8,0),E(﹣a,a),∴直线AP的解析式为y=x+,直线FG的解析式为y=﹣x+2a,由,解得,∴P(,).①当PO=OE时,∴PO2=2OE2,则有:+=4a2,解得a=4或﹣4(舍弃)或0(舍弃),此时P(0,8).②当PO=PE时,则有:+=2[(+a)2+(﹣a)2],解得:a=4或12,此时P(0,8)或(﹣24,48),③当PE=EO时,[(+a)2+(﹣a)2]=4a2,解得a=8或0(舍弃),∴P(﹣8,24)综上所述,满足条件的点P的坐标为(0,8),(﹣8,24),(﹣24,48).28.【分析】(1)由点C的坐标为(0,3),可知﹣9a=3,故此可求得a的值,然后令y=0得到关于x的方程,解关于x的方程可得到点A和点B的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO=60°,依据AE为∠BAC的角平分线可求得∠DAO=30°,然后利用特殊锐角三角函数值可求得OD=1,则可得到点D的坐标.设点P的坐标为(,a).依据两点的距离公式可求得AD、AP、DP的长,然后分为AD =P A、AD=DP、AP=DP三种情况列方程求解即可;(3)设直线MN的解析式为y=kx+1,接下来求得点M和点N的横坐标,于是可得到AN的长,然后利用特殊锐角三角函数值可求得AM的长,最后将AM和AN的长代入化简即可.【解答】解:(1)∵C(0,3).∴﹣9a=3,解得:a=﹣.令y=0得:ax2﹣2 ax﹣9a=0,∵a≠0,∴x2﹣2 x﹣9=0,解得:x=﹣或x=3.∴点A的坐标为(﹣,0),B(3,0).∴抛物线的对称轴为x=.(2)∵OA=,OC=3,∴tan∠CAO=,∴∠CAO=60°.∵AE为∠BAC的平分线,∴∠DAO=30°.∴DO=AO=1.∴点D的坐标为(0,1)设点P的坐标为(,a).依据两点间的距离公式可知:AD2=4,AP2=12+a2,DP2=3+(a﹣1)2.当AD=P A时,4=12+a2,方程无解.当AD=DP时,4=3+(a﹣1)2,解得a=0或a=2(舍去),∴点P的坐标为(,0).当AP=DP时,12+a2=3+(a﹣1)2,解得a=﹣4.∴点P的坐标为(,﹣4).综上所述,点P的坐标为(,0)或(,﹣4).(3)设直线AC的解析式为y=mx+3,将点A的坐标代入得:﹣m+3=0,解得:m =,∴直线AC的解析式为y=x+3.设直线MN的解析式为y=kx+1.把y=0代入y=kx+1得:kx+1=0,解得:x=﹣,∴点N的坐标为(﹣,0).∴AN=﹣+=.将y=x+3与y=kx+1联立解得:x=.∴点M的横坐标为.过点M作MG⊥x轴,垂足为G.则AG=+.∵∠MAG=60°,∠AGM=90°,∴AM=2AG=+2=.∴+=+=+===.中学数学一模模拟试卷一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.(3分)﹣3的相反数是()A.3B.﹣3C.±3D.2.(3分)下列计算正确的是()A.2a+3b=5ab B.=±6C.a2b÷2ab=a2D.(2ab2)3=8a3b63.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.4.(3分)一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差5.(3分)如图,AB是⊙O的直径,直线P A与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°6.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2C.D.7.(3分)已知实数x、y满足:x﹣y﹣3=0和2y3+y﹣6=0.则﹣y2的值为()A.0B.C.1D.8.(3分)如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是()A.x>2B.0<x<4C.﹣1<x<4D.x<﹣1 或x>4二、填空题(本大题共10小题,每小题3分,共30分.)9.(3分)“五一”小长假期间,扬州市区8家主要封闭式景区共接待游客528600人次,同比增长20.56%.用科学记数法表示528600为.10.(3分)若有意义,则x的取值范围是.11.(3分)分解因式:mx2﹣4m=.12.(3分)若方程x2+kx+9=0有两个相等的实数根,则k=.13.(3分)一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.14.(3分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是.15.(3分)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为.16.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.17.(3分)如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=.18.(3分)如图,⊙O的直径AB=8,C为弧AB的中点,P为弧BC上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,连接BD,则BD的最小值是.三、解答题(本大题有10小题,共96分.)19.(8分)(1)计算:|﹣3|﹣tan30°+20180﹣()﹣1;(2)化简:(1+a)(1﹣a)+a(a﹣2).20.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.21.(8分)若关于x的分式方程=1的解是正数,求m的取值范围.22.(8分)小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是.23.(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)24.(10分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且ED⊥DB,FB ⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.25.(10分)观察下表:我们把某一格中所有字母相加得到的多项式称为特征多项式,例如:第1格的“特征多项式”为x+4y.回答下列问题:(1)第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为2,第2格的“特征多项式”的值为﹣6.①求x,y的值;②在①的条件下,第n格的“特征多项式的值”随着n的变化而变化,求“特征多项式的值”的最大值及此时n值.26.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,E为BC的中点,连接DE.(1)求证:DE为⊙O的切线;(2)如果⊙O的半径为3,ED=4,延长EO交⊙O于F,连接DF,与OA交于点G,求OG的长.27.(12分)在平面直角坐标系中,点O为原点,点A的坐标为(﹣8,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=45°,OE=OA,求直线EF的函数表达式;(2)如图3,若α为锐角,且tanα=,当EA⊥x轴时,正方形对角线EG与OF相交于点M,求线段AM的长;(3)当正方形OEFG的顶点F落在y轴正半轴上时,直线AE与直线FG相交于点P,是否存在△OEP的两边之比为:1?若存在,求出点P的坐标;若不存在,试说明理由.28.如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△P AD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.参考答案与试题解析一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:A.2.【分析】直接利用合并同类项法则以及算术平方根、整式的除法运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、2a+3b无法计算,故此选项错误;B、=6,故此选项错误;C、a2b÷2ab=a,故此选项错误;D、(2ab2)3=8a3b6,正确.故选:D.3.【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【解答】解:从上面看,图2的俯视图是正方形,有一条对角线.故选:C.4.【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是3,添加数字3后平均数仍为3,故A与要求不符;B、原来数据的众数是3,添加数字3后众数仍为3,故B与要求不符;C、原来数据的中位数是3,添加数字3后中位数仍为3,故C与要求不符;D、原来数据的方差==,添加数字3后的方差==,故方差发生了变化.故选:D.5.【分析】利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠P AO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】解:如图,∵AB是⊙O的直径,直线P A与⊙O相切于点A,∴∠P AO=90°.又∵∠P=40°,∴∠POA=50°,∴∠ABC=∠POA=25°.故选:B.6.【分析】求出AB=3,由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴==.故选:A.7.【分析】根据x﹣y﹣3=0和2y3+y﹣6=0,可以得到x与y的关系和y2﹣的值,从而可以求得所求式子的值.【解答】解:∵x﹣y﹣3=0和2y3+y﹣6=0,∴x=y+3,y2+﹣=0,∴y2﹣=﹣∴﹣y2==1+=1﹣(﹣)=1+=,故选:D.8.【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【解答】解:∵y3=(kx+b)(mx+n),y<0,∴(kx+b)(mx+n)<0,∵y1=kx+b,y2=mx+n,即y1•y2<0,有以下两种情况:(1)当y1>0,y2<0时,此时,x<﹣1;(2)当y1<0,y2>0时,此时,x>4,故选:D.二、填空题(本大题共10小题,每小题3分,共30分.)9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:528600=5.286×105,故答案为:5.286×10510.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.11.【分析】首先提取公因式m,进而利用平方差公式分解因式即可.【解答】解:mx2﹣4m=m(x2﹣4)=m(x+2)(x﹣2).故答案为:m(x+2)(x﹣2).12.【分析】根据根判别式△=b2﹣4ac的意义得到△=0,即k2﹣4×1×9=0,然后解方程即可.【解答】解:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±6.故答案为±6.13.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.14.【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8.故答案为:﹣8.15.【分析】根据平行线的性质可得出∠3=∠4+∠5,结合对顶角相等可得出∠3=∠1+∠2,代入∠1=30°、∠3=45°,即可求出∠2的度数.【解答】解:给各角标上序号,如图所示.∵∠3=∠4+∠5,∠1=∠4,∠2=∠5,∴∠3=∠1+∠2.又∵∠1=30°,∠3=45°,∴∠2=15°.故答案为:15°.。
2020年广西中考数学模拟试卷(三)(含答案和解析)

2020 年中考数学模拟试卷(三)一、选择题(满分30 分,每小题3 分)1.下列四个数:,3.3030030003…,﹣π,﹣0.5,3.14,其中是无理数有()A.1 个B.2 个C.3 个D.4 个2.已知一个几何体从三个不同方向看到的图形如图所示,则这个几何体是()A.圆柱B.圆锥C.球体D.棱锥3.若点P(a,b)在第三象限,则M(﹣ab,﹣a)应在()A.第一象限B.第二象限C.第三象限D.第四象限4.已知反比例函数图象上三个点的坐标分别是A(﹣2,y1)、B(1,y2)、C(2,y3),能正确反映y1、y2、y3的大小关系的是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y2>y3>y15.如图,∠AOB 的两边OA,OB 均为平面反光镜,∠AOB=40°。
在射线OB 上有一点P,从P 点射出一束光线经OA 上的Q 点反射后,反射光线QR 恰好与OB 平行,则∠QPB 的度数是()A.60°B.80°C.100°D.120°6.把抛物线y=3x2 向右平移1 个单位长度后,所得的函数解析式为()A.y=3x2﹣1B.y=3(x﹣1)2C.y=3x2+1D.y=3(x+1)27.如图,已知AC、BD 是菱形ABCD 的对角线,那么下列结论一定正确的是()A.△ABD 与△ABC 的周长相等B.△ABD 与△ABC 的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍8.第24 届冬奥会将于2022 年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高ft滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有5张形状、大小、质地均相同的卡片,正面分别印有高ft滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是()A. B. C. D.9.一个圆锥的底面直径是8cm,母线长为9cm,则圆锥的全面积为()A.36πcm2B.52πcm2C.72πcm2D.136πcm210.如图,3 个正方形在⊙O 直径的同侧,顶点B,C,G,H 都在⊙O 的直径上,正方形ABCD的顶点A 在⊙O 上,顶点D 在PC 上,正方形EFGH 的顶点E 在⊙O 上,顶点F 在QG 上,正方形PCGQ 的顶点P 也在⊙O 上,若BC=1,GH=2,则正方形PCGQ 的面积为()A.5B.6C.7D.10二、填空题(满分18 分,每小题3 分)11.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米,数字55000用科学记数法表示为.12.某射击小组有7 人,他们某次射击的数据如下:8,7,9,7,8,9,8.则这组数据的中位数是.13.n 边形的内角和为900°,则n=,从一顶点可作对角线条.14.体育馆的环形跑道长400 米,甲、乙分别以一定的速度练习长跑和骑自行车.如果同向而行80 秒乙追上甲一次;如果反向而行,他们每隔30 秒相遇一次;求甲、乙的速度分别是多少?如果设甲的速度是x 米/秒,乙的速度是y 米/秒,所列方程组是15.已知反比例函数为常数,k≠0)的图象经过点P(2,2),当1<x<2时,则y的取值范围是.16.如图,点C 是以AB 为直径的半圆上任意一点,AB=4,D、E 、的中点,AD、BE 交于点F,则∠AFE=度,△ABF 的外接圆半径是.三、解答题(共4 小题,满分39 分)17.(9 分)计算:(1)s in30°﹣cos45°+tan260°(2)2﹣2+﹣2sin60°+|﹣|18.(9分)先化简,再求值:÷(﹣a),其中a=2+,b=2﹣.19.(9 分)如图,AB=CD,DE⊥AC,BF⊥AC,点E,F 是垂足,AE=CF,求证:(1)△ABF≌△CDE;(2)A B∥CD.20.(12分)某社区组织“献爱心”捐款活动,并对部分捐款户数进行调查和分组统计,数据整理成如下统计图表(图中信息不完整).捐款户数分组统计表组别捐款额(x)元户数A1≤x<100 2B100≤x<200 10C200≤x <300 cD300≤x<400 dE x≥400e请结合以上信息解答下列问题:(1)本次调查的样本容量是;(2)d=,并补全图1;(3)图2 中,“B”所对应扇形的圆心角为度;(4)若该社区有500 户住户,根据以上信息估计全社区捐款不少于300 元的户数是.四、解答题(共3 小题,满分28 分)21.(9 分)某公司准备购进A,B 两种型号的3D 打印机.已知购买2 台A 型3D 打印机和3台B 型3D 打印机共需19 万元,购买3 台A 型30 打印机和2 台B 型3D 打印机共需21万元.(1)求A、B 两种型号的3D 打印机每台各多少万元?(2)报据市场需求,该公司筹集了不超过115 万元的资金准备一次性购进3D 打印机共30台,如果这30 台3D 打印机可以全部销售,销售后利润不少于35 万元,其中,A 型3D打印机每台售价6.5 万元,B 型3D 打印机每台售价 4 万元,那么有哪几种购进打印机的方案可供选择?(写出具体方案)22.(9 分)甲、乙两地相距300 千米,一辆货车和一辆轿车先后从甲地出发驶向乙地如图,如图,线段OA 表示货车离甲地距离y(千米)与时间x(小时)之间的函数图象;折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数图象;请根据图象解答下到问题:(1)货车离甲地距离y(干米)与时间x(小时)之间的函数式为;(2)当轿车与货车相遇时,求此时x 的值;(3)在两车行驶过程中,当轿车与货车相距20 千米时,求x 的值.23.(10 分)如图,⊙O 是△ABC 的外接圆,AB 为直径,∠BAC 的平分线交⊙O 于点D,过点D 作DE⊥AC 分别交AC 的延长线于点E,交AB 的延长线于点F.(1)求证:EF 是⊙O 的切线;(2)若AC=8,CE=4,求弧BD 的长.(结果保留π)五、解答题(共3 小题,满分35 分),24.(11 分)某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形 ABCD (AB <BC )的对角线的交点 O 旋转(①﹣②﹣③),图中的 M 、N 分别为直角三角形的直角边与矩形 ABCD 的边 CD 、BC 坐标的交点.该学习小组成员意外的发现图①(三角板一直角边与 OD 重合)中,BN 2=CD 2+CN 2,在图 ③中(三角板一边与 OC 重合),CN 2=BN 2+CD 2,请你对这名成员在图①和图③中发现的结论选择其一说明理由.25(. 12 分)已知,在 Rt △ABC 中,∠A =90°,点 D 在 BC 边上,点 E 在 AB 边上 ,过点 B 作 BF ⊥DE 交 DE 的延长线于点 F . (1)如图 1,当 AB =AC 时: ①∠EBF 的度数为 ;②求证:DE =2BF .(2)如图 2,当 AB =kAC 时,求 的值(用含 k 的式子表示).26.(12 分)定义:若直线(不与y 轴平行)与抛物线只有一个公共点,则称该直线为物线的切线,其公共点称为切点.已知点P 是直线l:y=﹣1 上一点,过点P 作抛物线x2 的切线.(1)若P 的横坐标为0,求切线的函数解析式.(2)求证:过直线l 上任意给定的一点P,都存在两条抛物线的切线.(3)设(2)中的两个切点分别为M,N.问:直线MN 是否恒过某一定点?若是,求该定点坐标;若不是,说明理由.参考答案一、选择题1.【答案】B2.【答案】B3.【答案】B4.【答案】B5.【答案】B6.【答案】B7.【答案】B8.【答案】B9.【答案】B10.【答案】B二、填空题11.【答案】5.5×10412.【答案】813.【答案】7;414.【答案】.15.【答案】2<y<416.【答案】45,2三、解答题17.【解答】(1)原式=﹣×+×()2=﹣+×3=1;(2)原式==2.18.【解答】当,时,=.19.【解答】证明:(1)∵AE=CF,∴AE+EF=CF+EF,即AF=CE.又∵BF⊥AC,DE⊥AC,∴∠AFB=∠CED=90°.在Rt△ABF 与Rt△CDE ,∴Rt△ABF≌Rt△CDE(HL);(2)∵Rt△ABF≌Rt△CDE,∴∠C=∠A,∴AB∥CD.20.【解答】(1)本次调查的样本容量为20÷40%=50,(2)d=50×28%=14,补全图形如下:(3)图2 中,“B”所对应扇形的圆心角为=72°,(4)估计全社区捐款不少于300 元的户数是500×(28%+8%)=180 户,四.解答题21.【解答】(1)设A型3D打印机每台x万元,B型3D打印机每天y万元,依题意,得:,解得:.答:A 型3D 打印机每台5 万元,B 型3D 打印机每天3 万元.(2)设购进m 台A 型3D 打印机,则购进(30﹣m)台B 型3D 打印机,依题意,得:,解得:10≤ .∵m 为整数,∴m=10,11,12,∴共三种进货方案:①购进10 台A 型3D 打印机,20 台B 型3D 打印机;②购进11 台A 型3D 打印机,19 台B 型3D 打印机;③购进12 台A 型3D 打印机,18 台B 型3D 打印机.22.【解答】(1)设货车离甲地距离y(干米)与时间x(小时)之间的函数式为y=k1x,根据题意得5k1=300,解得k1=60,∴y=60x,即货车离甲地距离y(干米)与时间x(小时)之间的函数式为y=60x;故答案为:y=60x;(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,,解得,∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5);解方程组,解得,∴当x=3.9 时,轿车与货车相遇;3)当x=2.5 时,y 货=150,两车相距=150﹣80=70>20,由题意60x﹣(110x﹣195)=20 或110x﹣195﹣60x=20,解得x=3.5 或4.3 小时.答:在两车行驶过程中,当轿车与货车相距20 千米时,x 的值为3.5 或4.3 小时.23.【解答】(1)证明:连接OD,如图1所示:∵OA=OD,∴∠OAD=∠ODA,∵AD 平分∠EAF,∴∠DAE=∠DAO,∴∠DAE=∠ADO,∴OD∥AE,∵AE⊥EF,∴OD⊥EF,∴EF 是⊙O 的切线;(2)作OG⊥AE 于点G,连接BD,如图2 所示:则AC=4,∠OGE=∠E=∠ODE=90°,∴四边形ODEG 是矩形,∴OA=OB=OD=CG+CE=4+4=8,∠DOG=90°,∴AB=2OA=16,∵AC=8,CE=4,∴AE=AC+CE=12,∵∠DAE=∠BAD,∠AED=∠ADB=90°,∴△ADE∽△ABD,∴=,即=,∴AD2=192,在Rt△ABD ==8,在Rt△ABD 中,∵AB=2BD,∴∠BAD=30°,∴∠BOD=60°,则弧BD 的长度为=.五、解答题24.【解答】选择图①证明:连接DN.∵四边形ABCD 是矩形,∴BO=DO,∠D CN=90°,∵ON⊥BD,∴NB=ND,∵∠DCN=90°,∴ND2=NC2+CD2,∴BN2=NC2+CD2.25.【解答】(1)①∵∠A=90°,AB=AC,∴∠ABC=∠ACB=45°,∵∠BDE=∠C=22.5°,∠F=90 °,∴∠DBF=67.5°,∴∠EBF=∠DBF﹣∠ABC=22.5°;②如图1,过点D 作DG∥AC,交BF 延长线于点G,交AB 于点H,则∠GDB=∠C,∠BHD=∠A=90°=∠GHB,∵=∠GDB=∠FDG,又∵DF=DF,∠DFB=∠DFG=90°,∴△BDF≌△GDF(ASA),∴BF=GF=BG,∵∠A=90°,AB=AC,∴∠ABC=∠C=∠GDB,∴HB=HD,∵∠BFD=∠EHD=90°,∠BEF=∠DEH,∴∠EBF=∠EDH,∴△GBH≌△EDH(ASA),∴BG=DE,∴BF=DE,即DE=2BF;(2)过点D 作DG∥CA,交BF 延长线于点G,交AB 于点H,同理可证△DFB≌△DFG(ASA),BF=GB,∠BHD=∠BHG=90°,∠EBF=∠EDH,∴△GBH∽△EDH,∴=,即=,又∵DG∥AC,∴△BHD∽△BAC,∴=,即==k,∴=.26.【解答】(1)点P(0,﹣1),设过点P的直线表达式为:y=kx﹣1,将直线表达式与抛物线表达式联立并整理得:x2﹣kx+1=0,△=k2﹣1=0,解得:k=±1,故切线的函数解析式为:y=x﹣1 或y=x+1;(2)设点P(m,﹣1),同理可得过点P的直线表达式为:y=kx﹣1﹣km,将直线表达式与抛物线表达式联立并整理得:x2﹣kx+1+km=0,△=k2﹣1﹣km=0,△′=m2+4>0,故存在两个k 值,故过直线l 上任意给定的一点P,都存在两条抛物线的切线;﹣(3)∵点 M 、点 N 为抛物线 y = x 2 上的点,∴设 M (2a ,a 2),N (2b ,b 2),设直线 PM 的解析式为 y =kx +n ,∵直线 PM 过点 M ,∴a 2=2ak +n ,∴n =a 2﹣2ak , ∴直线 PM 的解析式为 y =kx ﹣2ak +a 2,即 y =k (x ﹣2a )+a 2,联立 ,整理得 x 2﹣4kx +8ak ﹣a 2=0,∵直线 PM (不与 y 轴平行)与抛物线只有一个公共点, ∴△=16k 2﹣4(8ak ﹣a 2)=0,解得 k =a ,∴直线 PM 为 y =ax ﹣a 2,同理证得直线 PN 为:y =bx ﹣b 2,把 P (m ,﹣2)分别代入直线 PM 和直线 PN 的解析式得,解得 m = = ,∴a ﹣ =b ﹣ , ∴a ﹣b = ,∴ab =﹣2,设直线 MN 的解析式为 y =mx +k ,∵M (2a ,a 2),N (2b ,b 2),∴,解 得: ,∴直线 MN 的解析式为 (a +b )x +1,∴当 x =0 时,y =1,故直线 MN 恒过(0,1)点.。
南宁市九年级数学中考模拟试卷

南宁市九年级数学中考模拟试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020八下·郑州月考) 已知,则下列不等式成立的是()A . -B .C .D .2. (2分)已知点A(2,-3)关于x轴对称的点的坐标为点B(2m,m+n),则m-n的值为()A . -5B . -1C . 1D . 53. (2分)不透明袋子中有2个红球、3个绿球,这些球除颜色外其它无差别.从袋子中随机取出1个球,则()A . 能够事先确定取出球的颜色B . 取到红球的可能性更大C . 取到红球和取到绿球的可能性一样大D . 取到绿球的可能性更大4. (2分)(2019·武昌模拟) 如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于()A . 30°B . 35°C . 40°D . 50°5. (2分)关于二次函数y= (x+1)2的图象,下列说法正确的是()A . 开口向下B . 经过原点C . 对称轴右侧的部分是下降的D . 顶点坐标是(﹣1,0)6. (2分)(2019·武昌模拟) 一元二次方程x2-x+1=0的根的情况为()A . 有两个相等的实数根B . 没有实数根C . 有两个不相等的实数根D . 有两个不相等的实数根,且两实数根和为17. (2分)(2019·武昌模拟) 把抛物线y=2(x﹣3)2+k向下平移1个单位长度后经过点(2,3),则k的值是()A . 2B . 1C . 0D . ﹣18. (2分)Rt△ABC中,∠C=90°,斜边AB上的高为4.8cm,以点C为圆心,5cm为半径的圆与直线AB的位置关系是()A . 相交B . 相切C . 相离D . 无法确定9. (2分)(2019·武昌模拟) 抛物线y=x2+2x﹣3的最小值是()A . 3B . ﹣3C . 4D . ﹣410. (2分)(2019·武昌模拟) 如图,在平面直角坐标系中,已知正方形ABCO,A(0,3),点D为x轴上一动点,以AD为边在AD的右侧作等腰Rt△ADE,∠ADE=90°,连接OE,则OE的最小值为()A .B .C . 2D . 3二、填空题 (共6题;共6分)11. (1分)(2017·天水) 如图所示,在矩形ABCD中,∠DAC=65°,点E是CD上一点,BE交AC于点F,将△BCE沿BE折叠,点C恰好落在AB边上的点C′处,则∠AFC′=________.12. (1分) (2020八下·滨湖期中) 四张质地、大小、背面完全相同的卡片上,正面分别画有平行四边形、矩形、等腰三角形、菱形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为________.13. (1分) (2019九下·锡山月考) 若一人患了流感,经过两轮传染后共有121人感染了流感.按照这样的传染速度,若2人患了流感,第一轮传染后患流感的人数共有________人.14. (1分)(2019·武昌模拟) 一个正n边形的中心角等于18°,那么n=________.15. (1分)(2019·武昌模拟) 如图,AB为⊙O的直径,且AB=4,点C在半圆上,OC⊥AB,垂足为点O,P 为半圆上任意一点,过P点作PE⊥OC于点E,设△OPE的内心为M,连接OM、PM.当点P在半圆上从点B运动到点A 时,内心M所经过的路径长为________.16. (1分)(2019·武昌模拟) 如图,抛物线y=ax2﹣1(a>0)与直线y=kx+3交于MN两点,在y轴负半轴上存在一定点P,使得不论k取何值,直线PM与PN总是关于y轴对称,则点P的坐标是________三、解答题 (共8题;共80分)17. (5分)解方程(1)x2-6x-5=0; (2)2(x-1)2=3x-3.18. (10分)(2019·武昌模拟) 如图,BC是⊙O的直径,AB是⊙O的弦,半径OF∥AC交AB于点E.(1)求证:;(2)若AB=6 ,EF=3.求半径OB的长.19. (11分) (2019九上·长兴期末) 为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》,《大学》,《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛(1)小礼诵读《论语》的概率是________;(直接写出答案)(2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.20. (11分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.(1)填空:∠AHC________∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.21. (10分)(2019·武昌模拟) 如图,AB是⊙O的直径,BC交⊙O于点D,E是的中点,AE与BC交于点F,∠C=2∠EAB.(1)求证:AC是⊙O的切线;(2)已知CD=4,CA=6,①求CB的长;②求DF的长.22. (11分)(2019·武昌模拟) 某商家按市场价格10元/千克在该市收购了1800千克产品,经市场调查:产品的市场价格每天每千克将上涨0.5元,但仓库存放这批产品时每天需要支出各种费用合计240元,同时平均每天有6千克的产品损耗不能出售(产品在库中最多保存90天)(1)设存放x天后销售,则这批产品出售的数量为________千克,这批产品出售价为________元;(2)商家想获得利润22500元,需将这批产品存放多少天后出售?(3)商家将这批产品存放多少天后出售可获得最大利润?最大利润是多少?23. (11分)(2019·武昌模拟) 如图,在Rt△ABO中,∠BAO=90°,AO=AB,BO=8 ,点A的坐标(﹣8,0),点C在线段AO上以每秒2个单位长度的速度由A向O运动,运动时间为t秒,连接BC,过点A作AD⊥BC,垂足为点E,分别交BO于点F,交y轴于点 D.(1)用t表示点D的坐标________;(2)如图1,连接CF,当t=2时,求证:∠FC O=∠BCA;(3)如图2,当BC平分∠ABO时,求t的值.24. (11分)(2019·建华模拟) 抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BDC的面积最大时,求点P 的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共80分)17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、。
广西壮族自治区南宁市广西第三中学初中部大学区2020年数学中考三模试卷及参考答案

A . 5.1米 B . 6.3米 C . 7.1米 D . 9.2米 12. 如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠AC B=y,则( )
A . x–y2=3 B . 2x–y2=9 C . 3x–y2=15 D . 4x–y2=21
A . 三棱柱 B . 圆锥 C . 四棱柱 D . 圆柱 4. 2020年1月13日,中国汽车工业协会公布的数据显示:2019年,中国汽车累计生产约25 700000辆.数据25700000 用科学记数法表示为( ) A . 257×105 B . 25.7×106 C . 2.57×107 D . 0.257×108 5. 下列说法正确的是( )
A . 检测某批次灯泡的使用寿命,适宜用全面调查 B . 可能性是1%的事件在一次试验中一定不会发生 C . 数据3,5,4,1,﹣2
的中位数是4 D . “367中有2人同月同日初生”为必然事件
6. 选择计算(﹣4xy2+3x2y)(4xy2+3x2y)的最佳方法是( )
A . 运用多项式乘多项式法则 B . 运用平方差公式 C . 运用单项式乘多项式法则 D . 运用完全平方公式
最大是多少?
(3) 为响应政府号召,该超市决定在暑假期间每销售1千克这种水果就捐赠a元利润(a≤2.5)给希望工程.公司通过销售 记录发现,当销售单价不超过13元时,每天扣除捐赠后的日销售利润随销售单价x(元/千克)的增大而增大,求a的取值范围.
25. 如图,⊙O的直径AB=10,弦AC=6,∠ACB的平分线交⊙O于D , 过点D作DE∥AB交CA的延长线于点E , 连接 AD , BD .
(1) 求证:四边形ABCD是菱形. (2) 若AC=8,AB=5,求ED的长. 24. 小雨、小华、小星暑假到某超市参加社会实践活动,在活动中他们参加了某种水果的销售工作,已知该水果的进价 为8元/千克.他们通过市场调查发现:当销售单价为10元时,那么每天可售出300千克;销售单价每上涨1元,每天的销售量 就减少50千克. (1) 求该超市销售这种水果,每天的销售量y(千克)与销售单价x(元/千克)之间的函数关系式; (2) 一段时间后,发现这种水果每天的销售量均不低于250千克,则此时该超市销售这种水果每天获取的利润w(元)18. 如图,点,点或等于2的正数数),则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第Ⅱ卷
二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)
13. 3 8 ▲ . 14.分解因式: x2 4 ▲ .
第 12 题图
15.为了调查春节期间用微信发祝福红包情况,在本区域的 120 位用户中抽取了 10 位用户来统计 他们发红包的次数,结果如下表:
手机用户序号 发送红包条数
A.5.1 米
B.6.3 米
C.7.1 米
D.9.2 米
12.如图,在△ABC 中,AB=AC,BC=12,E 为 AC 边的中点,线段 BE
的垂直平分线交 BC 边于点 D.设 BD=x,tan∠ACB=y,则
A.x-y2=3 B.2x-y2=9
C.3x-y2=15 D.4x-y2=21
第 11 题图
第 17 题图
腰直角三角形,斜边 OA1 , A1 A2 ... An1 An ,都在 x 轴上,则
y1 y2 ... yn
▲.
九年级数学试卷 第 2页 (共 4 页)
第 18 题图
三、解答题(本大题共 8 小题,共 66 分.解答应写出文字说明、证明过程或演算步骤)
19.(本题满分 6 分) 9 3 0 2 sin 30 1 1 2 .
第 21 题图
22.(本题满分 8 分)在一个不透明的盒子里,装有四个分别标有数字 1,2,3,4 的小球,他们 的形状、大小、质地等完全相同.小兰先从盒子里随机取出一个小球,记下数字为 x,放回盒 子,摇匀后,再由小田随机取出一个小球,记下数字为 y
(1)用列表法或画树状图法表示出(x,y)的所有可能出现的结果; (2)求小兰、小田各取一次小球所确定的点(x,y)落在反比例函数 y 6 的图象上的频率;
[2020 中考备考]
南宁三中初中部大学区 2019—2020 学年度春季学期 九年级中考数学20 分钟)
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.请在答题卡上作答,在.本.试.卷.上.
作.答.无.效..
2.答题前,请.认.真.阅.读.答.题.卡.上.的.注.意.事.项..
20.(本题满分
6
分)先化简,再求值:
(1
1 a
)
a a2
1
,其中
a
2 1.
21.(本题满分 8 分)如图,BD 是菱形 ABCD 的对角线,∠CBD=75°, (1)请用尺规作图法,作 AB 的垂直平分线 EF,垂足为 E,
交 AD 于 F;(不要求写作法,保留作图痕迹) (2)在(1)条件下,连接 BF,求∠DBF 的度数.
A.4
B.2
C.1
D.-4
8.过三点 A(2,2),B(6,2),C(4,5)的圆的圆心坐标为
A.
4,17 6
B. (4,3)
C.
5,17 6
D.(5,3)
9.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次 日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为 378 里,第一天健步
3.不能使用计算器.考试结束时,将本试卷和答题卡一并交回.
第Ⅰ卷
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中只有一项是符 合要求的,请用 2B 铅笔把答题卡上对应题目的答案标号涂黑)
1.如图所示,点 P 到直线 l 的距离是
A.线段 PA 的长度
B.线段 PB 的长度
1 2 3 4 5 6 7 8 9 10 20 19 20 20 21 17 15 23 20 25
本次调查中这 120 位用户大约用微信发送 ▲ 个红包.
16.正比例函数 y m 3x , y 随 x 的增大而增大,那么 m 的取值范围是 ▲ .
17.如图,正方形 ABCD 中,AB=2,E 是 CD 中点,将正方形 ABCD
约 25 700 000 辆.数据 25 700 000 用科学记数法表示为
A.257×105
B.25.7×106
C.2.57×107
D.0.257×108 第 3 题图
5.下列说法正确的是 A.检测某批灯泡的使用寿命,适宜全面调查
B.可能性是 1%的事件在一次试验中一定不会发生 C.数据 3,5,4,1,-2 的中位数是 4
D.“367 人中有 2 人是同月同日出生”为必然事件 6.计算(-4xy2+3x2y)(4xy2+3x2y) 的最佳方法是
A.运用多项式乘多项式法则
B.运用单项式乘多项式法则
C.运用平方差公式
D.运用完全平方公式
7.已知关于 x 的一元二次方程 x2-4x+c=0 有两个相等的实数根,则 c 的值为
沿 AM 折叠,使点 B 的对应点 F 落在 AE 上,延长 MF 交 CD 于点
N,则 DN 的长为 ▲ .
18.如图,P1 (
x1 ,
y1 )、P2 (
x2 ,
y2
),.. Pn
(
xn
,
yn
)在函数
y
9
(
x
x
0
)
的图象上, OP1 A1 , P2 A1 A2 , P3 A2 A3 ... Pn An1 An ...都是等
行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则
此人第六天走的路程为
A.24 里
B.12 里
C.6 里
D.3 里
九年级数学试卷 第 1页 (共 4 页)
10.a≠0,函数 y a 与 y ax2 a 的同一直角坐标系中的大致图象可能是 x
A.
B.
C.
D.
C.线段 PC 的长度
D.线段 PD 的长度
2.用代数式表示:a 的 2 倍与 3 的和.下列表示正确的是
第 1 题图
A.2a-3
B.2a+3
C.2(a-3)
D.2(a+3)
3.如图是某个几何体的展开图,该几何体是
A.三棱柱
B.圆锥
C.四棱柱
D.圆柱
4.2020 年 1 月 13 日,中国汽车工业协会公布的数据显示:2019 年,中国汽车累计生产
x (3)求小兰、小田各取一次小球所确定的数 x,y 满足 y 6 的概率.
11.如图,小王在江边某瞭望台 D 处,测得江面上的渔船 A 的俯角为 40°,
若 DE=3 米,CE=2 米,CE 平行于江面 AB,迎水坡 BC 的坡度 i=1:
0.75,坡长 BC=10 米,则此时 AB 的长约为
(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)