压敏电阻的选用原则

合集下载

压敏电阻型号及选用方法

压敏电阻型号及选用方法

2021-01-12压敏电阻的型号及选用方法根据标准SJ1152-82《敏感元件型号命名方法》的规定,敏感电阻器的产品型号由下列四部分组成:第一部分:主称(用字母表示);第二部分:类别(用字母表示);第三部分:用途或特征(用字母或数字表示);第四部分:序号(用数字表示)。

表1-7 敏感电阻器型号中用途或特征部分的数字所表示的意义第一部分用字母“M” 表示主称为敏感电阻器。

第二部分用字母“Y” 表示敏感电阻器为压敏电阻器。

第三部分用字母表示压敏电阻器的用途的特征。

第四部分用数字表示序号,有的在序号的后面还标有标称电压、通流容量或电阻体直径、电压误差、标称电压等。

例如:MYL1-1(防雷用压敏电阻器)MY31-270/3(270V/3kA普通压敏电阻器)M——敏感电阻器M——敏感电阻器Y——压敏电阻器Y——压敏电阻器L——防雷用31——序号1-1——序号270——标称电压为270V3——通流容量为3kA压敏电阻是一种以氧化锌为主要成份的金属氧化物半导体非线性电阻元件;电阻对电压较敏感,当电压达到一定数值时,电阻迅速导通。

由于压敏电阻具有良好的非线特性、通流量大、残压水平低、动作快和无续流等特点。

被广泛应用于电子设备防雷。

主要参数:1、残压:压敏电阻在通过规定波形的大电流时其两端出现的最高峰值电压。

2、通流容量:按规定时间间隔与次数在压敏电阻上施加规定波形电流后,压敏电阻参考电压的变化率仍在规定范围内所能通过的最大电流幅值。

3、泄漏电流:在参考电压的作用下,压敏电阻中流过的电流。

4、额定工作电压:允许长期连续施加在压敏电阻两端的工频电压的有效值。

而压敏电阻在吸收暂态过电压压敏电阻的检测。

用指针式万用表的R×1k挡测量压敏电阻两引脚之间的正、反向绝缘电阻,均为无穷大,否则,说明漏电流大。

若所测电阻很小,说明压敏电阻已损坏,不能使用。

压敏电阻的先择与使用2007-03-12 10:42:18压敏电阻的测量:压敏电阻一般并联在电路中使用,当电阻两端的电压发生急剧变化时,电阻短路将电流保险丝熔断,起到保护作用。

压敏电阻选用的基本知识和选型资料

压敏电阻选用的基本知识和选型资料
导线截面积
≥ 0.3 mm2
≥ 0.5 mm2
≥ 0.8 mm2
≥ 2 mm2
例如:若压敏电阻MY两端各有3 cm长的接线,它的电感量L大体为18nH,若有10 KA的8/20冲击电流流入压敏电阻,把电流的升速看作10KA / 8Μs,则引线电感上的附加电压UL1、UL2大体为
UL1= UL2=L(di/dt)=18×10-9( 10×103 / 8×10-6 )=22.5 V
这种串联组合具有电容量小,工作频率高;漏电流极小安全性好;以及不存在压敏电阻MY在系统电压下老化的问题,因而可靠性高等优点,但同时也有气体放电器件相应慢所引起的"让通电压"问题。
压敏电阻也可与气体放电管并联,以降低气体放电管的冲击点火电压。
压敏电阻选用的基本知识
一、压敏电阻的连接线问题
将压敏电阻接入电路的连接线要足够粗,推荐的连接线的尺寸注:接地线为5.5 mm2以上连接线要尽可能短,且走直线,因为冲击电流会在连接线电感上产生附加电,使被保护设备两端的限制电压升高。
压敏电阻通流量
≤600A
(600~2500)A
(2500~4000)A
(4000~20K)A
由于高非线性,压敏电阻片的并联需要特别小心谨慎,只有经过仔细配对,参数相同的电阻片相并联,才能保证电流在各电阻片之间均匀分配。针对这种需求,本公司专门为用户提供配对的电阻片。
此外,纵向连结的几个压敏电阻器,使用经过配对的参数一致的压敏电阻器后,当冲击侵入时,出现在横向的电压差可以很小。在这种情况下,配对也是有意义的。
三、压敏电阻与气体放电器件的串联和并联
压敏电阻可以与气体放电管、空气隙、微放电间隙等气体放电器件相串联(图10.5a),这个串联组合的正常工作要满足两个基本条件:①、系统电压上限值应低于气体放电器件G的直流击穿电压;②、G点火后在系统电压上限值下,压敏电阻MY中的电流应小于G的电弧维持电流,以保证G的熄弧。

压敏电阻选用标准

压敏电阻选用标准

压敏电阻选用标准压敏电阻是一种用于吸收瞬态高电压的电子元件,广泛应用于电路保护和信号处理领域。

在选择压敏电阻时,需要考虑以下几个标准:1.最大工作电压最大工作电压是压敏电阻能够承受的最大电压值。

在电路中,压敏电阻需要能够承受正常工作时的电压,同时也要能够承受瞬态高电压的冲击。

因此,选择压敏电阻时,其最大工作电压应不小于电路的正常工作电压和瞬态电压的峰值。

2.压敏电阻电容压敏电阻电容是指压敏电阻在电路中的等效电容。

在选择压敏电阻时,需要考虑其对电路的影响。

如果压敏电阻的电容过大,会对电路的信号产生干扰;如果电容过小,则无法有效地吸收电路中的瞬态高电压。

因此,需要根据电路的实际需求选择合适的压敏电阻电容。

3.耐ESD能力ESD(ElectrostaticDischarge)是指静电放电。

在选择压敏电阻时,需要考虑其耐ESD能力。

如果压敏电阻的耐ESD能力不足,可能会导致电路中的元件受到损坏或失效。

因此,需要根据实际需求选择具有足够耐ESD能力的压敏电阻。

4.最大峰值电流和能量耐量压敏电阻的最大峰值电流和能量耐量是指在承受瞬态高电压时能够吸收的最大电流和能量值。

在选择压敏电阻时,需要考虑其最大峰值电流和能量耐量是否能够满足电路的需求。

如果压敏电阻的最大峰值电流和能量耐量不足,可能会导致电路中的元件受到损坏或失效。

5.尺寸在选择压敏电阻时,需要考虑其尺寸是否适合放置在电路中。

不同的应用场景需要不同尺寸的压敏电阻。

因此,需要根据实际需求选择合适的尺寸。

综上所述,选择合适的压敏电阻需要考虑最大工作电压、压敏电阻电容、耐ESD能力、最大峰值电流和能量耐量以及尺寸等因素。

根据实际需求进行合理选择,可以有效提高电路的稳定性和可靠性。

压敏电阻的选用要点及原则

压敏电阻的选用要点及原则

压敏电阻的选用要点及原则压敏电阻是一种特殊的电阻器件,具有压力敏感的特性,能够根据外力的大小产生不同的电阻变化。

在实际应用中,正确选择和使用压敏电阻非常重要。

下面,我将介绍压敏电阻的选用要点及原则。

1.耐压能力:选择合适的压敏电阻需要根据实际应用场景的最大工作电压确定,一般要求压敏电阻的耐压能力要大于实际工作电压。

如果应用场景存在过电压现象,还需要考虑压敏电阻的耐受过电压能力。

2.响应时间:压敏电阻的响应时间是指它从受到外力到电阻变化的时间,响应时间越短越好。

因此,在应用中需要选择响应时间较短的压敏电阻,以保证实时性和准确性。

3.电阻值范围:压敏电阻的电阻值范围是指电阻在受到压力作用下能够变化的范围。

在选用时需要根据具体应用要求选择合适的电阻值范围。

一般来说,电阻值范围越大,应用范围越广。

4.精度:压敏电阻的精度是指它的电阻值与实际值之间的偏差。

不同应用场景对精度的要求不同,一般来说,要尽量选择精度较高的压敏电阻,以保证测量和控制的准确性。

5.稳定性:压敏电阻的稳定性是指在长时间使用过程中,其电阻值的稳定性程度。

稳定性好的压敏电阻在长时间使用后,电阻值的变化非常小。

因此,在选用压敏电阻时,需要考虑其稳定性,尽量选择稳定性好的产品。

6.温度特性:压敏电阻的温度特性是指在不同温度下其电阻值的变化。

不同种类的压敏电阻具有不同的温度特性。

在选用时,需要根据具体应用环境的温度要求选择合适的压敏电阻,以保证在不同温度下有稳定的电阻值。

7.环境要求:在特殊的环境条件下,如湿度、腐蚀性气体等,需要选择能够适应这些环境的特殊压敏电阻,以保证正常工作。

8.可靠性:压敏电阻的可靠性是指它在使用寿命内的可靠程度。

选择压敏电阻时,需要选择具有较高可靠性的产品,以保证其在长时间使用中不易损坏。

总的来说,正确选择和使用压敏电阻需要考虑其耐压能力、响应时间、电阻值范围、精度、稳定性、温度特性、环境要求和可靠性等多个因素。

根据具体应用需求,综合考虑这些要素,并选择符合要求的压敏电阻,才能保证系统的稳定性和可靠性。

压敏电阻选择方法及计算

压敏电阻选择方法及计算

压敏电阻选择方法及计算压敏电阻是一种特殊的电阻器件,其电阻值随外界施加的压力变化而变化。

它广泛应用于电子仪器、工业自动化、医疗器械等领域。

在选择压敏电阻的时候,需要考虑以下几个因素:电阻值范围、材料种类、尺寸和灵敏度。

1.电阻值范围:压敏电阻的电阻值一般在几百欧姆到几十兆欧姆之间,根据具体的应用需求确定所需要的电阻值范围。

2.材料种类:常见的压敏电阻材料有氧化锌压敏电阻、硅酸铅压敏电阻等。

不同的材料具有不同的特性和适用范围,需要根据具体应用选择适合的材料种类。

3.尺寸:压敏电阻的尺寸大小会直接影响到其在电路中的应用。

需要根据实际情况选择合适的尺寸,以满足空间需求和电路特性要求。

4.灵敏度:压敏电阻的灵敏度是指其电阻值对外界压力变化的敏感程度。

一般来说,灵敏度越高,对压力变化的响应越灵敏。

根据实际需要,选择适合的灵敏度。

压敏电阻的计算方法可以根据具体的应用需求进行。

以下是一些常见的计算方法:1.电阻分压法:当需要测量或检测一些物体的压力时,可以将压敏电阻作为一个分压电阻,利用电压分压原理进行计算。

根据电压值和电阻分压比例,可以计算出物体施加的压力。

2.桥式电路法:可以使用压敏电阻组成桥式电路,利用电桥平衡原理来测量物体压力。

根据电桥的平衡条件,可以得到物体施加的压力。

3.灵敏度计算法:根据压敏电阻的灵敏度计算压力变化。

灵敏度可以通过压敏电阻的电阻值变化与施加的压力变化之间的关系来得到。

在进行压敏电阻的选择和计算时,需要根据具体的应用要求和电路设计进行考虑。

选择合适的压敏电阻,并根据实际情况进行相应的计算,以满足应用需求。

压敏电阻选用的基本知识

压敏电阻选用的基本知识

V1mA=1.5Vp=2.2VAC,式中,Vp 为电路额定电压的峰值。VAC 为额定交流
电压的有效值。ZnO 压敏电阻的电压值选择是至关重要的,它关系到保护效
果与使用寿命。如一台用电器的额定电源电压为 220V,则压敏电阻电压值
V1mA=1.5Vp=1.5 乘以 1.414 乘以 220V=476V,V1mA=2.2VAC=2.2 乘以
一点。压敏电阻的选用,一般选择标称压敏电压 V1mA 和通流容量两个参
数。
Fp
_WtTGma4
1、所谓压敏电压,即击穿电压或阈值电压。指在规定电流下的电压值,大
多数情况下用 1mA 直流电流通入压敏电阻器时测得的电压值,其产品的压敏
电压范围可以从 10-9000V 不等。可根据具体需要正确选用。一般
发速度大大加快,目前已取得的成果有: cGg$Eqh&
(1)
氧化锌压敏陶瓷的电压梯度已从最初的 150V/mm 扩散到(20~
250)V/mm 几十个系列,从集成电路到高压、超高压输电系统都可以使用;
04,=TLC5 r
(2) 开发出大尺寸元件,直径达 120mm,2ms 方波,冲击电流达到 1200A,
(1) 以解释宏观电性为目的的导电模型的微观结构的研究(70~80 年代);
qkq-ByATh
(2)
以材料与产品开发为目的的配方机理和烧结工艺的研究(70~80 年
代); .{E=; *
(3)
氧化锌压敏陶瓷材料非线性网络拓扑模型的研究(80~90 年代);
YQFIHq5)*
(4) 氧化锌压敏陶瓷复合粉体的制备研究(80~90 年代); /(&{j2`
220V=484V,因此压敏电阻的击穿电压可选在 470-480V 之间。 hDnOs_

压敏电阻规格参数

压敏电阻规格参数

压敏电阻规格参数摘要:一、压敏电阻简介二、压敏电阻的规格参数1.标称电压2.最大工作电压3.最小击穿电压4.电容量5.漏电流6.最大工作温度7.外形尺寸与引线形式三、压敏电阻的应用领域四、选择合适的压敏电阻的注意事项正文:压敏电阻是一种电子元件,具有对电压敏感的特性。

当电压达到一定值时,压敏电阻的电阻值会发生急剧变化,从而起到保护电路的作用。

压敏电阻广泛应用于各种电子产品和电气设备中,以保护电路免受过电压的损害。

在选择压敏电阻时,需要关注其规格参数,以确保其性能满足应用需求。

一、压敏电阻简介压敏电阻,又称电压敏感电阻,是一种非线性电阻,其电阻值随电压的变化而变化。

压敏电阻具有很高的抗冲击能力,能承受瞬间过电压,保护电路免受损坏。

二、压敏电阻的规格参数1.标称电压:压敏电阻所标称的电压值,用于表示其额定工作电压。

选择时应根据实际应用需求选取合适标称电压的压敏电阻。

2.最大工作电压:压敏电阻能承受的最大电压值。

在实际应用中,应确保所选压敏电阻的最大工作电压大于实际工作电压,以确保其正常工作。

3.最小击穿电压:压敏电阻开始导通的电压值。

选择时应确保最小击穿电压低于实际应用中的最大电压,以保证在过电压情况下压敏电阻能正常工作。

4.电容量:压敏电阻的电容量,影响其对高频信号的响应。

在需要考虑信号传输性能的应用中,应选择电容量较小的压敏电阻。

5.漏电流:压敏电阻在额定电压下的漏电流。

漏电流越小,说明压敏电阻对电路的影响越小。

在低电压、高精度的应用场景中,应选择漏电流较小的压敏电阻。

6.最大工作温度:压敏电阻能承受的最大工作温度。

选择时应根据实际应用场景中的环境温度选取合适最大工作温度的压敏电阻,以确保其正常工作。

7.外形尺寸与引线形式:压敏电阻的外形尺寸和引线形式会影响其安装方式和适应性。

在选择压敏电阻时,应根据实际应用场景和安装空间选择合适尺寸和引线形式的压敏电阻。

三、压敏电阻的应用领域压敏电阻广泛应用于通信、家电、工业控制、医疗设备等领域,主要起到过电压保护、限幅、滤波等作用。

压敏电阻型号及选用方法

压敏电阻型号及选用方法

压敏电阻型号及选用方法压敏电阻是一种用于电子电路中的电阻器件。

它能够根据外部的压力或电压变化而改变电阻值,因此常常被用于传感器、开关、稳压电路等应用中。

压敏电阻的型号选择需要考虑以下几个方面:1.工作电压范围:不同型号的压敏电阻有不同的工作电压范围。

选用时需要根据实际需求确定工作电压范围,并选择能够满足需求的型号。

2.额定电阻值:压敏电阻的额定电阻值是指在额定工作条件下的电阻值。

根据实际需求确定所需要的额定电阻值,并选择相应的型号。

3.断电电流:压敏电阻在断电状态下会有一个较小的电流通过,这个电流被称为断电电流。

选用时需要考虑断电电流对电路性能的影响,并选择适当的型号。

4.响应时间:压敏电阻的响应时间是指它从受到压力或电压变化到改变电阻值所需要的时间。

选用时需要根据实际需求确定所需要的响应时间,并选择相应的型号。

5.温度特性:压敏电阻的电阻值会随温度的变化而变化,这个变化称为温度特性。

选用时需要考虑温度特性对电路性能的影响,并选择相应的型号。

在选用压敏电阻时,还需要考虑其使用环境和寿命要求。

例如,如果在潮湿的环境中使用,需要选择具有防潮性能的型号;如果需要长时间使用,需要选择具有较长寿命的型号。

以下是几种常见的压敏电阻型号及其特点:1. Varistor(MOV):Varistor是最常见的一种压敏电阻类型,它的电阻值与电压成正比,能够在过电压保护中起到很好的作用。

它的工作电压范围广泛,通常从几伏到几千伏不等。

2.NTC热敏电阻:NTC热敏电阻的电阻值随温度的升高而降低。

它在温度测量和温度补偿应用中广泛使用。

3.PTC热敏电阻:PTC热敏电阻的电阻值随温度的升高而增大。

它在过流保护和温度控制应用中常被使用。

4. Flexiforce压敏电阻:Flexiforce压敏电阻是一种特殊的压敏电阻,它能够测量物体施加的力。

它通常用于力传感器中。

综上所述,选用适合的压敏电阻型号需要考虑工作电压范围、额定电阻值、断电电流、响应时间、温度特性等因素,并根据使用环境和寿命要求进行选择。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压敏电阻的选用原则
压敏电阻的选用可用16个字来概括:瞻前顾后,符合标准,折衷考虑,试验为准。

(1)瞻前顾后:
前面已经提及,压敏电阻是一个保护系统的中间环节,它的上游是冲击源和系统电压源,它的下游是保护对象,所以压敏电阻必须同时满足上下游两个方面对它的要求。

“瞻前”就是要确定:
a.系统电压正常波动范围的上限值,故障条件下最高暂态电压及其持续时间。

b.冲击源的冲击电压峰值和源阻抗(或冲击电源),冲击波的时间宽度,冲击出现的频度。

“顾后”就是要确定:
a.被保护对象的耐压水平。

b.被保护对象允许的压敏电阻的固有电容和阻性漏电流。

“瞻前顾后”的基本要求是:
①在预期的冲击源的最大冲击电压(电流)下,压敏电阻的限制电压,应低于被保护对象的冲击耐压值。

②在系统电压正常波动范围的上限值,和故障时,以及最高工作环境温度条件下,压敏电阻的预期工作寿命时间,应大于设计要求值。

③压敏电阻的通流能量,额定能量,额定功耗,应大于冲击源预定的最大冲击电流,最大冲击能量,和最大平均功耗。

在规定条件下,压敏电阻的冲击寿命次数,应大于寿命期内冲击源的冲击次数。

④在系统电压和冲击源发生超过预期值的异常情况时,压敏电阻不会起火,不会发生危及邻近元器件的爆裂,且没有导致电机的危险。

⑤压敏电阻的电容量和非线性电流对被保护对象或系统的影响,应在允许的范围内。

(2)符合标准:
使用压敏电阻的电路,装置或设备(下面简称“终端产品”)是各式各样的,这些终端产品的技术规范中,大多有防雷,防过电压保护的要求,压敏电阻器可根具这些技术标准的要求来选用。

下面列举几个这样的技术标准:
美国安全标准UL1449。

这个标准,把压敏电阻分为两种应用类别:“软线接入/直接扦入式”(CC/DPI)和“固定连接式”(PC)。

所有通过一根电源软线接入交流电源的压敏电阻称为“CC”方式。

安装在扦头上,通过扦头直接接入点源的压敏电阻,称为“DPI”方式。

固定安装配电板或墙内扦座内的压敏电阻,称为“PC”方式。

UL1449规定用1.2/50-80/20组合波来测试压敏电阻的通流量,试验时的短路电流对CC/DPI 方式为3kA,对PC方式为10kA,因此前者只能选用直径不小于10mm,后者只能选用直径不小于20mm的压敏电阻器。

美国安全标准UL1414,加拿大安全标准CAN/CSA-60065-00
这些标准规定了跨接在电源线上的压敏电阻器的试验要求,这里列出其中两个项目:
a.放电试验,即由充电到5000V的电容量为0.5μf的电容量对压敏电阻放电4次,相邻两次放电的时间间隔为5S,这就是说压敏电阻应能承受6.25J的能量。

b.热应力试验,试验电压为系统额定电压的2倍。

这样220V 50HZ交流系统中的压敏电阻器,最好用UN≥680V的规格。

低压交流电源用电涌保护器中的压敏电阻器应符合IEC61643-1标准的要求。

信号系统用电涌保护器的压敏电阻器应符合IEC61643-21标准的要求。

(3)折衷考虑
在压敏电阻应用中,有些要求是互相矛盾的,因此要折衷考虑,例如限制电压和电压寿命对压敏电压的要求有时是相互矛盾的,保护的可靠度与保护成本有时是矛盾的。

与跨接在交流电源上的压敏电阻器相关联的各个电压,应满足如图10.1所示的关系,图中的数字只是举一个例子而已,这里应注意两个比例关系:
压敏电阻在一定电流下的限压比Rp大体上是个定值,从Up=Rp.UN可知,要使限制电压尽量低,就应当选用尽可能低的压敏电压UN。

Rap值越小,压敏电阻在持续工作电压下的寿命时间就越长,因此从电压寿命考虑应当选用尽可能高的压敏电压UN。

可见上述两项要求是相互矛盾的,应根据具体情况折衷处理。

统计数字表明,在某一具体地点,雷电冲击出现的概率随着冲击强度的增高而减小,表10.1的数据引自一份研究报告,它表明了大于表中电流值的雷电流在五年内出现的次数。

表10.1 某一地点雷电流的可能出现次数
大于表列值的雷电流(A)2000100020010050105
五年内可能出现的次数1105010020010002000
显然,在这个例子中,如果为防护“五年一遇”的雷电流所花的费用,比一次雷击所造成的损失更高,那这样的设计是不可取的。

就是说保护的可靠度与保护成本有时是矛盾的,应根据技术经济最合理的原则,确定设备允许的因保护失败而出现的故障率,在这个前提下来确定要防护的电冲击的强度。

(4)试验为准
在一项保护设计中选定了压敏电阻器以后,这种选择是否正确,还需在现场使用条件下,或尽可能接近真实情况的模拟环境条件下进行试验验证,以便发现设计过程中没有考虑到的因素,纠正设计中的差错,只有经试验验证,证明选用正确,切实可行后才能最后肯定。

本文章出自深圳市鑫森众能科技有限公司,转载请注明出处,更多下载请到:/down.php。

相关文档
最新文档