数学必修平面向量综合练习题

合集下载

(word完整版)高中数学必修4平面向量综合练习题

(word完整版)高中数学必修4平面向量综合练习题

数学必修 4 平面向量综合练习题一、选择题【共 12 道小题】1、以下说法中正确的选项是 ()A. 两个单位向量的数量积为1B. 假设 a·b=a·c且 a≠0, 那么 b=cC.D. 假设 b⊥c, 那么(a+c) ·b=a·b参考答案与解析 : 解析: A 中两向量的夹角不确定 ;B 中假设 a⊥b,a ⊥c,b与 c 反方向那么不成立 ;C 中应为;D 中 b⊥c b·c=0, 所以 (a+c) ·b=a·b+c·b=a·b.答案: D主要考察知识点 : 向量、向量的运算2、设 e 是单位向量 ,=2e,=-2e,||=2, 那么四边形 ABCD是()A. 梯形B. 菱形C. 矩形D. 正方形参考答案与解析 : 解析:, 所以 ||=||,且 AB∥CD,所以四边形ABCD是平行四边形 .又因为 ||=||=2,所以四边形 ABCD是菱形 .答案: B主要考察知识点 : 向量、向量的运算3、 |a|=|b|=1,a 与 b 的夹角为90°, 且 c=2a+3b ,d=ka-4b, 假设 c⊥d, 那么实数 k 的值为 ()参考答案与解析 : 解析:∵ c⊥d, ∴c·d=(2a+3b) ·(ka-4b)=0, 即 2k- 12=0, ∴k=6.答案: A主要考察知识点 : 向量、向量的运算4、设 0≤θ< 2π, 两个向量=(cos θ, sin θ),=(2+sin θ, 2- cosθ) ,那么向量长度的最大值是 ()A. B. C.D.参考答案与解析 : 解析:=(2+sin θ - cosθ,2 - cosθ - sin θ),所以 ||=≤=.答案: C主要考察知识点 : 向量与向量运算的坐标表示5、设向量 a=(1,-3) , b=(-2,4), c=(-1,-2),假设表示向量4a、 4b-2c 、 2(a-c)、d 的有向线段首尾相接能构成四边形,那么向量 d 为 ()A.(2,6)B.(-2,6)C.(2,-6)D.(-2,-6)参考答案与解析: 解析:依题意,4a+4b-2c+2(a-c)+d=0,答案: D主要考察知识点: 向量与向量运算的坐标表示6、向量a=(3 , 4) , b=(-3 ,1) , a 与 b 的夹角为所以θ, 那么d=-6a+4b-4c=(-2 tan θ等于 (, -6).)A.参考答案与解析: 解析:由得a·b=3×(- 3)+4 ×1= -5 , |a|=5 , |b|=,所以 cosθ=.由于θ∈[ 0,π] ,所以 sin θ=.所以 tan θ==-3.答案: D主要考察知识点: 向量与向量运算的坐标表示7、向量 a 与b 不共线,=a+kb,=la+b(k、l ∈R),且与共线 , 那么k、l 应满足() A.k+l=0 B.k-l=0 C.kl+1=0D.kl-1=0参考答案与解析:解析:因为与共线,所以设=λ( λ∈ R) ,即la+b= λ(a+kb)= λa+λkb, 所以(l- λ)a+(1 - λk)b=0.因为 a 与 b 不共线 , 所以 l- λ=0 且 1- λk=0, 消去λ得 1-lk=0,即kl-1=0.答案: D主要考察知识点: 向量、向量的运算8、平面内三点A(-1,0),B(5,6),P(3,4),且AP=λPB,那么λ 的值为()C. D.参考答案与解析: 解析:因为=λ, 所以 (4 ,4)= λ(2 ,2).所以λ=.答案: C主要考察知识点: 向量与向量运算的坐标表示9、设平面向量a1,a2,a3 的和 a1+a2+a3=0,如果平面向量时针旋转30°后与bi 同向,其中i=1 , 2, 3,那么 ()b1,b2,b3满足 |bi|=2|ai|,且ai顺A.-b1+b2+b3=0 B.b1-b2+b3=0C.b1+b2-b3=0D.b1+b2+b3=0参考答案与解析: 解析:根据题意, 由向量的物理意义, 共点的向量模伸长为原来的 2 倍, 三个向量都顺时针旋转30°后合力为原来的 2 倍 , 原来的合力为零, 所以由 a1+a2+a3=0, 可得 b1+b2+b3=0.答案: D主要考察知识点: 向量、向量的运算10、设过点P(x , y) 的直线分别与x 轴的正半轴和y 轴的正半轴交于A、 B两点,点Q与点 P 关于y 轴对称,O为坐标原点,假设, 且·=1, 那么P 点的轨迹方程是()A.3x2+y2=1(x > 0,y >0)y2=1(x > 0,y > 0)C. x2-3y2=1(x > 0,y >0)参考答案与解析 : 解析:设P(x,y),那么Q(-x,y).D.设x2+3y2=1(x >0,yA(xA),xA,B(0,yByB0,> 0)=(x,y-yB)=(xAx,-y).∵=2PA,∴x=2(xA,x),y -yB=2y,xA=x,yB=3y(x >0,y > 0).又∵·=1,(- x,y) ·(-xA,yB)=1,∴(- x,y) ·(x,3y)=1,即x2+3y2=1(x > 0,y >0).答案: D主要考察知识点: 向量、向量的运算11、△ ABC 中,点 D 在 BC边上,且,假设, 那么 r+s 的值是 ()A. C.D .-3参考答案与解析: 解析:△ ABC 中,== ()=-,故r+s=0.答案: B主要考察知识点: 向量、向量的运算12、定义 a※b=|a||b|sinθ,θ 是向量 a 和b 的夹角, |a|、|b|分别为a、b 的模,点A(-3,2)、B(2,3),O是坐标原点,那么※等于 ()参考答案与解析 : 解析:由题意可知=(-3,2),=(2,3),计算得·=- 3×2+2×3=0,另一方面·=||||cos θ,∴c osθ=0,又θ∈ (0,π) ,从而sin θ=1,∴※=||||sinθ=13.答案: D主要考察知识点: 向量与向量运算的坐标表示二、填空题【共 4 道小题】1、 a+b+c=0, 且 |a|=3,|b|=5,|c|=7,那么向量a 与参考答案与解析: 解析:由得a+b=-c, 两边平方得b 的夹角是 ____________.a2+2a·b+b2=c2,所以2a·b=72 -32-52=15.设a 与b 的夹角为θ,那么cosθ===,所以θ=60°.答案: 60°主要考察知识点: 向量、向量的运算2、假设=2e1+e2,=e1-3e2,=5e1+λe2, 且 B、 C、 D 三点共线 , 那么实数λ=___________.参考答案与解析: 解析:由可得=(e1-3e2)-(2e1+e2)=-e1-4e2,=(5e1+λe2) -(e1-3e2)=4e1+(λ+3)e2.由于 B、 C、 D 三点共线 , 所以存在实数m使得,即-e1-4e2=m [4e1+(λ+3)e2] . 所以 -1=4m 且 - 4=m(λ+3), 消去 m得λ=13.答案: 13主要考察知识点: 向量、向量的运算3、 e1、 e2 是夹角为60°的两个单位向量, 那么 a=2e1+e2 和 b=2e2-3e1 的夹角是 __________.参考答案与解析: 解析:运用夹角公式cosθ=,代入数据即可得到结果.答案: 120°。

高中数学必修4平面向量测试试卷典型例题(含详细答案)

高中数学必修4平面向量测试试卷典型例题(含详细答案)

高中数学平面向量组卷一.选择题(共18小题)1.已知向量与的夹角为θ,定义×为与的“向量积”,且×是一个向量,它的长度|×|=||||sinθ,若=(2,0),﹣=(1,﹣),则|×(+)|=()A.4B.C.6D.22.已知,为单位向量,其夹角为60°,则(2﹣)•=()A.﹣1 B.0C.1D.23.已知向量=(1,),=(3,m),若向量,的夹角为,则实数m=()A.2B.C.0D.﹣4.向量,,且∥,则=()A.B.C.D.5.如图,在△ABC中,BD=2DC.若,,则=()A.B.C.D.6.若向量=(2cosα,﹣1),=(,tanα),且∥,则sinα=()A.B.C.D.7.已知点A(3,0),B(0,3),C(cosα,sinα),O(0,0),若,则的夹角为()A.B.C.D.8.设向量=,=不共线,且|+|=1,|﹣|=3,则△OAB的形状是()A.等边三角形B.直角三角形C.锐角三角形D.钝角三角形9.已知点G是△ABC的重心,若A=,•=3,则||的最小值为()A.B.C.D.210.如图,各棱长都为2的四面体ABCD中,=,=2,则向量•=()A.﹣B.C.﹣D.11.已知函数f(x)=sin(2πx+φ)的部分图象如图所示,点B,C是该图象与x轴的交点,过点C的直线与该图象交于D,E两点,则()•的值为()A.B.C.1D.212.已知P为三角形ABC内部任一点(不包括边界),且满足(﹣)•(+﹣2)=0,则△ABC的形状一定为()A.等边三角形B.直角三角形C.钝三角形D.等腰三角形13.如图所示,设P为△ABC所在平面内的一点,并且=+,则△ABP与△ABC的面积之比等于()A.B.C.D.14.在△ABC中,|AB|=3,|AC|=2,=,则直线AD通过△ABC的()A.垂心B.外心C.重心D.内心15.在△ABC中,∠BAC=60°,AB=2,AC=1,E,F为边BC的三等分点,则=()A.B.C.D.16.已知空间向量满足,且的夹角为,O为空间直角坐标系的原点,点A、B满足,,则△OAB的面积为()A.B.C.D.17.已知点P为△ABC内一点,且++3=,则△APB,△APC,△BPC的面积之比等于()A.9:4:1 B.1:4:9 C.3:2:1 D.1:2:318.在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则=()A.2B.4C.5D.10二.解答题(共6小题)19.如图示,在△ABC中,若A,B两点坐标分别为(2,0),(﹣3,4)点C在AB上,且OC平分∠BOA.(1)求∠AOB的余弦值;(2)求点C的坐标.20.已知向量=(cosθ,sinθ)和.(1)若∥,求角θ的集合;(2)若,且|﹣|=,求的值.21.如图所示,若D是△ABC内的一点,且AB2﹣AC2=DB2﹣DC2.求证:AD⊥BC.22.已知向量,,其中A、B是△ABC 的内角,.(1)求tanA•tanB的值;(2)若a、b、c分别是角A、B、C的对边,当C最大时,求的值.23.已知向量且,函数f(x)=2(I)求函数f(x)的最小正周期及单调递增区间;(II)若,分别求tanx及的值.24.已知,函数f(x)=.(1)求函数f(x)的最小正周期;(2)求函数f(x)的单调减区间;(3)当时,求函数f(x)的值域.高中数学平面向量组卷(2014年09月24日)参考答案与试题解析一.选择题(共18小题)1.已知向量与的夹角为θ,定义×为与的“向量积”,且×是一个向量,它的长度|×|=||||sinθ,若=(2,0),﹣=(1,﹣),则|×(+)|=()A.4B.C.6D.2考点:平面向量数量积的运算.专题:平面向量及应用.分析:利用数量积运算和向量的夹角公式可得=.再利用平方关系可得,利用新定义即可得出.解答:解:由题意,则,∴=6,==2,=2.∴===.即,得,由定义知,故选:D.点评:本题考查了数量积运算、向量的夹角公式、三角函数的平方关系、新定义,考查了计算能力,属于基础题.2.已知,为单位向量,其夹角为60°,则(2﹣)•=()A.﹣1 B.0C.1D.2考点:平面向量数量积的运算.专题:平面向量及应用.分析:由条件利用两个向量的数量积的定义,求得、的值,可得(2﹣)•的值.解答:解:由题意可得,=1×1×cos60°=,=1,∴(2﹣)•=2﹣=0,故选:B.点评:本题主要考查两个向量的数量积的定义,属于基础题.3.已知向量=(1,),=(3,m),若向量,的夹角为,则实数m=()A.2B.C.0D.﹣考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:由条件利用两个向量的夹角公式、两个向量的数量积公式,求得m的值.解答:解:由题意可得cos===,解得m=,故选:B.点评:本题主要考查两个向量的夹角公式、两个向量的数量积公式的应用,属于基础题.4.向量,,且∥,则=()A.B.C.D.考点:平行向量与共线向量;同角三角函数间的基本关系;诱导公式的作用.专题:计算题;三角函数的求值.分析:根据向量平行的条件建立关于α的等式,利用同角三角函数的基本关系与诱导公式,化简即可得到的值.解答:解:∵,,且∥,∴,即,得sinα=,由此可得=﹣sinα=.故选:B点评:本题给出向量含有三角函数的坐标式,在向量互相平行的情况下求的值.着重考查了同角三角函数的基本关系、诱导公式和向量平行的条件等知识,属于基础题.5.如图,在△ABC中,BD=2DC.若,,则=()A.B.C.D.考点:向量的加法及其几何意义.专题:平面向量及应用.分析:由题意可得=,而,,代入化简可得答案.解答:解:由题意可得=====故选C点评:本题考查平面向量的加法及其几何意义,涉及向量的数乘,属基础题.6.若向量=(2cosα,﹣1),=(,tanα),且∥,则sinα=()A.B.C.D.考点:平面向量共线(平行)的坐标表示.专题:平面向量及应用.分析:直接由向量共线的坐标表示列式计算.解答:解:∵向量=(2cosα,﹣1),=(,tanα),且∥,则2cosα•tanα﹣(﹣1)×=0,即2sinα=.∴.故选:B.点评:共线问题是一个重要的知识点,在高考题中常常出现,常与向量的模、向量的坐标表示等联系在一起,要特别注意垂直与平行的区别.若=(a1,a2),=(b1,b2),则⊥⇔a1a2+b1b2=0,∥⇔a1b2﹣a2b1=0.是基础题.7.已知点A(3,0),B(0,3),C(cosα,sinα),O(0,0),若,则的夹角为()A.B.C.D.考点:平面向量数量积的坐标表示、模、夹角.专题:计算题.分析:根据题意求出的坐标,再由它的模求出角α,进而求出点C的坐标,利用数量积的坐标表示求出和夹角的余弦值,再求出夹角的度数.解答:解:∵A(3,0),C(cosα,sinα),O(0,0),∴=(3+cosα,sinα),∵,∴(3+cosα)2+sin2α=13,解得,cosα=,则α=,即C(,),∴和夹角的余弦值是==,∴和的夹角是.故选:D.点评:本题考查向量线性运算的坐标运算,以及数量积坐标表示的应用,利用向量坐标形式进行运算求出对应向量的模,以及它们的夹角的余弦值,进而结合夹角的范围求出夹角的大小.8.设向量=,=不共线,且|+|=1,|﹣|=3,则△OAB的形状是()A.等边三角形B.直角三角形C.锐角三角形D.钝角三角形考点:平面向量数量积的运算.专题:计算题;平面向量及应用.分析:对|+|=1,|﹣|=3分别平方并作差可得,由其符号可判断∠AOB为钝角,得到答案.解答:解:由|+|=1,得=1,即①,由|﹣|=3,得,即②,①﹣②得,4=﹣8,解得<0,∴∠AOB为钝角,△OAB为钝角三角形,故选:D.点评:本题考查平面向量数量积运算,属基础题.9.已知点G是△ABC的重心,若A=,•=3,则||的最小值为()A.B.C.D.2考点:平面向量数量积的运算.专题:不等式的解法及应用;平面向量及应用.分析:由A=,•=3,可求得=6,由点G是△ABC的重心,得=,利用不等式则||2==(+6)≥,代入数值可得.解答:解:∵A=,•=3,∴=3,即=6,∵点G是△ABC的重心,∴=,∴||2==(+6)≥==2,∴||≥,当且仅当=时取等号,∴||的最小值为,故选B.点评:本题考查平面向量数量积的运算、不等式求最值,注意不等式求最值时适用的条件.10.如图,各棱长都为2的四面体ABCD中,=,=2,则向量•=()A.﹣B.C.﹣D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:由向量的运算可得=(),=,由数量积的定义可得.解答:解:∵=,=2,∴=(),=,∴=====,∴•=()•()===故选:B点评:本题考查向量数量积的运算,用已知向量表示未知向量是解决问题的关键,属中档题.11.已知函数f(x)=sin(2πx+φ)的部分图象如图所示,点B,C是该图象与x轴的交点,过点C的直线与该图象交于D,E两点,则()•的值为()A.B.C.1D.2考点:平面向量数量积的运算;正弦函数的图象;正弦函数的定义域和值域.专题:平面向量及应用.分析:根据三角函数的图象和性质,求出函数的周期,利用向量的基本运算和向量的数量积定义即可得到结论.解答:解:∵函数f(x)=sin(2πx+φ)的周期T=,则BC=,则C点是一个对称中心,则根据向量的平行四边形法则可知:=2•∴()•==2×=.点评:本题主要考查向量的数量积运算,利用三角函数的图象和性质是解决本题的关键.12.已知P为三角形ABC内部任一点(不包括边界),且满足(﹣)•(+﹣2)=0,则△ABC的形状一定为()A.等边三角形B.直角三角形C.钝三角形D.等腰三角形考点:平面向量数量积的运算.专题:平面向量及应用.分析:利用向量的三角形法则和平行四边形法则、向量垂直于数量积的关系即可得出.解答:解:∵,=,(﹣)•(+﹣2)=0,∴=0.而一定经过边AB的中点,∴垂直平分边AB,即△ABC的形状一定为等腰三角形.点评:本题考查了向量的三角形法则和平行四边形法则、向量垂直于数量积的关系、等腰三角形的定义,考查了推理能力,属于难题.13.如图所示,设P为△ABC所在平面内的一点,并且=+,则△ABP与△ABC的面积之比等于()A.B.C.D.考点:向量在几何中的应用.专题:计算题;压轴题.分析:本题考查的知识点是向量在几何中的应用,及三角形面积的性质,由△ABP与△ABC为同底不等高的三角形,故高之比即为两个三角面积之间,连接CP并延长后,我们易得到CP与CD长度的关系,进行得到△ABP 的面积与△ABC面积之比.解答:解:连接CP并延长交AB于D,∵P、C、D三点共线,∴=λ+μ,且λ+μ=1设=k,结合=+,得=+由平面向量基本定理解之,得λ=,k=3且μ=,∴=+,可得=,∵△ABP的面积与△ABC有相同的底边AB高的比等于||与||之比∴△ABP的面积与△ABC面积之比为,故选:C点评:三角形面积性质:同(等)底同(等)高的三角形面积相等;同(等)底三角形面积这比等于高之比;同(等)高三角形面积之比等于底之比.14.在△ABC中,|AB|=3,|AC|=2,=,则直线AD通过△ABC的()A.垂心B.外心C.重心D.内心考点:向量在几何中的应用.专题:综合题;平面向量及应用.分析:首先根据已知条件可知||=||=,又因为=,设=,=,由向量加法的平行四边形法则可知四边形AEDF为菱形,从而可确定直线AD通过△ABC的内心.解答:解:∵|AB|=3,|AC|=2 ∴||=||=.设=,=,则||=||,∴==+.由向量加法的平行四边形法则可知,四边形AEDF为菱形.∴AD为菱形的对角线,∴AD平分∠EAF.∴直线AD通过△ABC的内心.故选:D.点评:本题考查向量加法的平行四边形法则及其几何意义,属于中档题.15.在△ABC中,∠BAC=60°,AB=2,AC=1,E,F为边BC的三等分点,则=()A.B.C.D.考点:向量在几何中的应用;平面向量数量积的运算.专题:计算题.分析:先判定三角形形状,然后建立直角坐标系,分别求出,向量的坐标,代入向量数量积的运算公式,即可求出答案.解答:解:∵在△ABC中,∠BAC=60°,AB=2,AC=1,∴根据余弦定理可知BC=由AB=2,AC=1,BC=满足勾股定理可知∠BCA=90°以C为坐标原点,CA、CB方向为x,y轴正方向建立坐标系∵AC=1,BC=,则C(0,0),A(1,0),B(0,)又∵E,F分别是Rt△ABC中BC上的两个三等分点,则E(0,),F(0,)则=(﹣1,),=(﹣1,)∴=1+=故选A.点评:本题考查的知识点是平面向量数量积的运算,其中建立坐标系,将向量数量积的运算坐标化可以简化本题的解答过程.16.已知空间向量满足,且的夹角为,O为空间直角坐标系的原点,点A、B满足,,则△OAB的面积为()A.B.C.D.考点:平面向量数量积的运算;三角形的面积公式.专题:平面向量及应用.分析:由向量的运算可得,,以及,代入夹角公式可得cos∠BOA,由平方关系可得sin∠BOA,代入三角形的面积公式S=,计算可得.解答:解:由题意可得====,同理可得====,而=()•()==6×12﹣12=,故cos∠BOA===,可得sin∠BOA==,所以△OAB的面积S===.故选B点评:本题考查平面向量的数量积和三角形面积的求解,熟练掌握公式是解决问题的关键,属中档题.17.已知点P为△ABC内一点,且++3=,则△APB,△APC,△BPC的面积之比等于()A.9:4:1 B.1:4:9 C.3:2:1 D.1:2:3考点:向量在几何中的应用.专题:计算题;压轴题.分析:先将已知向量式化为两个向量共线的形式,再利用平行四边形法则及向量数乘运算的几何意义,三角形面积公式确定面积之比解答:解:∵++3=,∴+=﹣+),如图:∵,∴∴F、P、G三点共线,且PF=2PG,GF为三角形ABC的中位线∴====2而S△APB=S△ABC∴△APB,△APC,△BPC的面积之比等于3:2:1故选C点评: 本题考查了向量式的化简,向量加法的平行四边形法则,向量数乘运算的几何意义等向量知识,充分利用向量共线是解决本题的关键18.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则=( )A .2 B .4 C .5 D .10 考点: 向量在几何中的应用. 专题: 计算题;综合题.分析: 以D 为原点,AB 所在直线为x 轴,建立坐标系,由题意得以AB 为直径的圆必定经过C 点,因此设AB=2r ,∠CDB=α,得到A 、B 、C 和P 各点的坐标,运用两点的距离公式求出|PA|2+|PB|2和|PC|2的值,即可求出的值.解答: 解:以D 为原点,AB 所在直线为x 轴,建立如图坐标系,∵AB 是Rt △ABC 的斜边,∴以AB 为直径的圆必定经过C 点 设AB=2r ,∠CDB=α,则A (﹣r ,0),B (r ,0),C (rcos α,rsin α) ∵点P 为线段CD 的中点,∴P (rcos α,rsin α) ∴|PA|2=+=+r 2cos α, |PB|2=+=﹣r 2cos α,可得|PA|2+|PB|2=r 2又∵点P 为线段CD 的中点,CD=r∴|PC|2==r 2所以:==10 故选D点评: 本题给出直角三角形ABC 斜边AB 上中线AD 的中点P ,求P 到A 、B 距离的平方和与PC 平方的比值,着重考查了用解析法解决平面几何问题的知识点,属于中档题. 二.解答题(共6小题)19.如图示,在△ABC 中,若A ,B 两点坐标分别为(2,0),(﹣3,4)点C 在AB 上,且OC 平分∠BOA .(1)求∠AOB的余弦值;(2)求点C的坐标.考点:向量在几何中的应用.专题:综合题.分析:(1)由题意可得,把已知代入可求(2)设点C(x,y),由OC平分∠BOA可得cos∠AOC=cos∠BOC即=;再由点C在AB即共线,建立关于x,y的关系,可求解答:解:(1)由题意可得,,∴==(2)设点C(x,y),由OC平分∠BOA可得cos∠AOC=cos∠BOC∵,∴=∴,∴y=2x①又点C在AB即共线,∴4x+5y﹣8=0②由①②解得,∴点C的坐标为点评:本题注意考查了向量的夹角公式的坐标表示的应用,向量共线的坐标表示在三角形中的应用,解题的关键是借助于已知图象中的条件,灵活的应用向量的基本知识.20.已知向量=(cosθ,sinθ)和.(1)若∥,求角θ的集合;(2)若,且|﹣|=,求的值.考点:平面向量的坐标运算.专题:计算题.分析:(1)由题意和共线向量的等价条件,列出关于角θ的方程,求出θ的一个三角函数值,再根据三角函数求出角θ的集合.(2)由题意先求出﹣的坐标,根据此向量的长度和向量长度的坐标表示,列出方程求出cos(θ﹣),由余弦的二倍角公式和θ的范围求出的值.解答:解:(1)由题意知∥,则cosθ×cosθ﹣sinθ×(﹣sinθ)=0,∴sinθ=1,sinθ=,∴角θ的集合={θ|θ=+2kπ或θ=+2kπ,k∈Z};(2)由题意得,﹣=(cosθ﹣+sinθ,sinθ﹣cosθ),∴|﹣|===2=,即cos(θ﹣)=,由余弦的二倍角公式得,=①,∵,∴<<,∴<﹣<,即cos(﹣)<0,∴由①得cos(﹣)=﹣.点评:本题考查了共线向量的坐标表示和向量长度的坐标表示,利用两角正弦(余弦)和差公式和二倍角公式进行变形求解,注意由已知条件求出所求角的范围,来确定所求三角函数值的符号.21.如图所示,若D是△ABC内的一点,且AB2﹣AC2=DB2﹣DC2.求证:AD⊥BC.专题:计算题;证明题;平面向量及应用.分析:设=,=,=,=,=,将=+、=+代入2﹣2的式子,化简整理2﹣2=2+2•﹣2•﹣2,结合题意2﹣2=2﹣2化简,可得•(﹣)=0,再结合向量的加减法法则得到•=0,由此结合数量积的性质即可得到AD⊥BC.解答:解:设=,=,=,=,=,则=+,=+.∴2﹣2=(+)2﹣(+)2=2+2•﹣2•﹣2.∵由已知AB2﹣AC2=DB2﹣DC2,得2﹣2=2﹣2,∴2+2•﹣2•﹣2=2﹣2,即•(﹣)=0.∵=+=﹣,∴•=•(﹣)=0,因此,可得⊥,即AD⊥BC.点评:本题给出三角形ABC内满足平方关系的点D,求证AD⊥BC.着重考查了平面向量的加减法则、向量的数量积及其运算性质等知识,属于中档题.22.已知向量,,其中A、B是△ABC的内角,.(1)求tanA•tanB的值;(2)若a、b、c分别是角A、B、C的对边,当C最大时,求的值.专题:计算题.分析:(1)根据推断出=0,利用向量的数量积运算结合二倍角公式求得tanA•tanB;(2)由于tanA•tanB=>0,利用基本不等式得出当且仅当时,c取得最大值,再利用同角公式求出sinC,sinA,最后由正弦定理求的值.解答:解:(Ⅰ)由题意得=0 即,﹣5cos(A+B)+4cos(A﹣B)=0cosAcosB=9sinAsinB∴tanA•tanB=.(2)由于tanA•tanB=>0,且A、B是△ABC的内角,∴tanA>0,tanB>0∴=﹣当且仅当取等号.∴c为最大边时,有,tanC=﹣,∴sinC=,sinA=由正弦定理得:=.点评:本题是中档题,考查三角函数的化简与求值,正弦定理的应用,基本不等式的知识,是一道综合题,考查学生分析问题解决问题的能力,公式的熟练程度决定学生的能力的高低.23.已知向量且,函数f(x)=2(I)求函数f(x)的最小正周期及单调递增区间;(II)若,分别求tanx及的值.考点:平面向量数量积的坐标表示、模、夹角;复合三角函数的单调性.专题:平面向量及应用.分析:(I)化简函数f(x)=2=2sin(2x+),可得函数的周期,令2kπ﹣≤2x+≤2kπ+,k∈z,求得x的范围,即可得到函数的单调递增区间.(II)由,求得tanx=,再由==,运算求得结果.解答:(I)解:函数f(x)=2=2sinxcosx+2cos2x﹣1=sin2x+cos2x=2sin(2x+),故函数的周期为=π,令2kπ﹣≤2x+≤2kπ+,k∈z,求得kπ﹣≤x≤kπ+,故函数的单调递增区间为[kπ﹣,kπ+],k∈z.(II)解:若,则sinx=cosx,即tanx=.∴====﹣.点评:本题主要考查两个向量的数量积的定义,三角函数的恒等变换及化简求值,正弦函数的增区间,三角函数的周期性和求法,属于中档题.24.已知,函数f(x)=.(1)求函数f(x)的最小正周期;(2)求函数f(x)的单调减区间;(3)当时,求函数f(x)的值域.考点:平面向量的综合题;三角函数中的恒等变换应用;三角函数的周期性及其求法;复合三角函数的单调性.专题:综合题.分析:(1)根据向量的数量积公式,结合二倍角公式、辅助角公式化简函数,利用周期公式,可求函数f(x)的最小正周期;(2)由2kπ+≤2x+≤2kπ+得kπ+≤x≤kπ+,从而可得f(x)的单调减区间;(3)由,可得,从而可求函数f(x)的值域.解答:解:(1)∵,,∴函数f(x)==5sinxcosx+sin2x+6cos2x===5sin(2x+)+∴f(x)的最小正周期;(2)由2kπ+≤2x+≤2kπ+得kπ+≤x≤kπ+,k∈Z∴f(x)的单调减区间为[kπ+,kπ+](k∈Z)(3)∵∴∴∴1≤f(x)≤即f(x)的值域为[1,].点评:本题考查向量知识的运用,考查三角函数的化简,考查函数的单调性与值域,化简函数是关键.。

新版高中数学必修二:6.1平面向量的概念——精选题目练习

新版高中数学必修二:6.1平面向量的概念——精选题目练习

6.1平面向量的概念——精选题目练习1.下列命题中,正确命题的个数是( ) ①单位向量都共线; ②长度相等的向量都相等; ③共线的单位向量必相等;④与非零向量a 共线的单位向量是a|a|. A .3 B .2 C .1D .02.下列说法正确的是( )A .若a 与b 平行,b 与c 平行,则a 与c 一定平行B .终点相同的两个向量不共线C .若|a|>|b|,则a>bD .单位向量的长度为13.如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( )A.AB→=OC → B.AB →∥DE → C .|AD→|=|BE →| D.AD→=FC → 4.设O 是△ABC 的外心,则AO →,BO →,CO →是( )A .相等向量B .模相等的向量C .平行向量D .起点相同的向量5.若a 是任一非零向量,b 是单位向量,下列各式:①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1;⑤a|a |=b ,其中正确的有( )A .①④⑤B .③C .①②③⑤D .②③⑤6.如图,已知正方形ABCD 的边长为2,O 为其中心,则|OA →|=________.7.如果在一个边长为5的正△ABC 中,一个向量所对应的有向线段为AD →(其中D 在边BC 上运动),则向量AD→长度的最小值为________. 8.已知A ,B ,C 是不共线的三点,向量m 与向量AB →是平行向量,与BC →是共线向量,则m =________.9.在平行四边形ABCD 中,E ,F 分别为边AD ,BC 的中点,如图.(1)在每两点所确定的向量中,写出与向量FC →共线的向量;(2)求证:BE→=FD →. 10.已知在四边形ABCD 中,AB →∥CD →,求AD →与BC →分别满足什么条件时,四边形ABCD 满足下列情况.(1)四边形ABCD 是等腰梯形; (2)四边形ABCD 是平行四边形.答案:DDDBB 2 532 0⃗ 9.(1)由共线向量满足的条件得与向量FC →共线的向量有:CF →,BC →,CB →,BF →,FB→,ED →,DE →,AE →,EA →,AD →,DA →. 在▱ABCD 中,AD //BC 且.AD =BC 又E ,F 分别为AD ,BC 的中点, 所以ED //BF ,ED =BF所以四边形BFDE 是平行四边形, 所以BE //FD ,BE =FD 所以BE→=FD →.10.解:(1)|AD →|=|BC →|,且AD →与BC →不平行.因为AB→∥CD →,所以四边形ABCD 为梯形或平行四边形.若四边形ABCD 为等腰梯形,则|AD→|=|BC →|,同时两向量不平行.(2)AD→=BC →(或AD →∥BC →). 若AD →=BC →,即四边形的一组对边平行且相等,此时四边形ABCD 为平行四边形.。

高一数学必修四第二章平面向量测试题及答案

高一数学必修四第二章平面向量测试题及答案

一、选择题: (本大题共10小题,每题4分,共40分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.)1.设点P 〔3,-6〕,Q 〔-5,2〕,R 的纵坐标为-9,且P 、Q 、R 三点共线,那么R 点的横坐标为〔 〕。

A 、-9B 、-6C 、9D 、62. =(2,3), b =(-4,7),那么 在b 上的投影为〔 〕。

A 、B 、C 、D 、 3.设点A 〔1,2〕,B 〔3,5〕,将向量 按向量 =〔-1,-1〕平移后得向量为〔 〕。

A 、〔2,3〕 B 、〔1,2〕 C 、〔3,4〕 D 、〔4,7〕4.假设(a+b+c)(b+c -a)=3bc ,且sinA=sinBcosC ,那么ΔABC 是〔 〕。

A 、直角三角形B 、等边三角形C 、等腰三角形D 、等腰直角三角形5.| |=4, |b |=3, 与b 的夹角为60°,那么| +b |等于〔 〕。

A 、B 、C 、D 、6.O 、A 、B 为平面上三点,点C 分有向线段 所成的比为2,那么〔 〕。

A 、B 、C 、D 、7.O 是ΔABC 所在平面上一点,且满意条件,那么点O 是ΔABC 的〔 〕。

A 、重心B 、垂心C 、内心D 、外心8.设 、b 、 均为平面内随意非零向量且互不共线,那么以下4个命题: (1)( ·b )2= 2·b 2 (2)| +b |≥| -b | (3)| +b |2=( +b )2(4)(b ) -( a )b 与 不肯定垂直。

其中真命题的个数是〔 〕。

A 、1B 、2C 、3D 、49.在ΔABC 中,A=60°,b=1, ,那么 等于〔 〕。

A 、B 、C 、D 、10.设 、b 不共线,那么关于x 的方程 x 2+b x+ =0的解的状况是〔 〕。

A 、至少有一个实数解B 、至多只有一个实数解C 、至多有两个实数解D 、可能有多数个实数解二、填空题:〔本大题共4小题,每题4分,总分值16分.〕.11.在等腰直角三角形ABC 中,斜边AC=22,那么CA AB =_________12.ABCDEF为正六边形,且AC=a,AD=b,那么用a,b表示AB为______.13.有一两岸平行的河流,水速为1,速度为的小船要从河的一边驶向对岸,为使所行路程最短,小船应朝________方向行驶。

数学4(必修)第二章 平面向量练习题A

数学4(必修)第二章  平面向量练习题A

(数学4必修)第二章 平面向量练习题A[基础训练A 组] 一、选择题1.化简AC - BD + CD - AB得( )A .AB B .C .D .0 2.设00,a b 分别是与,a b向的单位向量,则下列结论中正确的是( )A .00a b =B .001a b ⋅=C .00||||2a b +=D .00||2a b +=3.已知下列命题中:(1)若k R ∈,且0kb = ,则0k =或0b =,(2)若0a b ⋅= ,则0a = 或0b =(3)若不平行的两个非零向量b a ,,满足||||b a =,则0)()(=-⋅+b a b a(4)若a 与b 平行,则||||a b a b =⋅其中真命题的个数是( )A .0B .1C .2D .34.下列命题中正确的是( )A .若a ⋅b =0,则a =0或b =0B .若a ⋅b =0,则a ∥bC .若a ∥b ,则a 在b 上的投影为|a|D .若a ⊥b ,则a ⋅b =(a ⋅b)25.已知平面向量(3,1)a = ,(,3)b x =- ,且a b ⊥,则x =( )A .3-B .1-C .1D .36.已知向量)sin ,(cos θθ=a ,向量)1,3(-=b 则|2|b a -的最大值,最小值分别是( )A .0,24B .24,4C .16,0D .4,0二、填空题1.若=)8,2(,=)2,7(-,则31=_________2.平面向量,a b 中,若(4,3)a =-=1,且5a b ⋅= ,则向量=____。

3.若3a = ,2b = ,且与的夹角为060,则a b -= 。

4.把平面上一切单位向量归结到共同的始点,那么这些向量的终点 所构成的图形是___________。

5.已知)1,2(=a与)2,1(=b ,要使b t a +最小,则实数t 的值为___________。

三、解答题1.如图,ABCD 中,,E F 分别是,BC DC 的中点,G 为交点,若AB =a,=b ,试以a ,b 为基底表示DE 、BF 、CG .2.已知向量 a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=- ,求向量a 的模。

新教材高中数学第2章平面向量及其应用综合检测题北师大版必修第二册

新教材高中数学第2章平面向量及其应用综合检测题北师大版必修第二册

第二章综合检测题考试时间120分钟,满分150分.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列命题中正确的是( D ) A .OA →-OB →=AB → B .AB →+BA →=0 C .0·AB →=0D .AB →+BC →+CD →=AD →[解析] 起点相同的向量相减,则取终点,并指向被减向量,OA →-OB →=BA →;AB →,BA →是一对相反向量,它们的和应该为零向量,AB →+BA →=0;0·AB →=0.2.如右图,a -b 等于( C )A .2e 1-4e 2B .-4e 1-2e 2C .e 1-3e 2D .3e 1-e 2[解析] a -b =e 1-3e 2.3.设O ,A ,M ,B 为平面上四点,OM →=λOB →+(1-λ)OA →,且λ∈(1,2),则( B ) A .点M 在线段AB 上 B .点B 在线段AM 上 C .点A 在线段BM 上 D .O ,A ,B ,M 四点共线[解析] OM →=λOB →+OA →-λOA →,所以OM →-OA →=λ(OB →-OA →),AM →=λAB →,由λ∈(1,2)可知,A ,B ,M 三点共线,且B 在线段AM 上.4.已知a 、b 、c 分别是△ABC 三个内角A 、B 、C 的对边,b =7,c =3,B =π6,那么a 等于( C )A .1B .2C .4D .1或4[解析] 在△ABC 中,b =7,c =3,cos B =32,由余弦定理有b 2=a 2+c 2-2ac cos B ,即7=a 2+3-3a ,解得a =4或a =-1(舍去).故a 的值为4.5.已知向量a =(1,2),b =(-2,3),c =(4,5),若(a +λb )⊥c ,则实数λ=( C ) A .-12B .12C .-2D .2[解析] a +λb =(1,2)+(-2λ,3λ) =(1-2λ,2+3λ),由(a +λb )⊥c ,可得(1-2λ)×4+(2+3λ)×5=0,解得λ=-2.6.在△ABC 中,已知sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则该三角形的面积为(D )A .1B .2C . 2D . 3[解析] 由sin 2A +sin 2B -sin A sin B =sin 2C ,得a 2+b 2-ab =c 2,cos C =a 2+b 2-c 22ab =12.∵C ∈(0°,180°),∴C =60°. ∴sin C =32,∴S △ABC =12ab sin C = 3. 7.在△ABC 中,B =60°,C =45°,BC =8,D 为BC 上一点,且BD →=3-12BC →,则AD 的长为⎝ ⎛⎭⎪⎫sin 75°=6+24( C )A .4(3-1)B .4(3+1)C .4(3-3)D .4(3+3)[解析] 由题意知∠BAC =75°,根据正弦定理,得AB =BC sin 45°sin 75°=8(3-1),因为BD →=3-12BC →,所以BD =3-12BC .又BC =8,所以BD =4(3-1).在△ABD 中,AD =AB 2+BD 2-2AB ·BD ·cos 60° =4(3-3).故选C .8.如图所示,半圆的直径AB =4,O 为圆心,C 是半圆上不同于A ,B 的任意一点,若P 为半径OC 上的动点,则(PA →+PB →)·PC →的最小值是( D )A .2B .0C .-1D .-2[解析] 由平行四边形法则得PA →+PB →=2PO →,故(PA →+PB →)·PC →=2PO →·PC →,又|PC →|=2-|PO →|,且PO →,PC →反向,设|PO →|=t (0≤t ≤2),则(PA →+PB →)·PC →=2PO →·PC →=-2t (2-t )=2(t 2-2t )=2[(t -1)2-1].∵0≤t ≤2,∴当t =1时,(PA →+PB →)·PC →取得最小值-2,故选D .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分)9.设向量a ,b 满足:|a |=3,|b |=4,a ·b =0,以a ,b ,a -b 的模为边长构成三角形,则它的边与半径为1的圆的公共点个数可以是( ABC )A .0或1B .2或3C .4D .6[解析] 由题意可知该三角形为直角三角形,其内切圆半径恰好为1,它与半径为1的圆的公共点个数可能为0个,1个,2个,3个,4个,故选ABC .10.已知m ,n 是实数,a ,b 是向量,则下列命题中正确的为( AB ) A .m (a -b )=m a -m b B .(m -n )a =m a -n a C .若m a =m b ,则a =bD .若m a =n a ,则m =n[解析] 对于A 和B 属于数乘对向量与实数的分配律,正确;对于C,若m =0,则不能推出a =b ,错误;对于D,若a =0,则m ,n 没有关系,错误.故选AB .11.对于△ABC ,有如下命题,其中正确的有( ACD ) A .若sin 2A =sin 2B ,则△ABC 为等腰三角形 B .若sin A =cos B ,则△ABC 为直角三角形 C .若sin 2A +sin 2B +cos 2C <1,则△ABC 为钝角三角形D .若AB =3,AC =1,B =30°,则△ABC 的面积为34或 32[解析] 对于A,sin 2A =sin 2B ,∴A =B ⇒△ABC 是等腰三角形;对于B,由sin A =cos B ,∴A -B =π2或A +B =π2.∴△ABC 不一定是直角三角形,B 错误;对于C,sin 2A +sin 2B <1-cos 2C=sin 2C ,∴a 2+b 2<c 2,∴△ABC 为钝角三角形,C 正确;对于D,如图所示,由正弦定理,得sin C =c ·sin B b =32.而c >b ,∴C =60°或C =120°,∴A =90°或A =30°,∴S △ABC =12bc sin A =32或34,D 正确.故选ACD .12.给出下列四个命题,其中正确的选项有( ABC )A .非零向量a ,b 满足|a |=|b |=|a -b |,则a 与a +b 的夹角是30°B .若(AB →+AC →)·(AB →-AC →)=0,则△ABC 为等腰三角形C .若单位向量a ,b 的夹角为120°,则当|2a +x b |(x ∈R )取最小值时x =1D .若OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),∠ABC 为锐角,则实数m 的取值范围是m >-34[解析]A 中,令OA →=a ,OB →=b .以OA →,OB →为邻边作平行四边形OACB . ∵|a |=|b |=|a -b |,∴四边形OACB 为菱形,∠AOB =60°,∠AOC =30°,即a 与a +b 的夹角是30°,故A 正确;B 中,∵(AB →+AC →)·(AB →-AC →)=0,∴|AB →|2=|AC →|2,故△ABC 为等腰三角形,故B 正确;C 中,∵(2a +x b )2=4a 2+4x a ·b +x 2b 2=4+4x cos 120°+x 2=x 2-2x +4=(x -1)2+3,故|2a +x b |取最小值时x =1.故C 正确;D 中,∵BA →=OA →-OB →=(3,-4)-(6,-3)=(-3,-1),BC →=OC →-OB →=(5-m ,-3-m )-(6,-3)=(-1-m ,-m ),又∠ABC 为锐角,∴BA →·BC →>0,即3+3m +m >0,∴m >-34.又当BA →与BC →同向共线时,m =12,故当∠ABC 为锐角时,m 的取值范围是m >-34且m ≠12,故D 不正确.故选ABC .三、填空题(本大题共4小题,每小题5分,共20分)13.已知a ,b 为单位向量,且a ·b =0,若c =2a -5b ,则cos 〈a ,c 〉= 23.[解析] 由题意,得cos 〈a ,c 〉=a ·2a -5b|a |·|2a -5b |=2a 2-5a ·b|a |·|2a -5b |2=21×4+5=23. 14.设向量a ,b ,c 满足a +b +c =0,(a -b )⊥c ,a ⊥b ,若|a|=1,则|a|2+|b|2+|c|2的值是 4 .[解析] 由于a ⊥b ,由此画出以a ,b 为邻边的矩形ABCD ,如图所示,其中,AD →=a ,AB →=b ,∵a +b +c =0,∴CA →=c ,BD →=a -b .∵(a -b )⊥c ,∴矩形的两条对角线互相垂直,则四边形ABCD 为正方形. ∴|a |=|b |=1,|c |=2,|a|2+|b|2+|c|2=4.15.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sin B = 217,c = 3 . [解析] 由正弦定理,得a sin A =b sin B ,∴7sin 60°=2sin B ,得sin B =217,由余弦定理,得cos A =b 2+c 2-a 22bc =4+c 2-74c =12,解得c =3.16.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知(a +b -c )·(a +b +c )=3ab ,且c =4,则△ABC 面积的最大值为 4 3 .[解析] (a +b -c )(a +b +c )=(a +b )2-c 2=a 2+2ab +b 2-c 2=3ab ,∴a 2+b 2-c 2=ab . 又∵a 2+b 2-c 2=2ab cos C , ∴2ab cos C =ab ,∴cos C =12,∵C ∈(0,π),∴C =π3.由余弦定理,得c 2=a 2+b 2-2ab cos C ,∴16=a 2+b 2-2ab cos π3=a 2+b 2-ab ≥2ab -ab =ab ,∴ab ≤16.∴△ABC 面积的最大值S =12ab sin C ≤12×16×sin π3=4 3.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知向量a ,b 满足b =(1,3),a ·b =4,(a -2b )⊥a . (1)求向量a 与b 的夹角; (2)求|2a -b |的值;(3)若向量c =3a -4b ,d =m a +b ,c ∥d ,求m 的值.[解析] (1)因为(a -2b )⊥a ,所以(a -2b )·a =0,|a |2=8,即|a |=2 2.设向量a 与b 的夹角为θ,则cos θ=b ·a |b ||a |=22,又θ∈[0,π],所以θ=π4.(2)由向量模的计算公式|a |=a ·a ,得|2a -b |=2a -b2=4|a |2-4a ·b +|b |2=32-16+4=2 5.(3)因为c ∥d ,所以c =λd ,设3a -4b =λ(m a +b ),则⎩⎪⎨⎪⎧3=λm ,-4=λ,解得m =-34.18.(本小题满分12分)在平面直角坐标系xOy 中,已知点A (-1,-2),B (2,3),C (-2,-1).(1)求以线段AB ,AC 为邻边的平行四边形的两条对角线的长; (2)设实数t 满足(AB →-tOC →)·OC →=0,求t 的值. [解析] (1)AB →=(3,5),AC →=(-1,1),求两条对角线的长即求|AB →+AC →|与|AB →-AC →|的大小.由AB →+AC →=(2,6),得|AB →+AC →|=210,由AB →-AC →=(4,4),得|AB →-AC →|=4 2.∴以线段AB ,AC 为邻边的平行四边形的两条对角线的长分别为210和4 2. (2)OC →=(-2,-1),∵(AB →-tOC →)·OC →=AB →·OC →-tOC →2, 易求AB →·OC →=-11,OC →2=5, ∴由(AB →-tOC →)·OC →=0得t =-115.19.(本小题满分12分)(2021·新高考全国卷Ⅰ)记△ABC 内角A ,B ,C 的对边分别为a ,b ,c .已知b 2=ac ,点D 在边AC 上,BD sin ∠ABC =a sin C .(1)证明:BD =b ;(2)若AD =2DC ,求cos ∠ABC .[解析] (1)由BD sin ∠ABC =a sin C 得,BD =a sin C sin ∠ABC ,在△ABC 中由正弦定理知:csin C=bsin ∠ABC ,即sin C sin ∠ABC =cb,∴BD =acb,又b 2=ac ,∴BD =b . (2)由题意知:BD =b ,AD =2b 3,DC =b3,∴cos ∠ADB =b 2+4b 29-c 22b ·2b 3=13b 29-c 24b 23,同理cos ∠BDC =b 2+b 29-a 22b ·b 3=10b 29-a22b 23, ∵∠ADB =π-∠CDB ,∴cos ∠ADB =-cos ∠BDC ,即13b 29-c 24b 23=a 2-10b 292b 23, 整理得2a 2+c 2=11b 23,又b 2=ac ,∴2a 2+b 4a 2=11b 23,整理得6a 4-11a 2b 2+3b 4=0,解得a 2b 2=13或a 2b 2=32,在由余弦定理知:cos ∠ABC =a 2+c 2-b 22ac =43-a 22b 2,当a 2b 2=13时,cos ∠ABC =76>1不合题意; 当a 2b 2=32时,cos ∠ABC =712; 综上,cos ∠ABC =712.20.(本小题满分12分)△ABC 是等腰直角三角形,∠B =90°,D 是边BC 的中点,BE ⊥AD ,垂足为E ,延长BE 交AC 于F ,连接DF ,求证:∠ADB =∠FDC .[解析] 如图,以B 为原点,BC 所在直线为x 轴建立直角坐标系,设A (0,2),C (2,0),则D (1,0),AC →=(2,-2).设AF →=λAC →,则BF →=BA →+AF →=(0,2)+(2λ,-2λ)=(2λ,2-2λ). 又DA →=(-1,2),BF →⊥DA →, ∴BF →·DA →=0,∴-2λ+2(2-2λ)=0, ∴λ=23.∴BF →=⎝ ⎛⎭⎪⎫43,23,DF →=BF →-BD →=⎝ ⎛⎭⎪⎫13,23.又DC →=(1,0),∴cos ∠ADB =DA →·DB →|DA →|·|DB →|=55,cos ∠FDC =DF →·DC →|DF →|·|DC →|=55,又∠ADB ,∠FDC ∈(0,π), ∴∠ADB =∠FDC .21.(本小题满分12分)如图所示,甲船以每小时30 2 n mile 的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20 n mile.当甲船航行20 min 到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距10 2 n mile,问乙船每小时航行多少n mile?[解析] 如图,连接A 1B 2,由题意知A 2B 2=10 2 n mile,A 1A 2=302×2060=10 2 n mile. 所以A 1A 2=A 2B 2.又∠A 1A 2B 2=180°-120°=60°, 所以△A 1A 2B 2是等边三角形. 所以A 1B 2=A 1A 2=10 2 n mile.由题意知,A 1B 1=20 n mile,∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理,得B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45°=202+(102)2-2×20×102×22=200. 所以B 1B 2=10 2 n mile.因此,乙船速度的大小为10220×60=302(n mile/h).答:乙船每小时航行30 2 n mile.22.(本小题满分12分)已知向量a =(2+sin x,1),b =(2,-2),c =(sin x -3,1),d =(1,k ),(x ∈R ,k ∈R ).(1)若x ∈⎣⎢⎡⎦⎥⎤-π2,π2,且a ∥(b +c ),求x 的值; (2)若函数f (x )=a ·b ,求f (x )的最小值;(3)是否存在实数k ,使得(a +d )⊥(b +c )?若存在,求出k 的取值范围;若不存在,请说明理由.[解析] (1)∵b +c =(sin x -1,-1),又a ∥(b +c ), ∴-(2+sin x )=sin x -1,即sin x =-12.又x ∈⎣⎢⎡⎦⎥⎤-π2,π2, ∴x =-π6.(2)∵a =(2+sin x,1),b =(2,-2), ∴f (x )=a ·b =2(2+sin x )-2=2sin x +2.又x∈R,∴当sin x=-1时,f(x)有最小值,且最小值为0.(3)∵a+d=(3+sin x,1+k),b+c=(sin x-1,-1),若(a+d)⊥(b+c),则(a+d)·(b+c)=0,即(3+sin x)(sin x-1)-(1+k)=0,∴k=sin2x+2sin x-4=(sin x+1)2-5.由sin x∈[-1,1],∴-5≤(sin x+1)2-5≤-1,得k∈[-5,-1].∴存在k∈[-5,-1],使得(a+d)⊥(b+c).。

高中数学平面向量测试题及答案

高中数学平面向量测试题及答案

高中数学平面向量测试题及答案一、选择题1、下列哪一组向量是平行向量?A. (3,4)与(4,3)B. (3,4)与( - 4,- 3)C. (3,4)与( - 4,9)D. (3,4)与(7,8)2、下列哪一组向量是共线向量?A. (1,2)与(2,3)B. (1,1)与(2,2)C. (1,2)与( - 2,4)D. (1, - 1)与( - 2,2)3、下列哪一组向量是垂直向量?A. (1,2)与(2,1)B. (3,4)与(4,3)C. ( - 3,4)与(4, - 3)D.平面向量是数学中的一个重要概念,是解决许多实际问题的重要工具。

以下是一些经典的平面向量测试题,可以帮助大家了解和评估自己的平面向量水平。

给出平面向量的基本概念和性质,包括向量的表示、向量的模、向量的加法、减法和数乘等。

给出一个向量的坐标表示,包括在直角坐标系中的表示和在极坐标系中的表示。

给定两个向量 a和 b,求它们的数量积、夹角和模长。

给定一个向量 a,求它的单位向量、零向量和负向量。

给定一个平面向量场,求其中的平行向量、共线向量和线性无关向量。

给定一个三维平面向量场,求其中的法向量和切线向量。

给定一个向量的模长和夹角,求这个向量的坐标表示。

给定两个三维向量 a和 b,求它们在空间中的位置关系,如平行、共线和垂直等。

给定一个平面向量 a和一个非零向量 b,求 a和 b的垂直平分面和a和 b的中垂线。

给定一个向量的正交分解和极坐标表示,求这个向量的直角坐标表示和极坐标表示。

以上是平面向量经典测试题的一些例子,这些题目可以帮助大家巩固平面向量的基本概念和性质,提高解决实际问题的能力。

解释:平面向量是由两个数值和一个字母组成的,其中字母表示向量的方向,而数值表示向量的模长。

选项A符合这个要求,而其他选项都不符合。

解释:平面向量的基本运算包括加法、减法和数乘,而D选项中的“数乘和加法”实际上是包含了这三种运算,因此不是平面向量的运算。

人教版A版(2019)高中数学必修第二册:第六章 平面向量及其应用 综合测试(附答案与解析)

人教版A版(2019)高中数学必修第二册:第六章 平面向量及其应用 综合测试(附答案与解析)

第六章综合测试一、单项选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在ABC △中,内角,A B C ,的对边分别为,,a b c ,若a =,2A B =,则cos B 等于( )D.62.已知两个单位向量a 和b 的夹角为60︒,则向量-a b 在向量a 上的投影向量为( )A.12a B.aC.12-aD.-a3.已知点(2,1),(4,2)A B -,点P 在x 轴上,当PA PB 取最小值时,P 点的坐标是( ) A.(2,0) B.(4,0)C.10,03⎛⎫ ⎪⎝⎭D.(3,0)4.已知,,A B C 为圆O 上的三点,若有OA OC OB +=,圆O 的半径为2,则OB CB =( ) A.1- B.2- C.1 D.25.已知点(4,3)A 和点(1,2)B ,点O 为坐标原点,则||()OA tOB t +∈R 的最小值为( )A. B.5 C.36.已知锐角三角形的三边长分别为1,3,a ,那么a 的取值范围为( ) A.(8,10)B.C.D.7.已知圆的半径为4,,,a b c 为该圆的内接三角形的三边,若abc =,则三角形的面积为( )A.B.8.已知向量,a b 满足(2)(54)0+⋅-=a b a b ,且1==a b ,则a 与b 的夹角θ为( )A.34π B.4π C.3π D.23π 9.已知sin 1sin cos 2ααα=+,且向量(tan ,1)AB α=,(tan ,2)BC α=,则AC 等于( )A.(2,3)-B.(1,2)C.(4,3)D.(2,3)10.在ABC △中,E F ,分别为,AB AC 的中点,P 为EF 上的任意一点,实数,x y 满足PA xPB yPC ++=0,设,,,ABC PBC PCA PAB △△△△的面积分别为123,,,S S S S ,记(1,2,3)ii S i Sλ==,则23λλ⋅取到最大值时, 2x y +的值为( )A.1-B.1C.32-D.32二、多项选择题(本大题共2小题,每小题5分,共10分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分)11.已知ABC △中,角,,A B C 的对边分别为,,a b c ,且满足,3B a c π=+,则ac=( ) A.2 B.3C.12D.1312.点P 是ABC △所在平面内一点,满足20PB PC PB PC PA --+-=,则ABC △的形状不可能是( ) A.钝角三角形 B.直角三角形 C.等腰三角形 D.等边三角形三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上) 13.已知,12e e 是平面内的单位向量,且12⋅=12e e .若向量b 满足1⋅=⋅=12b e b e ,则=b ________.14.已知向量,a b 满足5,1==a b ,且4-a b ⋅a b 的最小值为________.15.如图,在直角梯形ABCD 中,AB DC ∥,AD DC ⊥,2DC A A B D ==,E 为AD 的中点,若CA CE DB λμ=+,则λ=________,μ=________.(本题第一空2分,第二空3分)16.如图所示,某海岛上一观察哨A 上午11时测得一轮船在海岛北偏东60︒的C 处,12时20分测得轮船在海岛北偏西60︒的B 处,12时40分轮船到达位于海岛正西方且距海岛5km 的E 港口,如果轮船始终匀速直线前进,则船速的大小为________.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)如图所示,以向量,OA OB ==a b 为邻边作OADB ,11,33BM BC CN CD ==,用,a b 表现,,OM ON MN .18.(本小题满分12分)已知ABC △的内角,,A B C 所对的边分别为,,a b c ,且2a =,3cos 5B =. (1)若4b =,求sin A 的值; (2)若4ABC S ∆=,求,b c 的值.19.(本小题满分12分)在ABC △中,角,,A B C 所对的边分别为,,a b c ,已知sin cos 1sin 2C C C +=-, (1)求sin C 的值;(2)若ABC △的外接圆面积为(4π+,试求AC BC 的取值范围.20.(本小题满分12分)某观测站在城A 南偏西20︒方向的C 处,由城A 出发的一条公路,走向是南偏东40︒,距C 处31千米的B 处有一人正沿公路向城A 走去,走了20千米后到达D 处,此时,C D 间的距离为21千米,问这人还要走多少千米可到达城A ?21.(本小题满分12分)已知正方形ABCD ,E F 、分别是CD AD 、的中点,BE CF 、交于点P ,连接AP .用向量法证明: (1)BE CF ⊥; (2)AP AB =.22.(本小题满分12分)已知向量(sin ,cos )x x =a ,sin ,sin 6x x π⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭b ,函数()2f x =⋅a b ,()4g x f x π⎛⎫= ⎪⎝⎭. (1)求()f x 在,2ππ⎡⎤⎢⎥⎣⎦上的最值,并求出相应的x 的值;(2)计算(1)(2)(3)(2014)g g g g ++++的值;(3)已知t ∈R ,讨论()g x 在[,2]t t +上零点的个数.第六章综合测试答案解析一、 1.【答案】B【解析】由正弦定理得sin sin a Ab B=,a ∴=可化为sin sin A B =.又sin 22sin cos 2,sin sin 2B B B A B B B =∴==,cos B ∴. 2.【答案】A【解析】由已知可得111122⋅=⨯⨯=a b ,211()122-⋅=-⋅=-=a b a a a b ,则向量-a b 在向量a 上的投影向量为()12-⋅⋅=a b a a a a . 3.【答案】D【解析】点P 在x 轴上,∴设P 上的坐标是(,0),(2,1),(4,2)x PA x PB x ∴=--=-,22(2)(4)266(3)3PA PB x x x x x ∴⋅=---=-+=--,∴当3x =时,PA PB ⋅取最小值.P ∴点的坐标是(3,0).4.【答案】D 【解析】OA OC OB +=,OA OC =,∴四边形OABC 是菱形,且120AOC ∠=︒,又圆O 的半径为2,22cos602OB CB ∴⋅=⨯⨯︒=. 5.【答案】D【解析】点(4,3),(1,2)A B ,O 为坐标原点,则(4,32)OA tOB t t +=++,22222()(4)(32)520255(2)55OA tOB t t t t t ∴+=+++=++=++≥,∴当2t =-时,等号成立,此时OA tOB +取得最小值6.【答案】B【解析】设1,3,a 所对的角分别为,,C B A ∠∠∠,由余弦定理的推论知2222222213cos 0,21313cos 0,2131cos 0,23a A a B a a C a ⎧+-=⎪⨯⨯⎪⎪+-=⎨⨯⨯⎪⎪+-=⎪⨯⨯⎩>>>即()()222100,280,680,a a a a a ⎧-⎪⎪-⎨⎪+⎪⎩>>>解得a ,故选B . 7.【答案】C【解析】设圆的半径为R ,内接三角形的三边,,a b c 所对的角分别为,,A B C .28sin sin sin a b cR A B C====,sin 8cC∴=,1sin 216ABC abc S ab C ∆∴===8.【答案】C 【解析】22(2)(54)5680+⋅-=+⋅=-a b a b a a b b ,又11,63,cos 2θ==∴⋅=∴=a b a b ,又[0,],3πθπθ∈∴=,故选C .9.【答案】D【解析】sin 1sin cos 2ααα=+,cos sin αα∴=,tan 1α∴=,(2tan ,3)(2,3)AC AB BC α∴=+==.故选D .10.【答案】D【解析】由题意可得,EF 是ABC △的中位线,P ∴到BC 的距离等于ABC △的边BC 上的高的一半,可得12323121,2S S S S λλ++===.由此可得223231216λλλλ+⎛⎫⋅= ⎪⎝⎭≤,当且仅当23S S =,即P 为EF 的中点时,等号成立.0PE PF ∴+=.由向量加法的四边形法则可得,2PA PB PE +=,2PA PC PF +=,两式相加,得20PA PB PC ++=.0PA xPB yPC ++=,∴根据平面向量基本定理,得12x y ==,从而得到322x y +=. 二、11.【答案】AC【解析】3B π=,a c +=,2222()23a c a c ac b ∴+=++=,①由余弦定理可得,2222cos3a c acb π+-=,②联立①②,可得222520a ac c -+=,即22520a a c c ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,解得2ac=或12a c =.故选AC .12.【答案】ACD 【解析】P 是ABC △所在平面内一点,且|||2|0PB PC PB PC PA --+-=,|||()()|0CB PB PA PC PA ∴--+-=,即||||CB AC AB =+,||||AB AC AC AB ∴-=+,两边平方并化简得0MC AB ⋅=,AC AB ∴⊥,90A ︒∴∠=,则ABC △一定是直角三角形.故选ACD .三、13.【解析】解析令1e 与2e 的夹角为θ.1cos cos 2θθ∴⋅=⋅==1212e e e e ,又0θ︒︒≤≤180,60θ∴=︒.()0⋅-=12b e e ,∴b 与,12e e 的夹角均为30︒,从而1||cos30︒=b . 14.【答案】52【解析】|4|-a b ,52⋅≥a b ,即⋅a b 的最小值为52. 15.【答案】65 25【解析】以D 为原点,DC 边所在直线为x 轴,DA 边所在直线为y 轴建立平面直角坐标系.不妨设1AB =,则(0,0),(2,0),(0,2),(1,2),(0,1)D C A B E .(2,2),(2,1),(1,2)CA CE DB =-=-=,,(2,2)(2,1)(1,2)CA CE DB λμλμ=+∴-=-+,22,22,λμλμ-+=-⎧∴⎨+=⎩解得6,52.5λμ⎧=⎪⎪⎨⎪=⎪⎩16./h【解析】轮船从C 到B 用时80分钟,从B 到E 用时20分钟,而船始终匀速前进,由此可见,4BC EB =.设EB x =,则4BC x =,由已知得30BAE ∠=︒,150EAC ∠=︒.在AEC △中,由正弦定理的sin sin EC AE EAC C=∠, sin 5sin1501sin 52AE EAC C EC x x︒∠∴===. 在ABC △中,由正弦定理得sin120sin BC ABC =︒,14sin sin120x BC C AB ⋅∴===︒. 在ABE △中,由余弦定理得22216312cos30252533BE AB AE AB AE︒=+-=+-=,故BE ∴船速的大小为/h)3BE t==. 四、 17.【答案】解:BA OA OB =-=-a b ,11153666OM OB BM OB BC OB BA ∴=+=+=+=+a b . 又OD =+a b ,222333ON OC CN OD ∴=+==+a b , 221511336626MN ON OM ∴=-=+--=-a b a b a b . 18.【答案】解:3cos 05B =>,且0B π<<, 4sin 5B ∴=. 由正弦定理得sin sin a b A B=,42sin 25sin 45a B Ab ⨯∴===. (2)1sin 42ABC S ac B ∆==, 142425c ∴⨯⨯⨯=,5c ∴=. 由余弦定理得2222232cos 25225175b ac ac B =+-=+-⨯⨯⨯=,b ∴=19.【答案】(1)解:ABC △中,由sin cos 1sin 2C C C +=-,得22sin cos 2sin sin 2222C C C C =-, sin 02C >,1cos sin 222C C ∴-=-,两边平方得11sin 4C -=,解得3sin 4C =. (2)设ABC △的外接圆的半径为R ,由(1)知sin cos 22C C >,24C π∴>, 2C π∴>,cos C ∴=. 易得2sin c R C =,22294sin (44c R C ∴==,由余弦定理得,222977(4221444c a b ab ab⎛⎫⎛⎫=+=+--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭≥,902ab ∴<≤,cos 8AC BC ab C ⎡⎫∴=∈-⎪⎢⎪⎣⎭,即AC BC 的取值范围是8⎡⎫-⎪⎢⎪⎣⎭. 20.【答案】解:如图所示,设ACD α∠=,CDB β∠=.在CBD △中,由余弦定理的推论得2222222021311cos 2220217BD CD CB BD CD β+-+-===-⨯⨯,sin 7β∴=()411sin sin 60sin cos60sin 60cos 27αβββ︒︒︒⎛⎫∴=-=-=--= ⎪⎝⎭在CBD △中,由正弦定理得21sin 60sin AD α=︒, 21sin 15sin60AD α∴==︒(千米). ∴这人还要再走15千米可到达城A .21.【答案】证明:如图,建立平面直角坐标系xOy ,其中A 为原点,不妨设2AB =,则(0,0),(2,0),(2,2),(1,2),(0,1)A B C E F .(1)(1,2)(2,0)(1,2)BE OE OB =-=-=-,(0,1)(2,2)(2,1)CF OF OC =-=-=--,(1)(2)2(1)0BE CF ∴⋅=-⨯-+⨯-=,BE CF ∴⊥,即BE CF ⊥.(2)设(,)P x y ,则(,1)FP x y =-,(2,)BP x y =-,由(1)知(2,1)CF =--,(1,2)BE =-,FP CF ∥,2(1)x y ∴-=--,即24y x =-+.同理,由BP BE ∥,即24y x =-+.22,24,x y y x =-⎧∴⎨=-+⎩解得6,58,5x y ⎧=⎪⎪⎨⎪=⎪⎩即68,55P ⎛⎫ ⎪⎝⎭. 222268455AP AB ⎛⎫⎛⎫∴=+== ⎪ ⎪⎝⎭⎝⎭, ||||AP AB ∴=,即AP AB =.22.【答案】(1)解:21()22sin sin(2sin cos sin 262f x x x x x x x π⎫=⋅=-+=+=⎪⎭a b1sin 22sin 223x x x π⎛⎫=- ⎪⎝⎭,2x ππ⎡⎤∈⎢⎥⎣⎦, 252333x πππ∴-≤≤,1sin 23x π⎛⎫∴-- ⎪⎝⎭≤,∴当3232x ππ-=,即1112x π=时,()f x 1-,当2233x ππ-=,即2x π=时,()f x(2)由(1)得()sin 23f x x π⎛⎫=-+⎪⎝⎭. ()sin 423g x f x x πππ⎛⎫⎛⎫∴==-+ ⎪ ⎪⎝⎭⎝⎭, 4T ∴=(1)(2)(3)(4)(5)(6)(7)(8)(2009)(2010)(2011)(2012)g g g g g g g g g g g g ∴+++=+++==+++.又(1)(2)(3)(4)gg g g +++=,(1)(2)(3)(2014)503(1)(2)g g g g g g ∴++++=⨯+=.(3)()g x 在[,2]t t +上零点的个数等价于sin 23x y ππ⎛⎫- ⎝=⎪⎭与y =.在同一平面直角坐标系内作出这两个函数的图象(图略).当4443k t k +<<,k ∈Z 时,由图象可知,sin 23x y ππ⎛⎫- ⎝=⎪⎭与2y =-两图象无交点,即()g x 无零点;当44243k t k ++≤<或10444,3k t k k ++∈Z <≤时,sin 23x y ππ⎛⎫- ⎝=⎪⎭与y =1个交点,即()g x 有1个零点;当10244,3k t k k ++∈Z ≤≤时,sin 23x y ππ⎛⎫- ⎝=⎪⎭与y =2个交点,即()g x 有2个零点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

、选择题【共12道小题】 1、卜列说法中止确的是()A.两个单位向量的数量积为1B.若 a • b=a •c 且 a * 0,则 b=cC. AS = 0A — 0BD.若 b 丄 c,则(a+c) • b=a •b 参考答案与解析:解析:A 中两向量的夹角不确定;B 中若a 丄b,a 丄c,b 与c 反方向则不成立;C 中应为-亠 _ 一丄, ;D 中 b lc = b • c=0,所以(a+c) • b=a • b+c • b=a • b.答案:D主要考察知识点:向量、向量的运算2、设e 是单位向量,二L=2e, -二=-2e,|」丄|=2,则四边形ABCD 是()又因为|上」|=| H 丄1=2,所以四边形 ABCD 是菱形• 答案:B主要考察知识点:向量、向量的运算 3、已知|a|=|b|=1 , a 与b 的夹角为90° ,且c=2a+3b , d=ka-4b,若c ±d,则实数k 的值为()A.6B.-6C.3D.-3参考答案与解析:解析:I c 丄d, ••• c • d=(2a+3b) • (ka -4b)=0,即 2k- 12=0, A k=6. 答案:A主要考察知识点:向量、向量的运算 4、设 O WBv 2 n ,已知两个向量 '■ - =(cos 0, sin 0 ), ' - =(2+sin 0, 2-cos 0 ),则向量-二 长度的最大值是( )B. /参考答案与解析:解析:-」 亠 -=(2+sin 0 - cos 0 ,2 - cos 0 - sin 0), 所以〔丽 $ J 【2 +拠即斗(2-皿。

-血册=-区血日三屈鼻伍 答案:C主要考察知识点:向量与向量运算的坐标表示 5、设向量 a=(1,-3), b=(-2,4) , c=(-1,-2),若表示向量 4a 、4b-2c 、2(a-c)、d 的有向线段首尾相接能构成四边形,则向量 d 为( )A.(2,6)B.(-2,6)C.(2,-6)D.(-2,-6)参考答案与解析:解析:依题意,4a+4b-2c+2(a-c)+d=0,所以 d=-6a+4b-4c=(-2 , -6).答案:DA.梯形 形B.菱形C.矩D.正方形参考答案与解析 :解析:儿- -- ,所以|亠厶|=||,且AB// CD 所以四边形ABCD 是平行四边形A.主要考察知识点:向量与向量运算的坐标表示6、已知向量a=(3 , 4), b=(-3 , 1) , a 与b 的夹角为0 ,则tan 0等于(1 B.-二参考答案与解析:解析:由已知得 a • b=3x(-3)+4 x 仁-5 , |a|=5 , |b|^,a^b -51所以 COS 0= ■'丨■ I ■'.由于 0€[ 0 ,n],Jl — m B所以 sin 0='.sin /?所以 tan 0= L ; =-3.答案:D 主要考察知识点:向量与向量运算的坐标表示7、向量a 与b 不共线,人-=a+kb,=la+b(k 、丨€ R),且 与亠-共线,贝卩k 、丨应满足( )A.k+l=0B.k-l=OC.kl+1=0D.kl-1=0参考答案与解析:解析: ■ -- ■■ ---- i --- k---- «因为二二与共线,所以设=入(入€ R),即 la+b=入(a+kb)=入 a+入 kb,所以(l-入)a+(1 -入 k)b=0.因为a 与b 不共线,所以l-入=0且1-入k=0,消去 入得1-lk=0,即kl-仁0. 答案:D主要考察知识点:向量、向量的运算&已知平面内三点 A(-1,0),B(5,6),P(3,4), 且AP=X PB,则 入的值为()2丄A.3B.2C.二D.2参考答案与解析:解析:因为丄=入儿,所以(4 , 4)=入(2 , 2).所以入=. 答案:C主要考察知识点:向量与向量运算的坐标表示9、设平面向量 a1, a2, a3的和a1+a2+a3=0,如果平面向量 b1, b2, b3满足|bi|=2|ai| ,且ai 顺 时针旋转30°后与bi 同向,其中i=1 , 2, 3,则( )A.-b1+b2+b3=0B.b1-b2+b3=0D.b1+b2+b3=0参考答案与解析:解析:根据题意,由向量的物理意义,共点的向量模伸长为原来的 2倍,三个向量都顺时针旋转30°后合力为原来的 2倍,原来的合力为零,所以由a1+a2+a3=0,可得b1+b2+b3=0.答案:DC.3D.-3C.b1+b2-b3=0又••• OQ -=1,(- x,y)-(-xA,yB)=1,•••(-x,y) •(二 x,3y)=1,即二 x2+3y2=1(x > 0,y > 0). 答案:D主要考察知识点:向量、向量的运算------------- B-------------- 重--------------«------------- b-------------- 111、已知△ ABC 中,点D 在BC 边上,且,若-'—-丄二,贝U r+s 的值是(2A. B.0C.3.-32 2 2-------------- 1------- ---------------- k ---------------- ---------------------- <*-------------- «-------参考答案与解析:解析:△ ABC 中,-二"=」-一=」(一一・-I -)=」—」-」丄一_,故r+s=0. 答案:B主要考察知识点:向量、向量的运算 12、定义玄※b=|a||b|sin0, 0是向量a 和b 的夹角,|a|、|b|分别为a 、b 的模,已知点A(-3,2)B(2,3),O 是坐标原点U 〔上※[丄等于( )A.-2B.0D.13C.6.5参考答案与解析:解析:由题意可知-1" =(-3,2),[匸’=(2,3),主要考察知识点:向量、向量的运算10、设过点P(x , y)的直线分别与x 轴的正半轴和y 轴的正半轴交于 A B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若.L,且二•」1J=1,则P 点的轨迹方程是()参考答案与解析:解析:设 P(x,y),则 Q(-x,y).设 A(xA),xA,B(0,yByB0,上-=(x,y-yB)上上 =(xAx,-y).•.•一丄’一 ——'-=2PA,「.x=2(xA,x),y -yB=2y,xA=二 x,yB=3y(x >0,y >0).A.3x2+ 二 y2=1(x > 0,y > 0)B.3x2 二 y2=1(x > 0,y > 0)C. 二 x2-3y2=1(x > 0,y > 0)D. 二 x2+3y2=1(x > 0,y > 0)计算得一上•[二'=-3X 2+2X 3=0,另一方面〔上•'丄'=| -二||丄‘ |cos 0,••• cos 0 =0,又0€ (0, n),从而sin 0 =1 ,•※-丄1=| -11 || 1」|sin 0 =13.答案:D主要考察知识点:向量与向量运算的坐标表示二、填空题【共4道小题】1、已知a+b+c=0,且|a|=3,|b|=5,|c|=7, 则向量a与b的夹角是_____________________ .参考答案与解析:解析:由已知得a+b=-c,两边平方得a2+2a - b+b2=c2,所以2a • b=72 -32-52=15.设a与b的夹角为0 ,则cos0二=1 「=二,所以0 =60°.答案:60°主要考察知识点:向量、向量的运算--- ■ ' * --------------------------------- >2、若虫占=2e1+e2,占C=e1-3e2,丿门=5e1 +入e2,且B C、D三点共线,则实数入= ________________ 参考答案与解析:解析:由已知可得 ---- ---=(e1-3e2)-(2e1+e2)=-e1-4e2, (5e1+ 入e2) -(e1- 3e2)=4e1+(入+3)e2.由于B C D三点共线,所以存在实数m使得〔」-」上丄-,即-e1-4e2=m :4e1+(入+3)e2:.所以-1=4m 且-4=m(入+3),消去m得入=13.答案:13主要考察知识点:向量、向量的运算3、已知e1、e2是夹角为60°的两个单位向量,则a=2e1+e2和b=2e2-3e1的夹角是 ________________参考答案与解析:解析:运用夹角公式COS0二,代入数据即可得到结果•答案:120°主要考察知识点:向量、向量的运算4、如图2-1所示,两射线OA与OB交于O,则下列选项中向量的终点落在阴影区域内的是图2-11、如图 2-2 所示,在△ ABC 中,丄=c,=a,-二=b,且 a • b=b • c=c • a ,试判断△ ABC 的形状.参考答案与解析:解:T a • b=b • c, ••• b • (a -c)=0. 又 b=-(a+c), • - - (a+c) • (a -c)=0,即 c2-a2=0. •••|c|=|a|.同理,|b|=|a|, 故|a|=|b|=|c|,所以△ ABC 为等边三角形.主要考察知识点:向量、向量的运算|■卽*-fabbi2、如图2-3所示,已知| -^|=|丄’|=1 的夹角为120°,--」与-X 的夹角为45° ,| --■ ■ ■参考答案与解析:解:设」」=入】上+卩 上_ j.贝U - - •-=(入丄-+ 卩-匸')•-丄-=入+ 卩-二 •上-=入 + cos120° =入 一 卩.572 又- - ■-[-=「_ - || 丄 |cos45 ° =5cos45°= 二②-一二 + »③「U :一丄, 丄「④一一二 +「H ⑤「1上-J参考答案与解析 答案:①②主要考察知识点 三、解答题:解析:由向量减法法则可知③⑤不符合条件 ,①②显然满足,④不满足:向量、向量的运算 【共6道小题】-,/6i -4)cos75°=•••入-[i=二「「「「「「「_ _2-•】二'=(入-二+ 卩一一’)•】匸■=入-二• 1二'+ 卩'】丄=入cos120° + 卩= 2 入+ 卩. 「「一「也更②又--•-丄’=| 1「| |cos(120 ° -45° )=5cos75 °=■,1 孔丽-血)• 一入+□= f .5^/6+375) 岂愿• •入=5^/6+372) 5丿?• 0C= 6 鬲+ 丁亦.主要考察知识点:向量、向量的运算-------- r ■■ -------- r 3、在四边形ABCD中(A、B、C、D顺时针排列),人-=(6 , 1),亠=(-2 , -3).若有//丄;二,又有…丄_:丄:,求的坐标=(x-2,y-3).又-'-■ / 及丄丄所以x(2-y)-(-x-4)y=0, (6+x)(x-2)+(1+y)(y-3)=0.x = -6T K= 2,解得b"或b•- =(-6,3)或(2,-1).主要考察知识点:向量与向量运算的坐标表示丄历4、已知平面向量a=( \ ' ,-1),b=(二,-).(1)证明a丄b;⑵若存在不同时为零的实数k、t,使得x=a+(t2-3)b,y=-ka+tb, 且x丄y,求函数关系式k=f(t).参考答案与解析:(1)证明:因为a • b=(小,-1)•(,二)=- +(- 1) x二=0,所以a丄b.参考答案与解析:解:设-'-■ =(x,y),则亠-=(6+x,1+y),亠扛-=(4+x,y-2), -討=(-x-4,2-y), BD又•••&€[ 0 ,n]主要考察知识点:向量与向量运算的坐标表示6、如图2-4 所示,已知△ AOB 其中-■-:=a^-' =b,而MN 分别是△ AOB 的两边OAOB 上的点,且 =入a(0 v 入v 1),-二=卩b(0 v^v 1),设BM 与AN 相交于P,试将向量二 =p 用a 、b 表示出来.(2)解:由已知得|a|= •厂亠'-广=2, |b|= 「:由于 x 丄y,所以 x • y=0,即]a+(t2-3)b ]•( -ka+tb)=O. 所以-ka2+ta •b -k(t2- 3)b • a+t(t2 -3)b2=0. 由于 a • b=0,所以-4k+t(t2-3)=0.:=1,丄所以 k=「t(t2-3).丄由已知k , t 不同时为零得k="t(t2- 3)(t 丰0).主要考察知识点:向量与向量运算的坐标表示5、已知a 、b 、c 是同一平面内的三个向量 ,其中a=(1,2). (1)若|c|=」-,且c / a,求c 的坐标;⑵ 若|b|= 二,且a+2b 与2a-b 垂直,求a 与b 的夹角 0.参考答案与解析 :解:(1)设 c=(x ,y), 一 ° ',即 x2+y2=20,■/ c // a,a=(1 y=2x.2), ••• 2x -y=0,藍=2y = -4联立①②得 • c=(2,4)或(-2,-4).⑵••• (a+2b)丄(2a - b), • (a+2b) • (2a -b)=0,即 2a2+3a- • 2|a|2+3a b -2b2=0. -b -2|b|2=0.•- |a|2=5 ,5 5___________________|b|2=〜,代入①式得 a • b=二• cos 0 =a「「I0M即p=-八戸 1 …;主要考察知识点:向量、向量的运算参考答案与解析:解:由题图可知 p='-P 」■ 或p=-— ■ ,而=入a ,_ 一_ -,:一:二 =m (_ _■ '.-.1/)=m(b-入 a). 又 v -A =卩 b ,设匚'丄一n (【二 )=n(a- 卩b),=_血丄=入 a+m(b-入 a)=入(1 -m)a+mb , p=_「丨「一 =口 b+n(a -(1 b)=na+口 (1 -n)b. v a 、b 不共线,且表示方法唯一, 1-^1 做1 - Q 1 — JljU• I p=入Mi一丄.丄] a+。

相关文档
最新文档