浅谈数学中的变形技巧
数学中的变形与变化学习形的变化与变形规律

数学中的变形与变化学习形的变化与变形规律数学作为一门科学,其核心是研究数的变形与变化规律。
在数学中,我们经常遇到各种形式的变形和变化问题。
本文将从几个方面探讨数学中的变形与变化学习形的变化与变形规律。
一、数的变形与变化1.1 加减乘除运算的变形在数学中,加减乘除运算是最基本的四则运算。
在解决实际问题时,我们往往需要根据情况对运算进行变形。
例如,在解决一道复杂的加法运算题时,我们可以通过拆分数字、调整顺序等方式对运算进行变形,以简化计算过程,提高计算效率。
1.2 方程式的变形方程式是数学中非常重要的概念,它描述了一种等式的关系。
在解决方程式时,我们需要对等式进行变形,以便求得未知数的值。
这种变形包括常见的加减乘除运算,配方法、因式分解等。
通过变形,我们可以将原方程化简成更简单的形式,从而更容易求解。
二、学习形的变化与变形规律2.1 图形的变形在几何学中,我们学习了各种图形的性质和变形规律。
例如,矩形可以通过拉伸或收缩来改变形状和大小;圆形可以通过扩大或压缩来变化;三角形可以通过旋转或镜像来改变方向等。
通过学习这些变形规律,我们能够更好地理解几何形状的特性,并能够应用到实际问题中。
2.2 函数的变形在数学中,函数是描述两个变量间关系的工具。
函数的形式主要有线性函数、二次函数、指数函数、对数函数等。
当我们改变函数中的参数、系数时,函数的形状和特性也会发生相应的变化。
通过分析函数的变形规律,我们可以更深入地理解函数的性质,进而解决各种与函数相关的问题。
三、变化与变形的规律性3.1 变形具有可逆性在数学中,很多变形都具有可逆性。
也就是说,通过一系列变形操作,我们可以将一个数或一个问题由一种形式变形为另一种形式,然后再通过逆向的变形操作将其还原回原来的形式。
这种可逆性使得我们可以在解决问题时灵活运用各种变形技巧。
3.2 变形有固定的规律数学中的变形与变化并不是随意进行的,它们都有固定的规律可循。
例如,我们在解方程时常常使用的基本运算法则,就是一种变形规律。
数学中的变形技巧

数学中的变形技巧
数学中有许多变形技巧,可以帮助我们更好地理解和解决问题。
以下是一些常见的变形技巧:
1. 代入变量:将问题中的实际值用代入变量的形式表示,可以让问题更简洁和易于分析。
2. 合并相同项:将具有相同变量和指数的项合并在一起,可以简化表达式和方程式。
3. 移项:将一个或多个项从一个位置移动到另一个位置,通过改变方程式的结构来解决问题。
4. 因式分解:将一个多项式分解成一个或多个可以相乘得到原多项式的因式,可以简化计算和分析。
5. 求公因式:找出一个多项式中可以同时被所有项整除的最高次数的因式,可以简化计算和分析。
6. 变量代换:通过引入新的变量或代换来改变问题的形式,使其更易于处理。
7. 对称性:利用图形、方程或函数的对称性来简化问题的分析和解决。
8. 极限转化:将一个复杂的极限转化为另一个较为简单的极限,以便更容易求解。
9. 反证法:通过假设问题的反面来推导出一个矛盾的结论,以证明原始假设是正确的。
10. 递推关系:通过递推关系,将一个问题转化为另一个相似的问题,以便更容易求解。
这些变形技巧在不同的数学领域和问题类型中都有广泛的应用,可以帮助我们更好地理解和解决数学问题。
浅谈数学中的变形技巧

2020年02期New Generation浅谈数学中的变形技巧王永莉(陇南市武都区两水中学甘肃陇南746000)摘要:高中阶段数学更具系统性和逻辑性,同时高中生逻辑思维能力、空间思维能力和推理能力等思维潜能的挖掘也处于鼎盛时期。
在这个阶段学好数学知识,将有利于终身学习能力的形成。
而数学变形技巧则是学好高中数学的关键,掌握变形技巧,对解决问题能力和逻辑思维能力的提升都有积极作用。
本文就针对数学教学中的变形技巧展开深入探究,以期促进学生数学综合能力的提升。
关键词:数学教学;变形技巧;解题能力近年来随着教育质量的不断提升,高中数学的难度也在不断加深。
教师常说“万变不离其中”意思是事情怎怎么变化都有一定的规律和原则。
高中数学涵盖了小初中几个阶段的所有数学知识,内容较为全面和系统,数学题目也更具技巧性和逻辑性。
变形技巧是考察高中数学知识掌握情况的基本能力,只有掌握了变形技巧,才能够将看似复杂的题目精简,提取有效信息,从而提高解题效率。
但目前,在实践教学中部分高中生审题盲目不懂变通,导致学习低效。
这正是没有掌握变形技巧的突出表现。
对比,本文就针对高中数学中较常应用到变形技巧的几个方面展开深入探究,以期找到提升高中生数学变形技巧的突破口。
一、变形技巧的应用意义运算、推理、探究、验证都是数学学习中的重要内容,而这些过程也是提升逻辑思维能力、空间观念、推理创新能力等数学思维的必要途径。
高中数学看似复杂,但知识点都存在必然联系,是万变不离其宗的。
只要掌握了数学“变形”技巧,学会了面对不同问题寻找内在联系,应用变形技巧化繁为简,就能够高效解决问题。
实践发现,学生可在条件不明显或者不充分时采取变形方法,通过变形将已知条件关联起来,将关键元素集中起来,从而转化为另一种形式的问题。
还可以在条件和结论关系不明确时应用变形技巧揭露题目中隐藏的条件,从而将看似困难复杂的问题简单化,最终顺利解决问题。
因此,变形技巧是高中生必备的能力。
浅谈初中数学中的变形技巧

教学研究
浅谈初中数学中的变形技巧
万丽丹
(吉林省长春市长沈路学校,吉林 长春 130000)
摘 要:什么是数学变形,这是一个很模糊的概念,它是为了达到某种目的或需要而采取的一种手段,是化归、转化和联想的准备阶 段。变形技巧在数学解题中是很常用的方法,数学解题中,为了完成论证,求值、化简等的任务,需要对一些式子进行恒等变形。一般情况下, 一个式子往往有多种变形形式,因题而异,技巧性非常强。笔者根据多年的工作经验,主要针对初中数学中的变形技巧进行分析和讨论。
系;c.合理转换。概括起来就是:利用和、差、二倍角等三角公式实行 各种转化,从而达到问题解决的目的。三角变换是运算化简的过程 中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用 三角公式,掌握运算,化简的方法和技能。
三角函数式恒等变形是三角函数最重要的学习内容,无论是研 究三角函数式的性质,或是三角函数式的化简、求值和证明,都需要 对三角函数式进行恒等变形,方法和技巧十分丰富,其中也蕴含着 数形结合、化归、函数与方程、换元、等量代换、图形变换等诸多数学 思想方法,数学思想方法是数学知识在更高层次上的概括,它蕴涵 在数学知识发生、发展和应用的过程中。
4 代数中的变形技巧 代数恒等变形是数学解题的基石, 变形能力的强弱直接制约着 解题能力的高低。变形实质上是为了达到某种目的而采用的“手 段”,是化归、转化和联想的准备阶段,它属于技能性的知识,需要在 实践中反复操练才能把握,乃至灵活与综合应用。代数学习在中学 数学学习中及其重要,在代数学习中,掌握好变形技巧能够使我们 更好的明确解题方向,简化问题。代数中常见的变形有对数变形,指 数变形等等。 4.1 变形技巧在因式分解中的应用。多项式的因式分解, 方法多 样, 技巧性强, 有些多项式乔装打扮, 貌似不能因式分解,但经过适 当变形, 创造条件, 便可以进行因式分解。因式分解的主要方法有 符号变形、加减变形、换元变形、拆项变形、化简变形等, 利用这些 常见的变形方法解决一些具体的因式分解的问题。掌握了这些变形 方法后, 这类因式分解问题就可以迎刃而解了。 4.2 变形技巧在不等式中的应用。不等式的成立问题往往蕴藏 着许多内在的数学机理,从机理上分析不等式可以为我们寻找解决 问题的突破口带来便利。从不等式等号成立时各变量取值的状态这 一新视角来调控恒等变形方向。 代数变形的方法与技巧远不止于此,但上述的几种却是最核心 的、最本质的,乃至最常用的变形“技巧”。平时在教与学的过程中, 若能留意用二次以上的变形技巧(就是方法),并能做好长期的积累 与消化工作,对提高分析问题和解决问题的能力必将大有裨益,进 而有助于诸多良好思维品质的形成。 结束语 变形是数学解体活动中最基本而又常用的方法,它既灵活又多 变,一个公式,一个法则,它的表达形式是多种多样的。变形是为了 达到某种目的的或需要而采取的一种手段,是化归、转化和联想的 准备阶段,它属于技能性的知识,当然存在着技巧和方法,也就需要 人们在学习数学的实践中反复操练才能把握,乃至灵活应用。
浅谈恒等变形在求极限运算中的技巧与方法

知识文库 第6期115浅谈恒等变形在求极限运算中的技巧与方法张 孟 吴常虹极限的运算是微积分的重要基础,本文全面系统地介绍了恒等变形在求极限运算过程中的几种方法与技巧。
极限是微积分的研究方法,掌握好极限的运算方法是学习好高等数学的重要前提。
极限的运算方法多样,灵活性强,在求极限的过程中能够灵活的运用初等数学的恒等变形的方法与技巧对极限的运算也是至关重要的。
文章结合作者多年教学经验和对考研数学的研究全面系统地介绍了在求极限过程中的一些常见的恒等变形方法。
一、分式作差时,常采用通分例如: lim tan 2011x x x x →⎛⎫-⎪⎝⎭ tan lim tan 20x x x x x→-=(通分) tan lim 30x x x x →-=sec lim 2201x x →-=tan lim2203x x x →=13= 例如:()ln201x x x x →+-x →=(有理化)()()tan cos limln 01121x x x x x x →-=⎡⎤+-⎣⎦12=- 三. 不同根号作差 ①)(x f m n- 用泰勒公式来处理②m n- 先用倒代换处理,再使用泰勒公式例如:)11(lim 332x x x +-+∞→11(lim 3320tt t t +-+=→ 0)(311)(211lim 33220=+--++=→t t O t t O t t 四. 指数作差时,常采取提取公因式法例如:aa x x x aaax aa x x x x x x x x x x x ln ln )111(lim .lim )1(lim )(lim 2111111121112=+-=-=-∞→+∞→+-+∞→+∞→ ( 提取公因式 )五.若遇到幂指函数,常采用e抬起法处理(a b be aln =)例如:)1ln(sin 0sin 022lim )1(lim -→→++=-x ex x x x x e e e 抬起法而02.lim 112.lim 1)1ln(lim )1ln(lim )1ln(sin lim 22222202000=-=--=--=-+++++→→→→→x e xe xe x e e x e x x x x x x x x x x x x所以1)1(lim sin 02=-+→x x x e(作者单位:湖南农业大学东方科技学院)(上接第123页)你获得了哪些改变你的知识并理解本问题的新信息? 在解决问题的过程中,你学到了哪些有助于你处理未来性质相同问题的方法?在方案的工作中,有关你自己、你的领导能力、参与小组管理等方面,你获得了哪些认识?在实施本方案的过程中,哪些你原来持有的观点或意见改变了?在处理本问题的过程中,有哪些尚需进一步研究的问题被提了出来?本方案可以作怎样的修改,以增加你的学习效果? 总之,教学实践表明,以问题为本的学习(PBL)在通用技术教学过程中的运用,是能够提高教学质量,增强学生能力的,其也是贯彻素质教育的一种形式。
浅谈数学中的变形技巧

J , l 十 2 0 1 6
+2 0 1 6
+2=0的两
1
丁
(
c 。s =
丁
为 【 ‘ ’ _)
,
+2 0 1 7 n +3 ) 的值 。
十 2 01 6 + 2 = 0
一
变形技巧在数学解题中是很常用的方法,本文主要介绍在初高中 = 。2 + 6 + — — } 二 一 a 2+ 6 , ‘ 】 一 ,‘ 数学中经常出现的三角函数,不等式,一元二次方程的变形应用,掌 a 2 + : + z 握好并灵活运用好变形技巧,可化繁为简,提高解题效率。下面我们 、 分别来谈谈这几种变形技巧的应用。 =口 +b +2 l a b I =( 口十6 ) 。 1 . 三角恒等变换技巧 规律技巧:本例充分利用到f 与l 一, 的加和等于 1这一特征, 三角函数作为高考数学的必考题,是初等函数的重要组成部分, 将1 这个常数,灵活的应用在本题中,构成一因子,发挥 “ 1 ”的替换 在求值,化简,证明及解三角方程与解几何问题中,常涉及三角函数 功能,是问题迎刃而解。 的恒等变换。可三角公式众多,方法灵活多变,若能熟练掌握,对罗 辑思维能力,类比能力都有很好的锻炼,而且三角函数公式的使用, 例 3 设a , b , c均 为正数 ,且 a+b+c=1,求 证 直贯穿到高等数学,下面通过例题的解题说明,对三角恒等变换的
/ ! : ; ! : : — : — — :
一
解题技 巧做初 步的探 讨研究 。
口 2 + 6
+ c
3
.
例 、 一 例 1 已知 已知 c o s ( 4) = 1 0
浅谈变形技巧在数学解题中的应用

变形技巧的运用方法:通过观察、分析、归纳和演绎等方法,将复杂问题转化为简单问题,提高解题效率。
变形技巧的注意事项:在运用变形技巧时,需要注意等价性、合法性和简洁性,避免出现错误或不必要的复杂化。
灵活运用多种变形技巧,提高解题效率
变形技巧的分类:代数变形、几何变形、三角函数变形等
变形技巧的运用原则:等价性、简捷性、直观性
揭示隐含关系:变形技巧可以帮助揭示数学表达式中的隐含关系,从而找到解决问题的关键点。
转化问题:在某些情况下,通过变形技巧可以将一个复杂的问题转化为一个更简单的问题,从而更容易找到解决方案。
证明定理和性质:在数学中,许多定理和性质都可以通过变形技巧进行证明和推导,这有助于加深对数学知识的理解和掌握。
变形技巧的应用范围
,a click to unlimited possibilities
变形技巧在数学解题中的应用
目录
01
添加目录标题
02
变形技巧的重要性
03
常见的变形技巧
04
变形技巧的运用方法
05
变形技巧的注意事项
06
变形技巧在数学竞赛中的应用
07
总结与展望
01
添加章节标题
02
变形技巧的重要性
变形技巧的定义
变形技巧是指通过改变数学表达式的形式,使其更易于计算或证明的技巧。
变形技巧在数学解题中具有重要的作用,可以帮助我们简化问题、提高解题效率。
常见的变形技巧包括代数变形、几何变形和三角函数变形等。
掌握变形技巧需要一定的数学基础和解题经验,需要不断练习和积累。
变形技巧在数学解题中的作用
简化复杂表达式:通过变形技巧,可以将复杂的数学表达式简化为更易于理解和计算的形式,提高解题效率。
浅谈数学中的变形技巧

浅谈数学中的变形技巧数学中的变形技巧是解决问题的重要方法之一、通过巧妙地变形,可以将一个问题从一个形式转化为另一个形式,从而更容易解决。
在数学中,变形技巧广泛应用于各种数学领域,包括代数、几何、概率等。
下面将对数学中的变形技巧进行浅谈。
首先,代数中的变形技巧是解决代数方程、方程组、不等式等问题的常用方法之一、在解代数方程时,可以通过变形将方程转化为更简单的形式,从而求得方程的解。
比如,对于方程x^2-6x+8=0,可以通过配方变形得到(x-2)(x-4)=0,从而得到方程的解为x=2或x=4、又如,在解方程组时,可以通过变形技巧将方程组转化为更容易求解的形式。
比如,对于方程组2x+y=5和x-3y=4,可以通过高斯消元法将方程组化简为x+y=2和-5y=-6,从而得到方程组的解为x=3,y=-1、变形技巧在解不等式时也是十分有用的。
比如,对于不等式2x+1<5x-2,可以通过变形得到3x>3,从而得到不等式的解为x>1其次,几何中的变形技巧是解决几何问题的重要方法之一、在几何中,常常需要将一个几何图形变形为另一个几何图形,以便更容易研究其性质。
比如,在证明几何定理时,可以通过将一个几何图形变形为另一个几何图形,从而将原问题转化为更容易证明的形式。
又如,在计算几何体的体积、表面积时,常常需通过变形将几何体分解为更容易计算的形状,比如将三棱柱分解为若干个三角形和矩形,从而得到几何体的体积和表面积。
此外,概率中的变形技巧也是解决概率问题的重要方法之一、在概率中,常常需要通过变形将一个复杂的概率问题转化为一个简单的概率问题,从而更容易计算。
比如,在计算事件的概率时,可以通过变形将事件分解为若干个相互独立的事件,从而计算概率。
又如,在计算复杂事件的概率时,可以通过变形将复杂事件转化为多个简单事件的并、交或差,并利用概率的性质计算概率。
在进行数学变形时,需要注意以下几点。
首先,变形的过程中要保持等价性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数是初等函数的重要组成部分,它与初等函数、初等几何的关系十分密切.特别是三角函数的求值问题,而三角函数求值的关键是合理地进行三角恒等式的变形,其基本思路是“三看”,即一看角、二看函数名称、三看结构特征.除此之外,我们还常常应用代数的技巧和构造法,为三角恒等变形创造条件.
例2.1已知 ,求 的值.
例3.1若 ,求证 .
证明:因为 , ,
又因为 ,故
分析:通过观察可发现 可以变形为 ,即式子 加了 .则再利用不等式的性质可方便解决这道题.
例3.2在等差数列{ }和等比数列{ }中, , ,
求证:当 时, .
证明: (分子上加“0”)
=
分析:本题主要在 变形,即分子加上0,再利用不等式和等差数列的有关知识去解即可.
例1.2若 , 是一元二次方程 的两个根,求
的值.
解:由题设得
, ,
及 ,
=
= = =
分析:通过观察要求的结论可知,只要对要求的结论作一下变形,则这道题目便可以轻易解决.不必求出 和 的值.
例1.3设实数 、 分别满足 , ,并且 ,
求 的值.
解:由题设可得 , .
两式相除,得 .
由比例的基本性质,得 ,
【方法一】设 ,
则 ,
= =
两式相加,得 ,即
=
【方法二】原式=
构造 ,使 , , ,外接圆直径 ,则由正玄定理,得 , , .又由余弦定理,得 ,
即
故 =
说明:这里通过构造对偶式和三角形来求三角函数式的值是一种较高的变形技巧.
总结:三角函数式的恒等变形是学习三角函数和其他数学知识的重要知识.它包括化简三角函数式,求三角函数式的值,证明三角恒等式等.三角函数式恒等变形的理论依据是代数恒等变形的一般方法和法则,三角函数式的变形公式.变形中要注意三角函数定义域和值域的要求,以及符号的变化和选择.
2.2 在中学数学中常用的基本方法
1逻辑学中的方法
例如分析法(包括逆证法)、综合法、反证法、归纳法、穷举法(要求分类讨论)等.这些方法既要遵循从逻辑学中的基本规律和法则,又因运用于数学之中而具有数学的特色.
2数学中的一般方法
例如建模法、消元法、降次法、代入法、图像法(也称坐标法.代数中常用图像法,几何中常用坐标法)、向量法、比较法(数学中主要是指比较大小,这与逻辑学中的多方位比较不同)、放缩法、同一法、数学归纳法(这与逻辑学中的不完全归纳法不同)等.这些方法极为重要,应用也很广泛.
3.1
对有些含有(或可转化)一元二次方程的代数问题,如能对方程进行适当变形并施以代换,则常常可使问题化繁为简.下面列举例子说明.
例 1.1已知 是方程 的两根,求 的值.
解:因为 是方程 的根 ,
则 ,
所以,
又因为 , 是方程 的两根, ,
分析:如果要求出 , 的值,那么就很复杂,而且容易出错,在这里通过变形的技巧先从结论出发这样可以提高解题的效率,节省时间.
Keywords:elementary maths , algebraic, transformation, technique
第一章 绪论
数学是一个有机的整体,各部分之间相互联系、相互依存、相互渗透,从而构成了一个相互交错的立体空间.所以为了培养数学学习中的运算能力、逻辑能力、推理能力、空间想象能力及综合应用数学知识分析解决实际问题的能力,除了对各单元知识,及一些开放探索性问题,实践应用性问题等综合内容进行系统复习外,在最后阶段的复习中,应对常用的数学方法和重要的数学思想引起重视,并有意识的运用一些数学方法去解决问题,这样才能使我们的数学学习提高到一个新的层次、新的高度.常用的数学方法,是针对不同的数学知识而定的一种策略.不同的问题可以用不同的方法,相同的问题也可以有各种不同的方法(即所谓的一题多解).各种数学方法与数学知识一样,是数学发展过程中积累起来的宝贵精神财富,并且是数学知识所不能替代的.
求 的值.
解:因为 、 、 成等差数列,
, ,
由两角和的正切公式,得
分析:本例是正切公式变形的应用.在历年高考题中,曾多次出现两角和与差的正切公式的变形应用,读者在学习中一定要总结、体会.
例2.4(1991年全国高中数学联赛试题)试求 的值.
解:注意到 , ,我们可以通过构造对偶式,以减少三角变换的难度.再观察所求三角函数式,不难发现它与余弦定理非常相似,所以我们还可以通过构造三角形,使问题得到整体的解决.
变形是数学数学解题活动中最基本而又常用的方法.它既灵活又多变,一个公式,一个法则,它的表述形式是多种多样的.例如勾股定理可表述为 ,亦可表述为 , 等.若问 ,这显然是一个不屑回答的问题,但若问 就成了最富灵活性的问题,例如 , , 等.可见“变形”实在是一个内涵十分丰富的概念,在某些著名的数学问题解决中,变形技巧的巧妙运用也是至关重要的一环.我们在数学解题中,为了完成论证、求值、化简等的任务,常要对某些式子进行恒等变形,但是恒等变形又无一定之规,一个式子往往有多种可能的变形方向,因题而异,技巧性非常强.本文主要介绍一元二次方程,三角函数,“0”,“1”等的变形应用,希望对这几方面的变形应用的介绍,对于其他的解题变形能起到抛砖引玉的功效.下面我们来谈谈这几种变形技巧的应用.
例4.2 若 , , ,求证 .
分析:由均值不等式 有
(1)
(1)式左边是 个正数之积,右边是 的 次乘方,而求证式左边是 个正数的积,但任何数乘以1其值不变,因此,我们可以在求证式的左边乘以 个1,将其视为 正数之积.
近些年来,在中学数学考试中的考试题目越来越新颖,特别是在中考,高考的试题当中,要使考生在短短的两小时之类完成所有的题量,这无疑对大部分考生来说是很难完成的.有些试题的技巧性又非常强,考生一味的再上面钻牛角尖的话,这不但会浪费很多时间,甚至到最后还可能得不到正确的答案.所以我们有必要针对有些题采取正确的解题技巧,对有些题作出一些变形,这不仅能使试题变得简单明了,而且还能使我们做起题来得心应手,更增加了我们的解题信心和提高了对数学的兴趣.
浅谈数学中的变形技巧
学生:冯继东 指导老师:郑宗剑
摘要
关键词:
THE DEFORMATION SKILLS DISCUSS MATHEMATICS
student:FengJidongSupervisor:Zheng Zongjian
ABSTRACTDeformation is mathematics problem-solving activities in the most fundamental and commonly used method, it is flexible and changeable, a formula, a law, its expressions are diverse. Deformation is to achieve some purpose or need but adopt of a kind of means, is the return, conversion and Lenovo’s preparation phase, it belongs to skills sex knowledge, of course there is need techniques and methods in learning mathematics people can grasp to dill as much as possible in practice, and flexible application. In mathematics problem-solving, in order to complete the demonstration, evaluated, reduction etc task, often to some, but were identical deformation distributed-group management then deformation and no sure formula for success, identical distributed-group management then often have several possible a deformation of the problem and the direction, because different, craft was very strong. In this paper mainly introduced the deformation skills in elementary mathematics and some application of algebra. Mastering and flexible application of these techniques, can quickly determine the direction of solving problem solving, reduce blindness, improve the problem solving efficiency.
本文从先对数学中变形进行概述性介绍,接着主要从变形技巧在初等数学和代数中的一些具体的应用加以阐述说明.
第二章 数学变形的概述
2.1 什么是数学变形
什么是数学变形,这是一个很模糊的概念,总而言之,它是为了达到某种目的或需要而采取的一种手段,是化归、转化和联想的准备阶段.它属于技能性的知识,既灵活又多变,一个公式,一个法则,它的表述形式是多种多样的.当然它也存在着技巧和方法,也就是人们在学习数学的实践中反复操练才能把握,乃至灵活应用.
3数学中的特殊方法
例如配方法、待定系数法、加减法、公式法、换元法(化归的数学思想)、因式分解诸方法,以及平行移动法、翻折法等.这些方法在解决某些数学问题时起着重要作用,不可等闲视之.而变形也是数学中一种重要的方法之一.
第三章 变形技巧在初等数学中的一些应用