IIT Bombay
莫扎特作品集

钢琴曲谱:莫扎特作品集莫扎特作品之交响曲:第1交响曲,降E大调,K.16(伯姆指挥柏林爱乐)第2交响乐,(疑作)(Naxos,沃德指挥北方室内管弦乐团)第4交响曲,D大调,K.19(伯姆指挥柏林爱乐)第5交响曲,降B大调,K.22(伯姆指挥柏林爱乐)第25交响曲,g小调,K.(伯恩斯坦指挥维也纳爱乐)第35交响曲(哈夫纳),D大调,K385第二乐章(哈农库特指挥皇家音乐厅管弦乐团)第36交响曲(林茨),C大调,K425第一乐章(哈农库特指挥皇家音乐厅管弦乐团)全曲(克莱伯版)第38交响曲“布拉格”,D大调,K504全曲(克伦贝勒指挥柏林战时广播交响乐团)第39交响曲,降E大调,K543第三乐章(演奏者不详)第三乐章(朱里尼/柏林爱乐)全曲(伯姆指挥柏林爱乐)第40交响曲,g小调,K550第一乐章(旺德指挥北德广播交响乐团)第一乐章(伯姆指挥柏林爱乐)第二乐章(伯姆指挥柏林爱乐)第三乐章(伯姆指挥柏林爱乐)第四乐章(伯姆指挥柏林爱乐)全曲(伯姆指挥柏林爱乐)四合一版(富特文革勒+瓦尔特+卡拉扬+老克莱伯)(维也纳爱乐+哥伦比亚交响+柏林爱乐+伦敦爱乐)第41号交响曲(朱庇特),C大调,K551第一乐章(伯姆指挥柏林爱乐)第一乐章(伯恩斯坦指挥维也纳爱乐)全曲(伯恩斯坦指挥纽约爱乐乐团)全曲(史科瓦泽夫斯基指挥日本读卖交响乐团)莫扎特作品之其他管弦乐作品:遣兴曲 K63,第五乐章(NAXOS,内拉特指挥萨尔茨堡室内乐团)遣兴曲 K99 第7乐章(NAXOS,内拉特指挥萨尔茨堡室内乐团演奏)第2号嬉游曲之2,D大调,K136(山度·威格指挥萨尔兹堡莫扎特管弦乐团演奏)第2号嬉游曲之3,降B大调,K137(山度·威格指挥萨尔兹堡莫扎特管弦乐团演奏)第2号嬉游曲之4,F大调,K138 第3乐章(库普曼指挥阿姆斯特丹巴洛克乐团)第11号嬉游曲 K251,第三乐章,稍快的快板(圣马丁室内合奏团)第12号嬉游曲 K252,第三乐章,波兰舞曲(霍利格尔管乐合奏团)第14号嬉游曲 K270,第二乐章,小行板(霍利格尔管乐合奏团)第15号嬉游曲 K287,第四乐章(圣马丁室内合奏团)第16号嬉游曲 K289,第一乐章(荷兰管乐合奏团)第17嬉游曲K334,第三乐章,小步舞曲(圣马丁室内合奏团)第17嬉游曲K334,第三乐章,小步舞曲(演奏者不详)第1号小夜曲,D大调,K100,第六乐章(博斯科夫斯基指挥维也纳莫扎特合奏团演奏)第3号小夜曲,D大调,K185,第二乐章(NAXOS,内拉特指挥萨尔茨堡室内乐团)第4号小夜曲,D大调,K203,第八乐章(NAXOS,内拉特指挥萨尔茨堡室内乐团)D大调进行曲K215和第5号小夜曲,D大调,K204第一乐章(马里纳指挥圣马丁乐团)第6号小夜曲,D大调,K239,(月下小夜曲)"Serenata Notturna"第一乐章:进行曲(伯姆指挥柏林爱乐)全曲(SandorVegh指挥萨尔茨堡莫扎特音乐学院乐团)第7号小夜曲,D大调,K250,(哈夫纳小夜曲)第四乐章:回旋曲(伯姆指挥柏林爱乐乐团演奏)第9号小夜曲,D大调,K320全曲(伯姆指挥柏林爱乐乐团演奏)第六乐章,小步舞曲(伯姆指挥柏林爱乐乐团演奏)第10号小夜曲,降B大调,K361第三乐章(NAXOS,德国管乐家重奏团)第七乐章(NAXOS,德国管乐家重奏团)全曲(伯姆指挥柏林爱乐管乐团)全曲(富特文革勒指挥维也纳演奏家乐团)第11小夜曲,降E大调,K375(芝加哥交响乐团/ 莫斯科爱乐)第12小夜曲,C小调,K388(迈耶尔管乐合奏团)第13号小夜曲,《G大调弦乐小夜曲》,K525第一乐章(瓦尔特指挥哥伦比亚交响乐团,CBS报纸版)第一乐章(Traunfellner指挥维也纳室内爱乐乐队)第四乐章:(伯姆指挥维也纳爱乐乐团)全曲(马里纳指挥圣马丁乐团EMI-LD版)全曲(马里纳指挥圣马丁乐团PhlipsCD版)《音乐玩笑》,F大调,K522(菲拉德指挥菲拉德室内管弦乐团)《音乐玩笑》,F大调,K522(奥菲斯室内乐团)德国舞曲,K605,第3首“雪橇”(博斯科夫斯基指挥维也纳莫扎特合奏团)德国舞曲 K586 No.5(Johannes Wildner指挥Capella Istropolitana)NAXOS8.550412 《英雄科堡之胜利》K587(奥菲斯室内乐团)Promenade en Traineau (里德/慕尼黑艺术家管弦乐团)(马里纳指挥圣马丁室内乐团)莫扎特作品之芭蕾音乐:《小玩意》(Les petits riens)K.299B(马里纳指挥圣马丁室内乐团)协奏曲:小提琴协奏曲:第1小提琴协奏曲,降B大调,K207(小提琴:大卫·奥依斯特拉赫)第1小提琴协奏曲,降B大调,K207(小提琴:Simon Standage)第2小提琴协奏曲,D大调,K211全曲(小提琴:格鲁米欧)第2小提琴协奏曲,D大调,K211全曲(小提琴:林昭亮)第3小提琴协奏曲,G大调,K.216第一乐章:快板(小提琴:马泽尔)第一乐章:快板(小提琴:阿卡多)第一乐章:快板(小提琴:慕洛娃)第一乐章:快板(小提琴:大卫·奥依斯特拉赫)第三乐章:(小提琴:穆特)全曲(格鲁米欧)第4小提琴协奏曲,D大调,K218第一乐章:(小提琴:格罗米欧)第二乐章:(小提琴:格罗米欧)第三乐章:(小提琴:格罗米欧)全曲(小提琴:阿卡多)第5小提琴协奏曲,A大调,K219第一、二乐章(小提琴:蒂博)第三乐章(小提琴:海菲兹)第三乐章(小提琴:穆特;指挥:卡拉扬)全曲(小提琴:施奈德汉)全曲(小提琴:格鲁米欧)D大调小提琴协奏曲(K271i)(小提琴:格鲁米欧)(单声)第一乐章第二乐章第三乐章E大调柔板,K261(小提琴:格鲁米欧)C大调回旋曲,K373(Maria-Elisabeth Lott,12岁)C大调回旋曲, K373(格鲁米欧小提琴)降B大调回旋曲, K269(谢霖小提琴吉卜森指挥新爱乐乐团协奏)双小提琴协奏曲,C大调,K190(小提琴:帕尔曼、祖克曼)小提琴中提琴交响协奏曲,降E大调,K364第一乐章(小提琴:海菲兹;中提琴:普利姆罗斯)第一乐章(Thomas Brandis; Giusto Cappone;伯姆指挥柏林爱乐)第一乐章Naxos历史录音(小提琴:Albert Sammons;中提琴:Lionel Tertis)第二乐章(小提琴:美岛莉;中提琴:今井信子)第三乐章(小提琴:海菲兹;中提琴:普利姆罗斯)第三乐章(小提琴:海菲兹;中提琴:普利姆罗斯)第三乐章(小提琴:布朗;中提琴:伊迈)第三乐章(小提琴:Dumay;中提琴:Causse)第三乐章(小提琴:伊戈尔·奥伊斯特拉赫,中提琴:大卫·奥伊斯特拉赫)第一、二乐章(小提琴:伊戈尔·奥伊斯特拉赫,中提琴:大卫·奥伊斯特拉赫)全曲:(小提琴:格鲁米欧,中提琴:佩雷西亚)***全曲:(小提琴:(帕尔曼),中提琴:祖克曼)交响协奏曲,k297b(Thomas Brandis;Giusto Cappone;伯姆指挥柏林爱乐)第一乐章第二乐章第三乐章D大调小提琴与钢琴协奏曲(小提琴:美岛莉;钢琴:艾申巴赫)莫扎特作品钢琴协奏曲:第7号为三架钢琴而作的协奏曲,F大调,K242(古钢琴:Malcolm Bilson,Robert Levin,谭梅文)第一乐章第二乐章第三乐章第8号钢琴协奏曲,C大调,K246,(全曲)(肯普夫/莱特纳/柏林爱乐)第9钢琴协奏曲,降E大调,K271第一乐章(钢琴:杨多)第二乐章(钢琴:杨多)第三乐章:(钢琴:杨多)全曲(钢琴:布伦德尔,马克拉斯指挥苏格兰室内管弦乐团/)全曲(钢琴:拉罗查,戴维斯指挥英国室内乐团)第10号为双钢琴而作的协奏曲,E大调,K.365第一乐章(古钢琴:Malcolm Bilson;谭梅文)第二乐章(古钢琴:Malcolm Bilson;谭梅文)第三乐章(古钢琴:Malcolm Bilson;谭梅文)第三乐章(钢琴:吉列尔斯; Rakov Zak)全曲(德拉罗查与普列文合作)全曲(吉列尔斯父女三星带花的名版)第12号钢琴协奏曲,A大调,K414,(钢琴:基辛;斯皮瓦科夫指挥莫斯科名家合奏团)第13号钢琴协奏曲,C大调,K415 (钢琴:米凯兰杰里)第13钢琴协奏曲,C大调,K415,第二乐章(钢琴:杨多)第13钢琴协奏曲,C大调,K415,第三乐章(钢琴:杨多)第15号钢琴协奏曲,降B大调,K450第15钢琴协奏曲(维也纳爱乐乐团/伯恩斯坦乐团指挥并演奏钢琴)第一乐章; 第二乐章;第三乐章全曲(钢琴:布伦德尔)全曲(钢琴:米凯兰杰利)第16号钢琴协奏曲,D大调,K451,(全曲,钢琴:佩拉西亚)第16号钢琴协奏曲,K451,(全曲,钢琴:塞尔金)第17号钢琴协奏曲,K453,G大调(暂缺)第18号钢琴协奏曲,K456,(钢琴:赛尔金Serkin)第19钢琴协奏曲,F大调,K459第一乐章(钢琴:哈斯姬儿)第二、三乐章(钢琴:哈斯姬儿)第二乐章(钢琴:杨多)第三乐章(钢琴:杨多)第20钢琴协奏曲 D小调, K466, (钢琴:杨多)第一乐章第二乐章第三乐章第20钢琴协奏曲 D小调 K466, 第二乐章:(钢琴:顾尔达)第20钢琴协奏曲 D小调 K466, 全曲(钢琴:米凯兰杰里,现场录音)第20钢琴协奏曲 D小调 K466, 全曲(钢琴:勒费布,富特文革勒/柏林爱乐)第21钢琴协奏曲,C大调,K467第一乐章:(钢琴:杨多)第一乐章(钢琴:Daniele Dechenne )第二乐章(钢琴:伊士东文)第二乐章(钢琴:安达Geza Anda)第二乐章(钢琴:施纳贝尔)第三乐章(钢琴:杨多)第三乐章(钢琴:Daniele Dechenne )全曲(钢琴:布伦德尔)全曲(钢琴:伊斯托敏)全曲(钢琴:内田光子)第22号钢琴协奏曲,降E大调,K482第一乐章(佩拉西亚/英国室内乐团)第二乐章(演奏者不详)第三乐章(佩拉西亚/英国室内乐团)全曲(钢琴: 海布勒,戴维斯指挥伦敦交响)第23钢琴协奏曲,A大调,K488第一乐章(钢琴:杨多)第二乐章(演奏者不详)第二乐章(霍洛维茨/朱利尼)第二乐章(施纳贝尔)第三乐章(霍洛维茨/朱利尼)第三乐章(钢琴:杨多)第三乐章(钢琴:肯普夫1960)全曲(钢琴:布伦德尔)第24钢琴协奏曲,C小调,K491第一乐章(钢琴:杨多)第二乐章(钢琴:杨多)第三乐章(钢琴:杨多)全曲(钢琴:哈斯姬儿)第25钢琴协奏曲,K503,C大调(Malcolm Bilson 古钢琴;Gardiner指挥英国巴洛克独奏家乐团)第一乐章第二乐章第三乐章第26钢琴协奏曲(加冕),D大调,K.537,(钢琴:海布勒,洛维茨基指挥伦敦交响)第一乐章第二乐章第三乐章第27钢琴协奏曲,降B大调,K595第一乐章(布伦德尔/马连拿指挥圣·马田乐团)第一乐章(钢琴:杨多)第二乐章(钢琴:杨多)第三乐章(钢琴:卡仲CLIFFORD CURZON)全曲(钢琴:顾尔达)全曲(钢琴:巴克豪斯)全曲(钢琴:吉列尔斯)第27钢琴协奏曲(3合1版)(演奏:吉列尔斯+佩拉希亚+顾尔达)莫扎特作品为其他乐器所作的协奏曲:大管协奏曲,降B大调,K191全曲(大管:Zeman;伯姆指挥维也纳爱乐乐团)全曲(翁纽大管,Cuschlbauer指挥班贝格交响乐团)长笛与竖琴协奏曲,K299第三乐章(朗帕尔长笛;拉斯金竖琴;菲拉德指挥菲拉德室内管弦乐团)全曲(舒尔茨长笛,萨巴雷塔竖琴,伯姆指挥维也纳爱乐乐团协奏)第1长笛协奏曲,K313全曲(格拉费娜尤长笛;马里纳指挥圣马丁乐团协奏)第一乐章(Susan Palma长笛,Orpheus Chamber Orchestra)第2号长笛协奏曲,D大调 K.314(长笛:尼科莱;皇家音乐厅管弦乐团/津曼)C大调行板,K315(朗帕尔长笛;Cuschlbauer指挥维也纳交响乐团)C大调行板,K315(朗帕尔长笛)双簧管协奏曲,K314(霍利格尔双簧管;马里纳指挥圣马丁乐团协奏)双簧管协奏曲,K314, 第三乐章(皮埃罗双簧管,朗帕尔指挥英国室内乐团)单簧管协奏曲,K622第一乐章(巴塞特单簧管版本,W.梅耶单簧管;哈农库特指挥维也纳音乐社)第一乐章(兰斯洛特单簧管,菲拉德指挥菲拉德室内管弦乐团)第二乐章(布瑞默单簧管;马里纳指挥圣马丁乐团)第二乐章(莱斯特单簧管,马里纳指挥圣马丁乐团)第二乐章(普林茨单簧管,伯姆指挥维也纳爱乐)第三乐章(普林茨单簧管,伯姆指挥维也纳爱乐)第三乐章(Naxos: 奥腾萨默单簧管;约翰内斯·维尔德纳指挥维也纳莫扎特学会)全曲(奥腾萨默单簧管,科林·戴维斯指挥维也纳爱乐乐团)全曲(普林茨单簧管,慕兴格尔指挥维也纳爱乐乐团)全曲(查尔斯·尼德赫单簧管独奏,奥菲斯室内乐团协奏)第1圆号协奏曲,D大调,K412(演奏者不详)第1圆号协奏曲,D大调,K412, 第一乐章(圆号:丹尼斯·布莱恩)第1圆号协奏曲,D大调,K412,第一乐章(圆号:图克维尔/英国室内乐团)第2圆号协奏曲,降E大调,K417(鲍曼圆号;祖克曼指挥圣·保罗室内乐团)第2圆号协奏曲,降E大调,K417, 第一乐章(圆号:丹尼斯·布莱恩)第3圆号协奏曲,降E大调,K447(圆号:丹尼斯·布莱恩)第4圆号协奏曲,降E大调,K495(圆号:丹尼斯·布莱恩)第4圆号协奏曲,降E大调,K495(圆号:图克威尔,马格指挥伦敦交响乐团协奏)莫扎特作品奏鸣曲:小提琴奏鸣曲:小提琴奏鸣曲第10号,K15(大键琴:维莱特;小提琴:波莱特)小提琴奏鸣曲第16号,K31(大键琴:维莱特;小提琴:波莱特)小提琴奏鸣曲第17号,C大调,K296 (小提琴:谢霖,钢琴:海布勒)小提琴奏鸣曲第18号,K301 (小提琴:格鲁米欧,钢琴:克林)小提琴奏鸣曲第21号,K304 (小提琴:格鲁米欧,钢琴:克林)小提琴奏鸣曲第24号,F大调,K376(小提琴:格吕米奥;钢琴:哈斯姬儿)小提琴奏鸣曲第26号,降B大调,K378(小提琴:格吕米奥;钢琴:哈斯姬儿)小提琴奏鸣曲第26号,降B大调,K378(小提琴:谢霖;钢琴:海布勒)小提琴奏鸣曲第27号,G大调,K379(小提琴:谢霖;钢琴:海布勒)小提琴奏鸣曲第32号,降B大调, K454(小提琴:格吕米奥;钢琴:哈斯姬儿)小提琴奏鸣曲第33号,K481 (小提琴:格鲁米欧,钢琴:克林)小提琴奏鸣曲第35号,A大调,K526(小提琴:谢霖;钢琴:海布勒)小提琴奏鸣曲第35号,A大调,K526 (小提琴:格鲁米欧,钢琴:克林)小提琴奏鸣曲第36号,F大调,K547 (暂缺)变奏曲,K359(小提琴:谢霖;钢琴:海布勒)小提琴奏鸣曲》K481(小提琴:施纳德汉;钢琴:希曼)小步舞曲(小提琴:海菲兹)钢琴奏鸣曲及独奏作品:钢琴奏鸣曲,第1号,C大调,K279(钢琴:季雪金)钢琴奏鸣曲,第2号,F大调,K280(钢琴:海布勒)钢琴奏鸣曲,第2号,F大调,K280(钢琴:哈斯姬尔)钢琴奏鸣曲,第3号,降B大调,K281(钢琴:霍洛维兹):第一乐章第二乐章第三乐章钢琴奏鸣曲,第3号,降B大调,K281(钢琴:吉列尔斯)钢琴奏鸣曲,第4号,降E大调,K282,(钢琴:吉塞金Gieseking)钢琴奏鸣曲,第5号,G大调,K283(钢琴:吉塞金Gieseking)钢琴奏鸣曲,第6号,D大调,K284(钢琴:海布勒)钢琴奏鸣曲,第7号,C大调,K309(钢琴:海布勒)钢琴奏鸣曲,第7号,C大调,K309(钢琴:拉罗查)钢琴奏鸣曲,第8号,A小调,K310(钢琴:拉罗查)钢琴奏鸣曲,第8号,A小调,K310(钢琴:李帕蒂)钢琴奏鸣曲,第8号,A小调,K310(钢琴:施纳贝尔)钢琴奏鸣曲,第9号,D大调,K311(钢琴:吉泽金)钢琴奏鸣曲,第10号,A大调,K330(钢琴:哈斯姬尔)钢琴奏鸣曲,第10号,A大调,K330(钢琴:霍洛维茨)钢琴奏鸣曲,第11号,A大调,K331(其中第三乐章为著名的土耳其进行曲)K331(钢琴:海布勒)K331(钢琴:吉塞金Gieseking)土耳其进行曲(波格莱里奇)钢琴奏鸣曲,第12号,F大调,K332(钢琴:舒拉.切尔卡斯基Shura Cherkassky)钢琴奏鸣曲,第13号,降B大调,K333(钢琴:拉罗查)钢琴奏鸣曲,第13号,降B大调,K333(钢琴:舒拉.切尔卡斯基)钢琴奏鸣曲,第13号,降B大调,K333(钢琴:霍洛维兹)钢琴奏鸣曲,第14号,c小调,K457(钢琴:阿劳)钢琴奏鸣曲,第15号,C大调,K545(钢琴:海布勒)钢琴奏鸣曲,第15号,C大调,K.545(钢琴:内田光子)钢琴奏鸣曲,第15号,C大调,K.545(钢琴:李赫特,布拉格现场)钢琴奏鸣曲,第16号,降B大调,K570(钢琴:弗雷德里齐·古尔达)钢琴奏鸣曲,第16号,降B大调,K570(钢琴:季雪金)钢琴奏鸣曲,第17号,D大调,K576, 第二乐章(钢琴:弗雷德里齐·古尔达)钢琴奏鸣曲,第17号,D大调,K576, 全曲(钢琴:Solomon)c小调钢琴《幻想曲》,K396(钢琴:查哈里亚斯Christian Zacharias)d小调钢琴《幻想曲》,K397(钢琴:吉列尔斯,现场录音)D大调钢琴《回旋曲》,K485(钢琴:查哈里亚斯Christian Zacharias)F大调钢琴《回旋曲》,K494(李赫特,布拉格现场)两架钢琴奏鸣曲,D大调,K448全曲(钢琴:罗夫·帕尔吉,沃尔夫冈·曼斯)全曲(钢琴:海布勒、霍夫曼)第二乐章(钢琴:鲁普、佩拉西亚)全曲(钢琴: Anna & Ines walachowski)钢琴变奏曲,K354(钢琴:海布勒)(根据博马舍《塞维利亚理发师》中的《我是多林》而作的12首变奏曲)迪波尔小步舞曲主题变奏曲9首,K573(钢琴:哈斯姬尔)迪波尔小步舞曲主题变奏曲,K573(钢琴:布伦德尔)根据“阿,妈妈,我要对你说”而作的12首变奏曲,K265(钢琴:海布勒)为两架钢琴而作的G大调慢板和变奏曲,K501(阿格丽姬,毕晓普-科瓦塞维奇)A小调回旋曲,K511(布伦德尔)6首德国舞曲,KV509(吉泽金)格伦·古尔德弹奏的(感觉异样的)莫扎特钢琴奏鸣曲:钢琴奏鸣曲 K279(格伦·古尔德)钢琴奏鸣曲 K283(格伦·古尔德)钢琴奏鸣曲 K330(格伦·古尔德)钢琴奏鸣曲K309(格伦·古尔德)钢琴奏鸣曲K310,第一乐章(格伦·古尔德)钢琴奏鸣曲K331,第三乐章, 土耳其进行曲(格伦·古尔德)室内乐:二重奏作品:G大调小中提琴二重奏,K423(Grumiaux&Pelliccia)降B大调小中提琴二重奏,K424(Grumiaux&Pelliccia)三重奏作品:第1号钢琴三重奏,降B大调,K254,(皮雷斯、杜梅、王建)第2号钢琴三重奏,G大调,K496(皮雷斯、杜梅、王建)第3号钢琴三重奏,降B大调,K502(美艺三重奏)第4号钢琴三重奏,E大调,K542(美艺三重奏)第5号钢琴三重奏,C大调,K548(暂无)第6号钢琴三重奏,G大调,K.564(美艺三重奏)第一乐章第二乐章第三乐章单簧管三重奏,降E大调,K498(莱文钢琴,莱斯特单簧管,科瑞斯特中提琴)为弦乐三重奏而作的《降E大调嬉游曲》,K563(格鲁米欧三重奏团)降B大调《嬉游曲》K254,第三乐章(皮尔斯/杜梅/王键) ——————————————————————————————————四重奏作品:第1号弦乐四重奏,G大调,K80/73f(意大利四重奏团)第2号弦乐四重奏,D大调,《米兰四重奏》之一,K155/134a(意大利四重奏团)第3号弦乐四重奏,G大调,《米兰四重奏》之二,KV156/134b(意大利四重奏团)第13号弦乐四重奏,D小调,《维也纳四重奏》第六首,K173 (阿玛迪乌斯四重奏团)第17号弦乐四重奏(狩猎),降B大调,K458(意大利四重奏组)第21号弦乐四重奏,D大调,K575(意大利四重奏组)第23号弦乐四重奏,K590,D大调《普鲁士四重奏》第三号(阿玛迪乌斯四重奏团)第1号钢琴四重奏,G小调,K478,全曲,(马友友,斯特恩,艾克斯,拉雷多)第2号钢琴四重奏,降E大调,K493,全曲,(马友友,斯特恩,艾克斯,拉雷多)第2号钢琴四重奏,降E大调,K493,全曲(PHILIPS:Haeble钢琴,Schwalbe小提琴,Cappone中提琴,Borwitzky大提琴)第1号长笛四重奏,D大调,K285, (贝奈特长笛;格鲁米欧三重奏团)第一乐章第二乐章第三乐章全曲第一乐章(高威与东京弦乐四重奏团)第2号长笛四重奏(全曲)(长笛:贝内特/格鲁米欧三重奏团)第3号长笛四重奏(全曲)(长笛:贝内特/格鲁米欧三重奏团)第4号长笛四重奏(全曲)(长笛:贝内特/格鲁米欧三重奏团)双簧管四重奏,K370(Kiss双簧管,科达伊四重奏团成员,NAXOS版)——————————————————————————————————五重奏作品:第3号弦乐五重奏,C大调,K515 (小提琴:Arthur Grumiaux,Arpad Gerecz;中提琴:Georges Janze r,Max Lesueur;大提琴:Eva Czako)第4号弦乐五重奏,G小调,K516, 第一乐章(演奏者同上)第5号弦乐五重奏,D大调,K593,(全曲,演奏者同上)第6弦乐五重奏 K614,降E大调,(格鲁米欧三重奏团/格莱茨/莱舒尔)单簧管五重奏,A大调,K581第一乐章(单簧管:Jozsef Balogh;Danubius 四重奏团)全曲(Schmidl巴塞特单簧管,维也纳八重奏团成员演奏)玻璃琴五重奏《C小调柔板与回旋曲》,K617(玻璃琴:Bruno Hoffmann;长笛:Aurele Nicolet;双簧管:Heinz Holliger;中提琴:Karl Schouten;大提琴:Jean Decroos)圆号五重奏,K407(Kevehazi圆号,科达伊四重奏团,NAXOS版)钢琴与管乐五重奏,降E大调,K452(布伦德尔钢琴,霍利格尔双簧管,布鲁纳单簧管,鲍曼圆号,图纳曼大管)钢琴与管乐五重奏,降E大调,K452(丹尼斯·布赖恩管乐合奏团)根据G大调弦乐小夜曲(K525)而改编的弦乐五重奏(埃克斯、瓜奈里四重奏团等)第一乐章第二乐章第三乐章第四乐章歌剧作品:《费加罗的婚礼》,K492序曲(梅塔指挥SONY 53286)序曲(莱茵斯多夫指挥维也纳爱乐)序曲(瓦尔特指挥哥伦比亚交响乐团)咏叹调:《蝴蝶不能再飞》(梅塔指挥SONY 53286)咏叹调:“Voi che sapete”(Danco演唱;克莱伯指挥维也纳爱乐乐团、维也纳歌剧院合唱团演出)二重唱:“Che soave zefiretto”(Casa & Gueden演唱,克莱伯指挥维也纳爱乐乐团、维也纳歌剧院合唱团)二重唱“Cinque...dieci...venti...trenta”(Siepi & Gueden演唱,E.克莱伯指挥维也纳爱乐乐团、维也纳歌剧院合唱团)“Porgi amor,qualche ristoro”(Casa演唱 E.克莱伯指挥维也纳爱乐乐团、维也纳歌剧院合唱团) “Porgi amor,qualche ristoro”(Kanawa演唱伯姆指挥维也纳爱乐乐团)“Dove sono”(演唱:施瓦兹科普夫;卡拉扬指挥维也纳爱乐)《魔笛》,K620序曲(伯姆指挥)序曲(瓦尔特指挥哥伦比亚交响)第二幕(索尔蒂指挥维也纳爱乐乐团,演唱:迪斯考等)二重唱“那些坠入爱河的男人”(索尔蒂指挥维也纳爱乐,演唱:普雷,罗莲嘉)“在神圣的殿堂里”(演唱:特尔维拉)“帕帕姬娜你在哪里”(伯姆指挥)二重唱:懂得爱情的男人,都有一颗仁慈的心(Ziesak&Kraus演唱;索尔蒂指挥维也纳爱乐)咏叹调:“如果有个女人爱我,多么幸福”(索尔蒂指挥维也纳爱乐乐团)“夜后”(演唱:格鲁布洛娃Edita Gruberova)二重唱:《pa pa pa》(演唱:夸斯托夫/卡巴列)二重唱:《pa pa pa》(演唱:普雷/霍尔姆, 索尔蒂/维也纳爱乐)美丽的画像(演唱:冯德里希)夜后"复仇的火焰"(演唱者:朵依特肯)《女人心》,K588序曲(伯姆指挥维也纳爱乐、维也纳歌剧院合唱乐团)第二幕(伯姆指挥维也纳爱乐、维也纳歌剧院合唱乐团)第2幕第4场(EMI伯姆指挥爱乐乐团与合唱团演出, Schwarzkopf、Ludwig、Kraus、Taddei等演唱) “Fra gli amplessi in pochi istanti”(EMI伯姆指挥爱乐乐团与合唱团演出, Schwarzkopf & Kraus演唱)《唐璜》,K527序曲(朱利尼指挥爱乐乐团)第一幕:(朱利尼指挥爱乐乐团,演唱:萨瑟兰、施瓦兹科普夫等)第二幕(索尔蒂指挥伦敦爱乐乐团、伦敦歌剧院合唱团)二重唱“让我们手拉手吧”(演唱:Sciutti & Wachter;朱利尼指挥爱乐乐团、合唱团)小夜曲“Deh vieni alla finestra”(Wachter演唱朱利尼指挥爱乐乐团、合唱团)《后宫诱逃》 K384咏叹调“Martern aller Arten”(Koth演唱,约胡姆指挥巴伐利亚歌剧院乐团与合唱团)咏叹调“Hier soll ich dich denn sehen”(Wunderlich演唱,约胡姆指挥巴伐利亚歌剧院乐团与合唱团)序曲(约胡姆指挥巴伐利亚歌剧院乐团与合唱团)序曲(NAXOS)《狄托的仁慈》,K621二重唱“Ah perdona al primo affetto”(von Stade & Popp演唱,科林·戴维斯指挥科文特花园皇家歌剧院乐团与合唱团)咏叹调“Ah,se fosse intorno al trono” (Burrows演唱科林·戴维斯指挥科文特花园皇家歌剧院乐团与合唱团)《阿斯卡尼奥在阿尔巴》K111,序曲(萨尔茨堡莫扎特管弦乐团/利奥波德·哈格)《巴斯蒂恩与巴斯蒂恩娜》K50,序曲《巴斯蒂安与巴斯蒂安娜》K50,全剧(Gruberova、Cole、Polgar演唱,Leppard指挥李斯特室内乐团)《装痴作傻》(一)施雷尔(P.Schreier)指挥C.P.E巴赫乐团《装痴作傻》(二)施雷尔(P.Schreier)指挥C.P.E巴赫乐团---------------------------------------------------------------------------------声乐作品:女高音咏叹调:“喜悦的心情”,K579(演唱:格鲁贝洛娃)咏叹调:“Vorrei Siegarvi,oh Dio”,K418《哈利路亚》(平诺克指挥英国协奏团, 演唱: Bonnry)《黄昏的感触》(Elly Ameling Dalton Baldwin with Netherlands Wind Ensemble)教堂音乐:忏悔者的庄严晚祷,K399C大调《加冕》弥撒曲,K317(哈农库特指挥)C小调大弥撒 K427 (柏林广播交响乐团/Fricsay)《圣礼赞》(排箫:赞非尔/管风琴:毕什)《C大调第十号弥撒曲》麻雀(库贝利克指挥巴戈里亚广播合唱团、乐团)安魂曲,D小调,K626伯姆指挥维也纳爱乐1971年版卡拉扬/柏林爱乐1976年版卡拉扬指挥维也纳歌唱家合唱团、伯林爱乐乐团巴伦博依姆1972年的版本克尔特兹(Kertesz)指挥维也纳爱乐乐团版库普曼指挥阿姆斯特丹巴洛克乐团等伯恩斯坦悼念亡妻版朱利尼/爱乐乐团和合唱团改编曲:第13号小夜曲《G大调弦乐小夜曲》,K525,第四乐章(长笛版)吉他: 《魔笛》主题及变奏(索尔改编,演奏:帕克宁)吉他: 《魔笛》主题及变奏(索尔改编,演奏:塞戈维亚)吉他: 《魔笛》主题及变奏(Pepe Romero 吉他独奏)《魔笛》中的幻想曲(萨拉萨蒂改编, 沙汉姆演奏)《费加罗婚礼》(管乐合奏)(LINOS-ENSEMBLE)《后宫诱逃》长笛与双簧管二重奏(Schulz长笛/Schellenberger双簧管)摇篮曲(改编曲)贝多芬《根据莫扎特歌剧〈唐璜〉中“La ci darem la mano”主题而作的变奏曲》但济《单簧管与乐队“La ci darem la mano”主题幻想曲》圆号协奏曲哼唱的《土尔其进行曲》木管五重奏《土尔其进行曲》Mozart 莫扎特作品目录编号K.时间地点作品名音高1 1761/2 Salzburg Minuet for Harpsichord (See K. 1e) G Major or 17641 1761/2? Salzburg Andante for Harpsichord C Major1b 1761/2? Salzburg Allegro for Harpsichord C Major1c 1761 Salzburg Allegro for Harpsichord F Major1d 1761 Salzburg Minuet for Harpsichord F Major1e 1761/2 Salzburg Minuet for Harpsichord (See K. 1) G Major or 17641f 1761/2 Salzburg Minuet for Harpsichord C Major or 17642 1762 Salzburg Minuet for Harpsichord F Major3 1762 Salzburg Allegro for Harpsichord B Flat Major4 1762 Salzburg Minuet for Harpsichord F Major5 1762 Salzburg Minuet for Harpsichord F Major5a 1763 Salzburg Allegro for Harpsichord (See K. 9a) C Major6 1764 Paris Sonata for Harpsichord & Violin C Major7 1764 Paris Sonata for Harpsichord & Violin D Major8 1764 Paris Sonata for Harpsichord & Violin B Flat Major9 1764 Paris Sonata for Harpsichord & Violin G Major9a 1763 Salzburg Allegro for Harpsichord (See K. 5a) C Major10 1764 London Sonata for Harpsichord,Violin (or B Flat Major Flute) & Cello11 1764 London Sonata for Harpsichord,Violin (or G Major Flute) & Cello12 1764 London Sonata for Harpsichord,Violin (or A Major Flute) & Cello13 1764 London Sonata for Harpsichord, Violin (or Flute) & Cello14 1764 London Sonata for Harpsichord, Violin (or Flute) & Cello。
交互设计(Interaction-Design)(世毕盟留学)

交互设计(Interaction Design)(世毕盟留学)一、交互是个筐,啥都往里装交互(inter-action),从字面上理解,就是 A 和 B 之间的一系列动作和行为。
比如,早上你出门时碰到邻居,冲ta 喊一声“早”,ta 对你点头、微笑,说“早” ——这就是一个完整的互动过程。
当然,互动不仅限于人与人之间,还可以发生在系统和系统之间,比如人和机器,人和环境,机器和环境,等等。
这可是个要命的问题:几乎在同一个次元的人和“物”,都可能发生互动。
当然,我们主要关注发生在对象和人之间,但这个范围仍然过于宽泛。
界面上的一个按钮,是交互;卖披萨不给手套,是交互;想过马路对面却要走几公里穿隧道,是交互……下面这张图能加深大家对这个学科年轻而混乱的印象(交互设计大概在五点钟方向):我所理解的交互设计,扎根于三大领域:①人——心理学②机——计算机/工程③美——设计二、身体跟不上灵魂(或相反?),于是有了交互设计交互设计虽然是个筐,但它的确是应需而生的。
计算机问世以后,如何让它跟人打交道,一直很让人头疼。
虽然Geek 们发明了各种各样的“语言”,让人和计算机有了沟通的渠道,但是当时的机器毕竟能力有限,需要人付出极大的努力才能实现“对话”。
如何让人机交流更自然(当然是偏袒人类的),渐渐形成了一个学科。
而随着计算机能力指数级的增长,计算机承担越来越多,而人需要投入的理解和使用成本则越来越小。
当资源不再匮乏、实现能力极大提升后,对体验的追求渐渐成为人们消费决策的首因。
于是各种各样的产品和服务都开始重视去理解消费者/使用者,努力将产品和服务的体验改进到超出顾客预期。
交互设计在其中便发挥了越来越重要的作用。
时至今日的人机互动领域,随着机器类型和能力的爆炸式增长,技术越来越逆天,人与机器对话的“界面”越来越模糊以及无处不在,交互设计将迎来第三次大发展。
越来越多相互连接的元件和机器,极大拓展了人的感知、采集和控制能力,人与环境互动成为可能。
印度理工学院孟买分校基本概况

印度理工学院孟买分校成立于1958年,是印度理工学院系统中成立第二早的学校,目前在QS世界排名中并列179位。
印度理工学院孟买分校基本概况如何呢?下面和来看看吧。
一、关于印度理工学院孟买分校Established in 1958, the second of its kind, IIT Bombay was the first to beset up with foreign assistance. The funds from UNESCO came as Roubles from thethen Soviet Union. In 1961 Parliament decreed the IITs as ‘Institutes ofNational Importance'. Since then, IITB has grown from strength to strength to emerge as one of the top technical universities in the world. The institute isrecognised worldwide as a leader in the field of engineering education andresearch. Reputed for the outstanding calibre of students graduating from itsundergraduate and postgraduate programmes, the institute attracts the beststudents from the country for its bachelor's, master's and doctoral programmes.Research and academic programmes at IIT Bombay are driven by an outstanding faculty, many of whom are reputed for their research contributionsinternationally. IIT Bombay also builds links with peer universities andinstitutes, both at the national and the international levels, to enhanceresearch and enrich its educational programmes. The alumni have distinguished themselves through their achievements in and contributions to industry,academics, research, business, government and social domains.印度理工学院孟买分校成立于1958年,是印度理工学院系统中成立第二早的学校。
十三矢量调制法

A Study of Neutral Point Potential and Common Mode V oltage Control in Multilevel SPWMTechniqueP. K. Chaturvedi, Shailendra Jain, and Pramod Agrawal, Member, IEEEAbstract—Conventional 2-level PWM inverters generate high d v/d t and high frequency common mod e voltages which is very harmful in electric d rives applications. It may d amage motor bearings, con d ucte d electromagnetic interferences, an d malfunctioning of electronic equipments. Due to capacitor voltage unbalancing, neutral point potential also varies from zero.This paper presents a simple method to control the harmonics, common mod e voltages and neutral point potential variation in neutral point clamped (NPC)inverters using d ifferent structures of sine-triangle comparison method such as Phase Disposition (PD), Phase Opposition Disposition (POD), and Common Mo d e Voltage off-set voltage a d d ition metho d. Simulation results confirm the effectiveness of these simple method s to control common mod e voltages.Neutral point potential variation is limited to less than 2%of d c capacitor voltage using a simple closed loop PI regulator. Experimental results presented have been obtained using d SPACE board DS 1104.Index Terms—Common Mode Voltage, Harmonics,Multilevel Inverter, Neutral Point Potential Control.I. I NTRODUCTIONR ecently,multilevel inverters have been found wide spread acceptability in medium and high voltage applications.Multilevel inverters have the advantage of producing high voltage high power with improved power quality of the supply. It also eliminates the use of problematic series-parallel connections of switching devices. However, multilevel PWM inverters generate common mode voltages as in the case of conventional2-level inverters. The problem of common mode voltage generation in multilevel inverters has been studied extensively during last decade [1-5]. Common mode voltages are generated due to shaft voltages, circulating leakage currents through parasitic capacitance between motor windings, rotor and frame. The number of current spikes and magnitude of common mode voltage is determined by dv/dt and number of commutations. Several methods have been suggested for solving this problem. Some methods are based on additional circuit like filters. Other methods use advanced modulation strategies avoiding the generation of common mode voltages. But, these methods work at higher switching frequency,thus increasing the losses [1]-[3]. Various multilevel inverter control techniques, using sine-triangle comparison, for harmonic reduction have been reviewed in [4].But the issue of common mode voltage control was not covered. Opportunities of harmonic reduction in cascaded multilevel inverters were investigated in [5-6] using carrier based PWM techniques. Conventional multilevel SPWM techniques generate a significant amount of common modevoltage which may be around the dc voltage level.P.K. Chaturvedi is Research Scholar at Electrical Engineering Department, National Institute of Technology, Bhopal, India; (e-mail: pradyumnc74@).Shailendra K. Jain., is Assistant Professor with the Electrical Engineering Department,National Institute of Technology, Bhopal, India; (e-mail: shailjain02@).Pramod Agarwal is Professor with the Electrical Engineering Department, Indian Institute of Technology, Roorkee, India (e-mail: pagarwal@iitr.ernet.in).Fig. 1. Structure of 3-phase,3-level diode clamped inverter.Another problem which NPC inverter faces is neutral point potential (NPP) variation due to voltage unbalancing between two capacitors. Due to the variation in NPP, excessive high voltages may be applied across switching devices. Several methods have been investigated to control the NPP variation and neutral point current[7-10]. A neutral point voltage regulator has been modeled and designed in [10]. But it works at 5kHz switching frequency resulting in high switching losses. In this paper, a NPP regulator is presented which works at low switching frequency of 2 kHz. This paper also investigates the possibilities of using different multilevel SPWM techniques such as Phase Disposition(PD),Phase Opposition Disposition (POD) and Common Off-set voltage addition method (Bias method) to reduce the common mode voltages in 3-level diode clamped inverter. Results show drastic reduction in THD using modified SPWM methods. At the same time common mode voltages are also controlled upto nearly half of the magnitude as compared to conventional multilevel SPWM methods. Neutral point potential variation is also controlled by closed loop PI regulator.This regulator provides capacitor voltage balancing and harmonics reduction in load voltage and current below IEEE-519 standard.II. O PERATION OF 3-L EVEL SPWMF ig. 1 shows the very popular topological structure of diode clamped 3-phase, 3-level inverter considered here for study. The switching states of the inverter are shown in Table I for one leg. It gives the output pole voltage V AO, output line voltage V AB and switch state. Switch state ‘1’ means ‘on’ and ‘0’means ‘off’. This switching pattern can be achieved by means of different multilevel control strategies such as square wave switching, sine-triangle comparison method(SPWM), space vector modulation(SVM), selective harmonic elimination technique, hysteresis current control, sigma-delta modulation etc. Of these methods, sinusoidal pulse width modulation(SPWM)is the simple and cost effective method to implement, therefore considered here.TABLE IS WITCHING S TATES OF 3-L EVEL D IODE C LAMPED I NVERTERV AB Output Pole Voltage(V AO)Switch StatesS a1S a2S a1’S a2’- V dc/2000110V dc/20110V dc/2V dc1100SPWM technique is again subdivided into following categories:x Phase Disposition (PD) method,x Phase Opposition Disposition (POD) method,x Phase Shifted (PS) method,x Hybrid method,x Third Harmonic Injection (THI) method.Basic principles of pulse generation for 3-level PD and POD SPWM techniques are shown in F ig. 2 and 3. F undamental frequency three-phase sinusoidal reference waves v r, v y and v b are compared with two high frequency triangular carrier waves ‘carrier 1’ and ‘carrier 2’. Each intersection gives rise to the control pulses for switching devices of inverter.The reference sinusoidal waves can be represented by,v r = V m sin (Ȧt)v y = V m sin (Ȧt-1200)(1)v b = V m sin (Ȧt-2400)PD and POD SPWM techniques have been selected for study without and with addition of common mode voltage off-set as shown in F ig. 2 to F ig. 5. Common mode voltage or zero sequence voltage inrepresented by,V cm = (v r+v y+v b)/3(2) where, v r, v y and v b are the phase voltages of inverter. This voltage is around 150-200 volts (peak) in conventional 2-level inverters for a dc voltage of 200 volts. To reduce it, following common mode off-set voltage is to be added,V offset = - [min(v r, v y, v b) + max(v r, v y, v b)] /2 (3) Therefore the new reference or modulation wave becomes,V* = v(r, y, b) + V offset(4) where, v(r, y, b) is given by equation (1). F ig. 4 and F ig.5 give the reference 3-phase waves as obtained from equation (4). The ‘max’, ‘min’, one phase voltage v r and off-set voltage signals,as obtained from equation (3) and (4), are shown in Fig. 6 for PD SPWM case.Fig. 2. Modulation and carrierwaveforms with PD SPWM technique.Fig. 3. Modulation and carrier waveforms with POD SPWM technique.F ig. 4. Modulation and carrier waveforms with addition of common mode off-set voltage in PD SPWM technique.F ig. 5. Modulation and carrier waveforms with addition of common modeoff-set voltage in POD SPWM technique.time (sec)F ig. 6. Signals ‘Vmax’, ‘Vmin’,‘v r ’ and off-set voltage ‘Voffset’ in PD SPWM technique with addition of offset voltage to the reference signals.III. D ESIGN OF N EUTRAL P OINT P OTENTIAL R EGULATOR F ig.7shows the closed loop scheme of proportional-integral (PI) neutral point potential (NPP) regulator.The proposed PI voltage regulator aims to stabilize the dc link voltage to control neutral point potential variation by controlling the charging and discharging of upper and lower dc bus capacitors without dc capacitor voltage sensing. Three-phase inverter output voltages are sensed and converted into per unit system.These per unit voltages are converted into dqo axis using following 3-phase to two-phase conversion,V d = 2/3 [V a sin(Ȧt) + V b sin(Ȧt-1200) + V c sin(Ȧt-2400)],V q = 2/3 [V a cos(Ȧt) + V b cos(Ȧt-1200) + V c cos(Ȧt-2400)],V o = (V a + V b + V c )/3(5)These dqo voltages, V dqo , are compared with set values of dqo voltages V dqo *. It results in voltage error which is processed through a proportional-integral (PI) controller to generate two axis command signals V dq . Then three phase reference voltage signal for PWM generator is synthesized using following two-to-three phase conversion,V a = [V d sin(Ȧt) + V q cos(Ȧt) + V o ],V b = [V d sin(Ȧt-1200) + V q cos(Ȧt-1200) + V o ],V c = [V d sin(Ȧt-2400) + V q cos(Ȧt-2400) + V o ], (6) Amplitude modulation index, m, is defined as,m = sqrt(V d 2 + V q 2)(7)and the gain of PI controller is,G = K p + [K i *T s /(Z-1)](8)Values of K p , K i and limits of integration are tuned to achieve fast response of modulation index and to reduce NPP variation below 2%. Output of 3-level PWM generator block is the 3-phase sinusoidal reference signals to be applied to the PD SPWM scheme as discussed in previous section.IV. S IMULATION R ESULTSA simulation model has been developed in Matlab environment.Simulation parameters are given in Appendix I. Fig. 8 and Fig. 9, show the waveforms and harmonic spectrum of line voltage with PD SPWM without and with filter. It is observed that fundamental voltage is increased from 173.2 volts to 181.2 volts with reduction in % THD from 29.34% to 2.00%. Switching frequency used is 1 kHz. Table II gives the %THD and fundamental value of line voltage (V 1ab ) and current (i 1a )without and with filter. From this table, it is clear that the fundamental voltage increases with filter andmaintaining the low THD, well below the IEEE-519 standard.Time (s)Harmonic orderFundamental (50Hz) = 173.2, THD= 29.34%M a g (% o f F u n d a m e n t a l )Fig. 8. Line voltage and its harmonic spectrum with PD SPWM.Time (s)Time (s)Time (s)Vdc1Time (s)Vdc2Time (s)Neutral Point PotentialH Fig. 11. Voltages across capacitors,V dc1, V dc2 and neutral point potential with its frequency spectrum.Time (s)Harmonic orderFundamental (50Hz) = 181.2 , THD= 2.00%M a g (% o f F u n d a m e n t a l )armonic orderFundamental (150Hz) = 3.978, THD= 3.00%M a g (% o f F u n d a m e n t a l )Fig. 9. Line voltage and its harmonic spectrum in PD SPWM with filter.Fig. 10 gives the common mode voltages with normal and modified PD and POD SPWM techniques. It is clear from the Fig. 10, that peak of the common mode voltage (V cm ) is less sharp in the case of Fig. 10(c) and amplitude is reduced from around 60volts in PD SPWM to around 34 volts in POD SPWM. Also frequency of V cm is reduced in F ig. 10(d) as compared to its counterpart in F ig. 10(b). Therefore, POD-SPWM technique will be advantageous in view of the common mode voltage amplitude and frequency stress on motor windings.F ig. 10. Common mode voltages with (a)PD,(b)POD,and (c)common mode voltage PD and (d) common mode voltage POD SPWM techniques.F ig. 11-15 shows, the results of closed loop control of inverter voltages and neutral point potential control with PI regulator. Upper and lower dc link voltage and neutral point potential is shown in F ig. 11. It is observed that % THD in NPP is well below the IEEE-519 standard of 5 %. The frequency of NPP was observed at 150 Hz. Average dc bus voltage across capacitors is 268 volts with % THD of 0.76.The variation in NPP was observed at 1.4 % of dc bus voltage across one capacitor.Time (s)Harmonic orderFundamental (50Hz) = 376.8, THD= 17.17%M a g (% o f F u n d a m e n t a l )F ig.12.Inverter output voltage, V ab , and its harmonic spectrum at 2 kHz switching frequency.Time (s)Harmonic orderFundamental (50Hz)= 371.1 , THD=2.05%M a g (% o f F u n d a m e n t a l )F ig. 13. Load voltage and its harmonic spectrum at 2 kHz switching frequency.Inverter output voltage its harmonic spectrum for two cycles is shown in F ig. 12. Voltage across load is shown in Fig. 13. It is observed that % THD in voltage is reduced from 17.17 to 2.05 when using LC passive filter with 2mH inductance and 2kVar capacitive reactive power. Inverter line currents without and with filter are shown in Fig. 14 and Fig. 15.Current THD also reduces from 12.20 % to 1.27 % using suitable passive filter.Time (s)i a (a m p )Current, ia, Before FilterHarmonic orderFundamental (50Hz) = 19.58 , THD= 12.20%M a g (% o f F u n d a m e n t a l )Fig. 14. Inverter output current and its harmonic spectrum at 2 kHz switching frequency.Time (s)i a (a m p )Current, ia, After FilterHarmonic orderFundamental (50Hz) = 18.75 , THD=1.27%M a g (% o f F u n d a m e n t a l )Fig. 15. Filtered inverter output current and its harmonic spectrum at 2 kHz switching frequency.V. E XPERIMENTAL V ERIFICATIONA laboratory prototype of 3-phase, 3-level diode clamped inverter has been developed using IGBTs. Control logic has been developed in Matlab environment and interfacing was performed using dspace DS-1104. A dc link capacitor of 2200 μF is used. Three-phase uncontrolled diode bridge rectifier is used to supply input dc voltage to 3-level inverter at 40 volts. Only few selected results have been presented.F ig.16 shows firing pulses generated with PD SPWM. F ig. 17 shows phase voltage and line voltage waveforms at 2 kHz switching frequency. It is in agreement with simulation result shown in Fig. 8. Harmonic spectrums of phase and line voltages are shown in F ig. 18. Harmonic contents in inverter output phase and line voltages are 36.9%and 15.1%,which are comparable with simulation results of 40% and 19.60 %. Common mode voltage and neutral point potential control study are in progress experimentally and will be reported in future.(a)(b)Fig.16.Firing pulses for switches (a) S a1, S a2, S a1’, and S a2’ of one phase, and (b) S a1, S b1, and S c1 of three phases, with PD SPWM technique.(a)(b)Fig.17. Inverter output voltages, (a)phase voltage, and (b) line voltage, with PD SPWM technique.(a) (b)Fig. 18. Harmonic spectrum of inverter output voltages, (a) phase voltage, and (b) line voltage, with PD SPWM technique.VI. C ONCLUSIONCommon mode voltage generated in PWM inverter output may damage the motor windings,shaft,and bearings.Although, some methods have been developed for completely eliminating common mode voltages (with space vector PWM techniques) which is very complex to implement, it may be possible control it via simple SPWM techniques and their modified forms such as addition of common mode voltage off-set to the actual reference voltage wave as presented in this paper.Simulation results show that modified SPWM technique not only controls the THD in output voltage of inverter but also reduces the amplitude, switching transients and frequency of common mode voltages. Simple closed loop PI voltage regulator has been proposed to control neutral point potential without sensing dc capacitor voltages. Experimental work on control of common mode voltage and neutral point potential control is in progress and will be presented in futurework.VII. A PPENDIX -I:S IMULATION P ARAMETERSLoad : 50 kW, 1 kVAr (inductive), 400 volts, 50 Hz. Source : 3-phase, 10 MVA, 11kV, 50 Hz.Step Down Transformer :10 MVA, 50 Hz, 11kV/400 Volts.Inverter Output LC Filter : 50 mH, 1 kVar (capacitive).(open loop), and 2mH, 2kVar (closed loop PI regulator)Voltage Regulator Gains : K p = 0.1, K i = 10. Switching Frequency : 2 kHz.VIII. A CKNOWLEDGEMENTThis work was supported in part by the MHRD sponsored R & D project “Development of DSP Controlled Multilevel Inverter, F.26-12/2005, TS V, and AICTE New Delhi under Career Award Scheme for Young Teachers Grant F. No. 1-51/FD/CA/(011)/2003-05.IX. R EFERENCES[1]Jose Rodrihuez, J. Pontt, et. al, "A New Modulation Method to Reduce Common Mode Voltages in Multilevel Inverters," IEEE Trans.Industrial Electronics , vol. 51, no. 4, pp. 834-839, Aug. 2004.[2]H.Zhang, A. V. Jouanne et. al., "Multilevel Inverter Modulation Schemes to Eliminate Common Mode Voltages,"IEEE Trans. On Industry Applications,vol. 36, no. 6, pp. 1645-1653, Nov/Dec 2000.[3]A. K. Gupta, Ashwin M. Khambadkone, “A Space Vector Modulation Scheme to Reduce Common Mode Voltages for Cascaded Multilevel Inverters,”IEEE Trans. Power Electroni cs , vol. 22, no. 5,pp.1672-1681, Sept. 2007.[4]A. M. Massoud, S. J. Finney, andB. W. Williams, “Control Techniques for Multilevel Inverters,” in Proc. 34th Annu. Power Electron i cs Specialist Conf. (PESC) Rec.,June 2003, vol. 1, pp. 171-176.[5]Thomas Bruckner, and D. G. Holmes, “Optimal Pulse-Width Modulationfor Three-Level Inverters,” IEEE Trans. Power Electronics , vol. 20, no.1, pp. 82-89, Jan 2005.[6]P. Srikant Varma, and G. Narayanan, “Space Vector PWM as aModified F orm of Sine-Triangle PWM for Simple Analog or Digital Implementation,”IETE Journal of Research,vol.52, no. 6, pp. 435-449,Nov/Dec 2006.[7]Ashish Bendre, and Giri Venkataramanan, “Neutral Current RippleMinimization in a Three Level Rectifier,” IEEE Trans. On Industry Applications,vol. 42, no. 2, pp.582-590, Mar/Apr 2006.[8]H.du Toit Mouton, "Naturtal Balancing of Three-Level Neutral PointClamped PWM Inverter,"IEEE Trans. Industri al Electroni cs , vol. 49,no. 5, pp. 1017-1025, Oct 2002.[9]Annette ve Jouanne, Shaoan Dai, and Haoran Zhang , "A MultilevelInverter Approach Providing DC-Link Balancing, Ride Through Enhancement,and Common Mode Voltage Elimination,"IEEE Trans.Industrial Electronics , vol. 49, no. 4, pp. 739-745, Aug. 2002.[10]Ashish Bendre,Giri Venkataramanan, V. Srinivasan, and D. Rosene,“Modeling and Design of a Neutral Point Voltage Regulator for a Three Level Diode Clamped Inverter Using Multiple Carrier Modulation,” Research Report, 2003-26, WEMPEC, University of Wisconsin-Madison.X. B IOGRAPHIESShailendra Jain received the B.E. degree from Samrat Ashok Technological Institute,Vidisha, India, in 1990, the M.E. degree from Shri Govindram Seksaria Institute of Technology and Science, Indore, India, in 1994, and the Ph.D. degree from the Indian Institute of Technology,Roorkee,India,in 2003. He was a Post Doctorate F ellow at University of Western Ontario,Canada in 2007. Currently, he is Assistant Professor inthe Department of Electrical Engineering at Maulana Azad National Institute of Technology (Deemed University), Bhopal, India. His fields of interest include power electronics, electrical drives, active power filters, F uel Cell technology and high power factor converters.Pramod Agarwal (M’99) received the B.E., M.E., and Ph.D. degrees in electrical engineering from the University of Roorkee, Roorkee, India, in 1983, 1985,and 1995, respectively. Currently, he is Professor in the Electrical Engineering Department at the Indian Institute of Technology, Roorkee, India. He was a Lecturer in the Department of Electrical Engineering atthe University of Roorkee in 1985 and became an Assistant Professor in 1996.He was a Post-Doctoral Fellow at the University du Quebec, Montreal, QC, Canada, from 1999 to 2000. He has guided more than 50 B.E. and 25 M.E.projects, and published many papers in various national and international journals and conferences. He has developed a number of educational units for laboratory experimentation. His fields of specialization are electrical machines, power electronics, microprocessor-and microcomputer-controlled ac/dc drives, active power filters, and high power factor converters.P. K. Chaturrvedi received B.E. and M.E. degree fromSamrat Ashok Technological Institute, Vidisha (MP),India, in 1996 and 2001 respectively. He has been with the department of Electrical Engineering as Lecturer at Samrat Ashok Technological Institute, Vidisha (MP), India.Currently, he is working towards Ph.D.degree at Maulana Azad National Institute of Technology (Deemed University), Bhopal, India. His fields of interest are electrical drives,high power factor converters and multilevel inverters.。
2013及14年度QS亚洲大学排名前100

2014QS亚洲大学排名前100名单QS2014亚洲大学排名,中国大陆22校上榜,高于日本的21所,排名亚洲第一。
中国大陆排名前10 的学校依次是:北京大学(8)、清华大学(14)、复旦大学(22)、中国科技大学(25)、南京大学(26)、上海交通大学(28)、浙江大学(31)、北京师范大学(42)、南开大学(50)、中山大学(54)。
排名学校学校英文名国家/地区1 新加坡国立大学National University of Singapore (NUS) 新加坡2 韩国高等科技学院KAIST - Korea Advanced Institute of Science & Technology 韩国3 香港大学University of Hong Kong 香港4 首尔国立大学Seoul National University 韩国5 香港科技大学The Hong Kong University of Science and Technology 香港6 香港中文大学The Chinese University of Hong Kong 香港7 南洋理工大学Nanyang Technological University (NTU) 新加坡8 北京大学Peking University 中国9 浦项科技大学(POSTECH)Pohang University of Science And Technology (POSTECH) 韩国10 东京大学The University of Tokyo 日本11 香港城市大学City University of Hong Kong 香港12 京都大学Kyoto University 日本13 大阪大学Osaka University 日本14 清华大学Tsinghua UniversityTsinghua University 中国15 东京工业大学Tokyo Institute of Technology 日本16 延世大学Yonsei University 韩国17 成均馆大学Sungkyunkwan University 韩国18 高丽大学Korea University 韩国18 东北大学Tohoku University 日本20 名古屋大学Nagoya University 日本21 国立台湾大学National Taiwan University (NTU) 台湾22 复旦大学Fudan UniversityFudan University 中国23 北海道大学Hokkaido University 日本24 九州大学Kyushu University 日本25 中国科技大学University of Science and Technology of China 中国26 南京大学Nanjing University 中国27 香港理工大学The Hong Kong Polytechnic University 香港28 上海交通大学Shanghai Jiao Tong University 中国29 汉阳大学Hanyang University 韩国29 国立交通大学National Chiao Tung University 台湾31 浙江大学Zhejiang University 中国32 马来亚大学Universiti Malaya (UM) 马来西亚33 国立清华大学National Tsing Hua University 台湾34 筑波大学University of Tsukuba 日本35 庆应义塾大学Keio University 日本36 国立成功大学National Cheng Kung University 台湾37 庆熙大学Kyung Hee University 韩国38 印度理工学院德里(IITD)Indian Institute of Technology Delhi (IITD) 印度39 梨花女子大学Ewha Womans University 韩国40 玛希隆大学Mahidol University 泰国41 印度理工学院孟买分校Indian Institute of Technology Bombay (IITB) 印度42 北京师范大学Beijing Normal University 中国43 神户大学Kobe University 日本44 早稻田大学Waseda University 日本45 香港浸会大学Hong Kong Baptist University 香港46 台北医科大学Taipei Medical University 台湾47 广岛大学Hiroshima University 日本48 朱拉隆功大学Chulalongkorn University 泰国49 国立阳明大学National Yang Ming University 台湾50 南开大学Nankai University 中国51 国立台湾科技大学National Taiwan University of Science And Technology 台湾52 印度理工学院坎普尔分校Indian Institute of Technology Kanpur (IITK) 印度53 印度理工学院马德拉斯分校Indian Institute of Technology Madras (IITM) 印度54 西江大学Sogang University 韩国54 中山大学Sun Yat-sen University 中国56 马来西亚国民大学Universiti Kebangsaan Malaysia (UKM) 马来西亚57 马来西亚科技大学Universiti Sains Malaysia (USM) 马来西亚57 西安交通大学Xi'an Jiaotong University 中国59 国立中央大学National Central University 台湾60 印度理工学院克勒格布尔分校Indian Institute of Technology Kharagpur (IITKGP) 印度61 东京医科齿科大学Tokyo Medical and Dental University 日本62 千叶大学Chiba University 日本63 菲律宾大学University of the Philippines 菲律宾63 武汉大学Wuhan University 中国65 同济大学Tongji University 中国66 马来西亚理工大学Universiti Teknologi Malaysia (UTM) 马来西亚67 金泽大学Kanazawa University 日本68 韩国中央大学Chung-Ang University 韩国68 国立釜山大学Pusan National University 韩国70 印度理工学院鲁尔基分校Indian Institute of Technology Roorkee (IITR) 印度71 印度尼西亚大学University of Indonesia 印尼72 上海大学Shanghai University 中国73 韩国外国语大学Hankuk (Korea) University of Foreign Studies 韩国73 国立中山大学National Sun Yat-sen University 台湾75 国立台湾师范大学National Taiwan Normal University 台湾76 马来西亚博特拉大学Universiti Putra Malaysia (UPM) 马来西亚77 哈尔滨工业大学Harbin Institute of Technology 中国78 人民大学Renmin (People’s) University of China中国79 北京航空航天大学Beihang University (former BUAA) 中国79 北京理工大学Beijing Institute of Technology 中国81 长庚大学Chang Gung University 台湾81 德里大学University of Delhi 印度81 首尔大学University of Seoul 韩国84 东南大学Southeast University 中国85 庆北国立大学Kyungpook National University 韩国85 厦门大学Xiamen University 中国87 国立全北大学Chonbuk National University 韩国88 冈山大学Okayama University 日本89 国立中兴大学National Chung Hsing University 台湾90 大阪城市大学Osaka City University 日本91 韩国天主大学The Catholic University of Korea 韩国92 清迈大学Chiang Mai University 泰国93 天津大学Tianjin University 中国94 东京都会大学Tokyo Metropolitan University 日本95 印度理工学院古瓦哈提分校Indian Institute of Technology Guwahati (IITG)印度96 东国大学Dongguk University 韩国96 仁荷大学Inha University 韩国96 东京农业科技大学Tokyo University of Agriculture and Technology 日本99 华东理工大学East China University of Science and Technology 中国99 熊本大学Kumamoto University 日本101 国立全南大学Chonnam National University 韩国参考资料:(1)QS University Rankings: Asia 20142013QS亚洲大学排名前100榜单QS2013亚洲大学排名,中国大陆21校上榜,仅次日本的23所,排名亚洲第二。
Socio-economic scenarios

Anand Patwardhan, IIT-Bombay
10
Decoupling drivers (income and energy)
Anand Patwardhanand branching points
21
Feedback – what parts of the system can be treated as exogenous?
Anand Patwardhan, IIT-Bombay
15
General to the specific
Global to local / regional Down-scale the global Or Use the global for checking consistency
macro)? What are plausible storylines for describing their
evolution? What are the interconnections and dependencies? Can we quantify some of the drivers and their
Anand Patwardhan, IIT-Bombay
18
From scenarios to forecasts
Build forecasts in the context of scenarios Extrapolative
Statistical Model-based (example: diffusion models)
Storylines:
Perhaps start from the SRES storylines Development with settlement form and
MooCs与SPOC的比较及发展方向

MooCs 与SPOC 的比较及发展方向收稿日期:2017-08-10基金项目:湖北工业大学博士启动基金项目“我国政府网站服务优化框架研究”、湖北省社科基金项目“中国政府网站服务体系重构研究”(2015131)作者简介:陈美,讲师,博士,研究方向:信息资源管理。
一、MOOCs 概述MOOCs :是全球知名大学所录制的免费在线开放式课程,通过诸如Coursera 、EdX 、Udecity 等知名平台营运,为学生提供一个开放且富有弹性的学习渠道,能够根据自己的学习速度、条件、特性掌握自我导向的学习,但问题在于课程完课率低、缺乏小组协作学习、缺乏公平评分机制。
MOOC 除了分为cMOOC 与xMOOC这两种类型以外,还包括小规模私有开放课程(Small Private Open Courses ,SPOCs ),分布式开放合作课程(Distributed Open Collaborative Course ,DOCCs )和小区网络开放课程或小规模在线课程(Social Online Open Course or Small Open Online Course ,SOOCs )。
MOOCs 的优点:在课程安排及呈现上,较容易呈现授课教师个人特色,且课程的自由度较高,对于自学动机强的学习者,MOOCs 是一个较佳的学习渠道。
就学校层面而言,MOOCs 有助于提升开课国的高教国际品牌与形象,而且当修课人数量较大时,可能获得经济与名誉的回馈。
就学生层面而言,MOOCs 适合自学动机强的学员,从而能够以最经济的方式达到最大学习成就。
MOOCs 的缺点在于:(1)投入成本较高,如MOOCs 课程需要的硬设备及网络带宽要求较高;(2)由于课程的学员完课率低,导致投入成本与获得效益之间可能不成正比;(3)平台与机制维运相对复杂;(4)在课程评估方面,在线防弊较难执行。
二、SPOC 概述2013年,柏克莱加州大学Armando Fox 教授提出SPOC 一词(Small Private Online Course ),按照字面解释为“小规模限制性在线课程”。
bomblab 斯坦福大学有名的计算机安全bomb实验

EEL4930/5934Cross-Layer Computer Security,Spring2015Assignment1:Defusing a Binary BombDue:Feb1711:59pm1IntroductionThe nefarious Dr.Evil has planted a slew of“binary bombs”on our class machines.A binary bomb is a program that consists of a sequence of phases.Each phase expects you to type a particular string on stdin. If you type the correct string,then the phase is defused and the bomb proceeds to the next phase.Otherwise, the bomb explodes by printing"BOOM!!!"and then terminating.The bomb is defused when every phase has been defused.There are too many bombs for us to deal with,so we are giving each student a bomb to defuse.Your mission,which you have no choice but to accept,is to defuse your bomb before the due date.Good luck, and welcome to the bomb squad!Step1:Get Your BombYou can obtain your bomb by pointing your Web browser at::15213This will display a binary bomb request form for you tofill in.Enter your user name and email address and hit the Submit button.The server will build your bomb and return it to your browser in a tarfile called bombk.tar,where k is the unique number of your bomb.Save the bombk.tarfile to a(protected)directory in which you plan to do your work.The directory is sup-posed to be under a Linux environment.Then give the command in terminal:tar-xvf bombk.tar. This will create a directory called./bombk with the followingfiles:•README:Identifies the bomb and its owners.•bomb:The executable binary bomb.•bomb.c:Sourcefile with the bomb’s main routine and a friendly greeting from Dr.Evil.If for some reason you request multiple bombs,this is not a problem.Choose one bomb to work on and the highest score will be your grade.Remember that you could run your bomb on your own linux machine, but you have to be connected to the network for your score to be recorded.Step2:Defuse Your BombYour job for this lab is to defuse your bomb.You can use many tools to help you defuse your bomb.Please look at the hints section for some tips and ideas.The best way is to use your favorite debugger to step through the disassembled binary.Each time your bomb explodes it notifies the bomblab server,and you lose0.05point(up to a max of3 points)in thefinal score for the lab.So there are consequences to exploding the bomb.You must be careful! The point from phase1to6is1point,1point,1.5points,2points,2points and2.5points respectively. There are also extra2points for the secret phase.So the maximum score you can get is12points. Although phases get progressively harder to defuse,the expertise you gain as you move from phase to phase should offset this difficulty.However,the last phase will challenge even the best students,so please don’t wait until the last minute to start.The bomb ignores blank input lines.If you run your bomb with a command line argument,for example, linux>./bomb psol.txtthen it will read the input lines from psol.txt until it reaches EOF(end offile),and then switch over to stdin.In a moment of weakness,Dr.Evil added this feature so you don’t have to keep retyping the solutions to phases you have already defused.To avoid accidentally detonating the bomb,you will need to learn how to single-step through the assembly code and how to set breakpoints.You will also need to learn how to inspect both the registers and the memory states.One of the nice side-effects of doing the lab is that you will get very good at using a debugger.This is a crucial skill that will pay big dividends the rest of your career.LogisticsThis is an individual project.All handins are electronic.Clarifications and corrections will be posted on the course message board.HandinThere is no explicit handin.The bomb will notify your instructor automatically about your progress as you work on it.You can keep track of how you are doing by looking at the class scoreboard at: :15213/scoreboardThis web page is updated continuously to show the progress for each bomb.Hints(Please read this!)There are many ways of defusing your bomb.You can examine it in great detail without ever running the program,andfigure out exactly what it does.This is a useful technique,but it not always easy to do.You can also run it under a debugger,watch what it does step by step,and use this information to defuse it.This is probably the fastest way of defusing it.We do make one request,please do not use brute force!You could write a program that will try every possible key tofind the right one.But this is no good for several reasons:•You lose0.05point(up to a max of3points)every time you guess incorrectly and the bomb explodes.•Every time you guess wrong,a message is sent to the bomblab server.You could very quickly saturate the network with these messages,and cause the system administrators to revoke your computer access.•We haven’t told you how long the strings are,nor have we told you what characters are in them.Even if you made the(incorrect)assumptions that they all are less than80characters long and only contain letters,then you will have2680guesses for each phase.This will take a very long time to run,and you will not get the answer before the assignment is due.There are many tools which are designed to help youfigure out both how programs work,and what is wrong when they don’t work.Here is a list of some of the tools you mayfind useful in analyzing your bomb,and hints on how to use them.•gdbThe GNU debugger,this is a command line debugger tool available on virtually every platform.You can trace through a program line by line,examine memory and registers,look at both the source code and assembly code(we are not giving you the source code for most of your bomb),set breakpoints, set memory watch points,and write scripts.The CS:APP web site/public/students.htmlhas a very handy single-page gdb summary that you can print out and use as a reference.Here are some other tips for using gdb.–To keep the bomb from blowing up every time you type in a wrong input,you’ll want to learnhow to set breakpoints.–For online documentation,type“help”at the gdb command prompt,or type“man gdb”,or“info gdb”at a Unix prompt.Some people also like to run gdb under gdb-mode inemacs.•objdump-tThis will print out the bomb’s symbol table.The symbol table includes the names of all functions and global variables in the bomb,the names of all the functions the bomb calls,and their addresses.You may learn something by looking at the function names!•objdump-dUse this to disassemble all of the code in the bomb.You can also just look at individual functions.Reading the assembler code can tell you how the bomb works.Although objdump-d gives you a lot of information,it doesn’t tell you the whole story.Calls to system-level functions are displayed in a cryptic form.For example,a call to sscanf might appear as:8048c36:e899fc ff ff call80488d4<_init+0x1a0>To determine that the call was to sscanf,you would need to disassemble within gdb.•stringsThis utility will display the printable strings in your bomb.Looking for a particular tool?How about documentation?Don’t forget,the commands apropos,man, and info are your friends.In particular,man ascii might come in gas will give you more than you ever wanted to know about the GNU Assembler.Also,the web may also be a treasure trove of information.For those of you who have not used linux before,you should download Vmware Player/Fusion/Workstation or VirtualBoxfirst and then install linux environment(ubuntu recommended)in it.Thanks to Abrar Polani, there is a detailed guide on VirtualBox download and Ubuntu installation that you can follow.Now start to defuse your bombs!Good luck!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Data Integration,Entity Reconciliation and Search in Personal Information NetworksSrivatsa Iyengar IIT Bombay Apurva JadhavY ahoo!BangaloreSoumen Chakrabarti∗IIT BombayVikas KediaIIT BombayABSTRACTWe present SPIN,a system for Searching Personal Informa-tion Networks.SPIN seeks to integrate entities and relations from a wide variety of data sources such as address books, emails,documents onfile systems,blogs,messenger sessions, social networks and the Web into the PINDB:a universal graph format that has typed nodes,typed edges,and text associated with the ing the latest techniques for information extraction and deduplication,SPIN adds“soft edges”to the PINDB that correspond to entity aliases and mentions.SPIN’s search algorithms then use this represen-tation to respond to a hierarchy of useful semi-structured query classes with proximity,aggregation and ranking se-mantics that improves substantially beyond simple desktop search tools.SPIN is a self-contained Java application and has a modular architecture where other researchers can plug in new approaches to data integration and search.1.INTRODUCTIONStorage systems have become dramatically affordable over the last few years,enabling large-scale archival of emails, contacts and documents on personal rge per-sonal storage can be used effectively only if efficient data integration and search tools are available.Recent operating systems can index hard disks and enable keyword search over manyfile types.Web-based email services include keyword search support.Many Web search companies offer desk-top applications that can index and search thefile system, emails and browser caches.Many research prototypes exist as well[11,9,1,2].Most products and prototypes have stayed close to tradi-tional IR:they lack the capability to discover and represent entities and relations from the indexed data asfirst-class objects or reconcile entities from diverse and heterogeneous sources.Meanwhile,there is a need for extensive evaluation of the cutting-edge research literature on data integration [10,8],named-entity tagging[16,12],relation extraction [3],record linkage,deduplication[15,9]and graph search [5,4]in large-scale applications.Our proposed system SPIN(acronym for Searching Per-sonal Information Networks)is a platform where such min-ing and searching ideas can be tested on real personal data, and is at the same time a powerful personal information management and search application.Our goals overlap with those of the RADAR[2],CALO[1]and IRIS[6]projects,but SPIN is also concerned with efficient data representation, indexing and update issues,as well as integrating advancedContact author soumen@cse.iitb.ac.inPermission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on thefirst page.To copy otherwise,to republish,to post on servers or to redistribute to lists,requires prior specific permission and/or a fee.Copyright200X ACM X-XXXXX-XX-X/XX/XX...$5.00.semistructured search with the information and graph min-ing components.2.SPIN ARCHITECTURE2.1PINDB and PINSchemaA PINDB consists of typed entities(nodes)and rela-tions(edges)between these entities[5,4].Entities can be persons,organizations,places,events,projects,trips,soft-ware,subscriptions and other artifacts.These are extracted from mentions in textual and semistructured sources,such as address books,documents and email.PIN edges repre-sent relations.Some are“hard”edges explicitly found in the data,e.g.,person sent email or email is-reply-to email. Others are“soft”or probabilistic edges induced through information extraction,e.g.,person wrote paper or email mentions person.Yet other soft edges are created by recon-ciling aliases.The PINSchema is a concise and accurate structural summary of the PIN graph.It is a graph among node-types connected through edge-types.All data in the PINDB and PINSchema is indexed using Lucene and stored in a Berkeley DBdatabase.Figure1:SPIN architecture.2.2AdaptersAdapters are responsible for populating the PINDB from various data sources conforming to the PINSchema.SPIN currently has adapters for emails,address books,research papers,and directory services.These adapters readily plug into an adapter registry that tells each of them how to embed graph fragments extracted from its source into the PINDB. SPIN wraps APIs published by Web search companies with query generators that use PINDB context intelligently.E.g.,although there are many Tom Mitchells mentioned on the Web,a PINDB context comprising emails and research papers can enable the search adapter to pad“Tom Mitchell”with other words(“machine learning”and“brain imaging”)to disambiguate the base entity.In future,SPIN will also incorporate trainable Web extractors which can then be used to quickly augment the PINDB with contact information, additional papers,etc.We are also adding adapters for popular social networks like LinkedIn()and Orkut(http: //),which will let us further augment the PIN graph.As the Semantic Web vision matures,the Web itself will start looking more like a gigantic PINDB.Many of the search paradigms that we will discuss next will extend naturally to the external Web.2.3ReconcilersA single real-world entity(e.g.person)may be repre-sented by multiple nodes in the PINDB because they were extracted from different sources(e.g.,email,paper,Web page)using different adapters.At this stage,reconcil-ers take over:using machine learning techniques[15,9]for alias resolution,the reconcilers introduce soft edges into the PINDB.One kind of soft edge connects aliases—nodes that are likely to refer to the same real-world entity.Another kind of soft edge connects mentions of entities to entities, e.g.,an edge from an email to a person if the email body is likely to have mentioned that person.Reconcilers aggregate information about an entity that would otherwise remain scattered in the PINDB,and it improves search accuracy.In activation search(discussed later),scores distributed across alias nodes reinforce each other after reconciliation,and activation from an attribute of one alias can increase the score of another alias.We use a graphical model for reconciliation[15].A node in the model represents either a pair of records or a pair of attributes.Edges connect the record pair node to the corresponding attribute pair nodes. E.g.,to reconcile per-sons,we use person name and affiliation as attributes.We iteratively train the model using a voted perceptron[7].In each iteration we actively select record pairs similar to ones wrongly labeled in the previous iteration and add them to the training set.While inferencing,wefirst use a canopy [13]to prune out highly dissimilar record pairs.Then we use the graphical model we learnt to infer duplicate pairs using a mincut algorithm[15].On a collection of research papers collected from a user’s file system,SPIN’s reconciler obtained an F1score of about 0.77on the task of reconciling person nodes.Unlike research prototypes,SPIN is designed to accept continual corrective input from the user and integrate these into its reconciliation system.Some examples of the benefits of reconciliation can be found in Section4.3.SEARCHING AND BROWSING3.1The3-tier query paradigmSPIN includes a proximity-assisted,type-sensitive query system.We provide a hierarchy of query paradigms:free-form keyword queries which require the same low cognitive load as Web queries,type-near queries that activate en-tities of a specified type with match predicates,and twig queries for users who are ready to exploit the PINSchema. Depending on the information need,even seasoned usersfind all the query paradigms handy.The type-near paradigm is particularly powerful given its simplicity. E.g.,the user can look for a student who graduated in2001and went to work at IBM using the query type=person NEAR org=IBM year=2001.However,seasoned users can exploit more sophisticated predicates after NEAR, involving shallow PINSchema knowledge[14].In SPIN,ev-ery entity is a set of(field,value)pairs. E.g.,an email hasfields From,To,Subject and Body.Assisted by the PIN-Schema,the user can visually edit a query whose string rep-resentation might look like type=org NEAR combine((From OR Subject)="John Matthews",Email=ANY),which will seek organizations near emails that contain“John Matthews”in the From or Subjectfields.In most cases,SPIN auto-prompts type andfield names.Twig queries are similar to their XML counterpart in that they(visually)specify a small schema skeleton,such as email←sent−person−works-for→org,but the twig is activated by other predicates as in type-near queries.Twig queries are useful while searching for events,e.g.“find an email about XML sent by someone working in Germany.”3.2Browsing search resultsThe response to a SPIN query is an ordered list of nodes or twigs.In Web search,text snippets associated with each URL are very valuable for user relevance judgment.In SPIN,a“snippet”is really a graph fragment that explains the large score of the response nodes or twigs.A great deal of care is needed to maintain a display of a screen-sized portion of graph contexts as“snippets.”As the user clicks around in the response fragments,SPIN continually com-putes the worth of displaying nodes on(precious)screen area,and evicts unnecessary nodes unobtrusively.Screen-shots of SPIN can be found at http://www.cse.iitb.ac. in/~soumen/tmp/kdd2006spin4.INITIAL EXPERIENCEWe compared SPIN with commercial desktop search sys-tems by running similar queries on all systems,with similar data. E.g.,we ran the query type=paper NEAR("HITS"), hoping to retrieve Kleinberg’s famous HITS paper.The re-sults obtained are summarized in the following table.Rank-ing produced by Google Desktop does not seem to exploit the linkage structure of citations.SPIN nails the best doc-ument right at the top of the list.SPINAuthoritative sources in a hyperlinked environmentImproved algorithms for topic distillation in a hyperlinked... Focused crawling a new approach to topic specific web... Mining sequential patternsLearning to probabilistically identify authoritative documents Google DesktopNot all hits are created equal cooperative proxy caching...A unified framework for web link analysisLink fusion,a unified link analysis framework for multitype... Entropy based link analysis for mining web informative... Learning to create customized authority listsDifferent papers may list the same author slightly differ-ently,as with Jon Kleinberg and J.M.Kleinberg in the sam-ple graph in Figure2.These start out as different nodes in SPIN because they were imported from different papers,or perhaps even by different adapters(email and papers,say). These nodes are connected to papers authored by Jon Klein-berg.In SPIN,all links are bidirectional,so high prestige of a paper is conducted to its author.Before reconciliation,the endorsement from high-prestige papers would be divided among the multiple alias nodes for Kleinberg.Reconciliation involves connecting aliases by an edge or hyperedge(shown as a“supernode”around the two alias nodes).After reconciliation,papers transferFigure 2:Effect of reconciliation on ranking.some of their prestige to the single supernode for the rec-onciled authors,thereby improving its rank.Thus Klein-berg is more likely to top the list of responses to the query type=person NEAR ("web graph""link topology")after reconciliation.Reconciliation also helps to combine information captured from various adapters.In the above example a course news-group adapter reads an email containing a mention of Klein-berg in the body and creates a graph fragment as shown in Figure 3.(Like hyperedges,the “mentioned-in”edge is a softedge.)Figure 3:Reconciliation and “mention”edges.The query “find papers written by persons mentioned in newsgroup postings”(which can be expressed as a SPIN twig query)is unlikely to return the papers written by Kleinberg since the mention node “Kleinberg”remains disconnected from the graph fragments emitted by other adapters.A reconciler for person nodes will likely reconcile this node with other nodes in the PIN graph and the above query will return results including the some of the papers written by Kleinberg.5.DEMONSTRATION SUMMARYWe will present a live demonstration of many of SPIN’s ca-pabilities.We will show the important adapters (email,pa-pers,address books,and a publication-oriented Web adapter)at work.We will also show how the reconciler introduces soft edges between aliases,and between mentions and en-tities.We will demonstrate some of the dominant query paradigms,and argue,through examples,that the linkage through the PINDB lead to better scoring and ranking than possible with a standard IR-based desktop search solution.We will also show the benefits of the browsing interface,with its intuitive graph contexts explaining why the top-ranking responses are related closely to the query.6.REFERENCES[1]CALO -Cognitive Assistant that Learns andOrganizes./project/CALO .[2]RADAR -Reflective Agents with DistributedAdaptive Reasoning. .[3]E.Agichtein and L.Gravano.Snowball:Extractingrelations from large plain-text collections.In ICDL ,pages 85–94.ACM,2000.[4]A.Balmin,V.Hristidis,and Y.Papakonstantinou.Authority-based keyword queries in databases using ObjectRank.In VLDB ,Toronto,2004.[5]G.Bhalotia,A.Hulgeri,C.Nakhe,S.Chakrabarti,and S.Sudarshan.Keyword searching and browsing in databases using BANKS.In ICDE .IEEE,2002.[6]A.Cheyer,J.Park,and R.Giuli.IRIS:Integrate.Relate.Infer.Share.In ISWC 2005Workshop on The Semantic Desktop ,2005.[7]M.Collins.Ranking algorithms for named entityextraction:Boosting and the voted perceptron.In ACL Conference ,pages 489–496,2002.[8]A.Doan,P.Domingos,and A.Y.Levy.Learningsource description for data integration.In WebDB (Informal Proceedings),pages 81–86,2000.[9]X.Dong,A.Halevy,and J.Madhavan.Referencereconciliation in complex information spaces.In ACM SIGMOD Conference ,pages 85–96,2005.[10]D.Florescu,D.Koller,and ingprobabilistic information in data integration.In The VLDB Journal ,pages 216–225,1997.[11]D.R.Karger and D.Quan.Haystack:A user interfacefor creating,browsing,and organizing arbitrary semistructured information.In Human Factors inComputing Systems (ACM CHI),pages 777–778,2004.[12]fferty,A.McCallum,and F.Pereira.Conditionalrandom fields:Probabilistic models for segmenting and labeling sequence data.In ICML ,2001.[13]A.McCallum,K.Nigam,and L.H.Ungar.Efficientclustering of high-dimensional data sets with application to reference matching.In SIGKDD Conference ,pages 169–178,2000.[14]D.Metzler and bining the languagemodel and inference network approaches to rmation Processing and Management ,40(5):735–750,2004.[15]Parag and P.Domingos.Multi relational recordlinkage.In SIGKDD Multi-Relational Data Mining Workshop ,2004.[16]S.Soderland.Learning information extraction rulesfor semi-structured and free text.Machine Learning ,34(1-3):233–272,1999.。