甘肃省会宁县第二中学高中数学选修2-2同步练习 综合测试题2 (新人教A版选修2-2)]

合集下载

(完整版)最新【人教A版】高中数学选修2-2综合测试题【2】及答案

(完整版)最新【人教A版】高中数学选修2-2综合测试题【2】及答案

高中新课标数学选修(2-2)综合测试题一、选择题(每题小题5分)1.设y=2x -x ,则x ∈[0,1]上的最大值是( ) A 0 B -41 C 21 D 41 2.若质点P 的运动方程为S(t)=2t 2+t (S 的单位为米,t 的单位为秒),则当t=1时的瞬时速度为( )A 2米/秒B 3米/秒C 4米/秒D 5米/秒 3.曲线y=-313x -2在点(-1,35-)处切线的倾斜角为( )A 30º B 45º C 135º D 150º 4.函数y=-2x + 3x 的单调递减区间是( )A (-∞,-36) B (-36,36) C(-∞,-36)∪(36,+∞) D (36,+∞) 5.过曲线y=3x +1上一点(-1,0),且与曲线在该点处的切线垂直的直线方程是( ) A y=3x+3 B y=3x +3 C y=-3x -31D y=-3x-3 6.曲线y=313x 在点(1,31)处的切线与直线x+y-3=0的夹角为 A 30º B 45º C 60º D 90º7.已知函数)(x f =3x +a 2x +b 的图象在点P (1,0)处的切线与直线3x+y=0平行.则a 、b 的值分别为( ).A -3, 2B -3, 0C 3, 2D 3, -4 8.已知)(x f =a 3x +32x +2,若)1(/-f =4,则a 的值等于( ) A319 B 310 C 316 D 313 9.函数y = 3x -12x +16在 [-3,3]上的最大值、最小值分别是( ) A 6,0 B 32, 0 C 2 5, 6 D 32, 1610.已知a>0,函数y=3x -a x在[1,+∞)上是单调增函数,则a 的最大值为( ) A 0 B 1 C 2 D 311.已知)(x f =23x -62x +m (m 为常数),在[-2,2]上有最大值3,则此函数在[-2,2]上的最小值为( )A -37B -29C -5D -1112.已知)(x f =x +3x , 且x 1+x 2<0, x 2+x 3<0, x 3+x 1<0则( )A f(x 1)+f(x 2)+f(x 3)>0B f(x 1)+f(x 2)+f(x 3)<0C f(x 1)+f(x 2)+f(x 3)=0D f(x 1)+f(x 2)+f(x 3)符号不能确定. 二、填空题(每小题4分)13.过抛物线y=)(x f 上一点A (1,0)的切线的倾斜角为45°则)1(/f =__________. 14.函数)(x f =3x -3x 的递减区间是__________15.过点P(-1,2)且与曲线y=32x -4x +2在点M(1,1)处的切线平行的直线方程是__________.16.函数)(x f =x (1-2x )在[0,1]上的最大值为__________. 三、解答题17.已知函数)(x f =a 4x +b 2x +c 的图像经过点(0,1),且在x =1处的切线方程是y=x -2. 求)(x f 的解析式;12分18.证明:过抛物线y=a(x -x 1)(x -x 2)(a ≠0, x 1< x 2)上两点A(x 1,0),B(x 2,0)的切线与x 轴所成的锐角相等。

高中数学新人教A版选修2-2同步练习:综合测试题1

高中数学新人教A版选修2-2同步练习:综合测试题1

高中新课标数学选修(2-2)综合测试题一、选择题1.在数学归纳法证明“1211(1)1n na a a a a n a+*-++++=≠∈-N ,”时,验证当1n =时,等式的左边为( ) A.1 B.1a - C.1a + D.21a -答案:C2.已知三次函数3221()(41)(1527)23f x x m x m m x =--+--+在()x ∈-+,∞∞上是增函数,则m 的取值范围为( )A.2m <或4m > B.42m -<<- C.24m << D.以上皆不正确答案:C3.设()()sin ()cos f x ax b x cx d x =+++,若()cos f x x x '=,则a b c d ,,,的值分别为( ) A.1,1,0,0 B.1,0,1,0C.0,1,0,1D.1,0,0,1答案:D4.已知抛物线2y ax bx c =++通过点(11)P ,,且在点(21)Q -,处的切线平行于直线3y x =-,则抛物线方程为( )A.23119y x x =-+ B.23119y x x =++ C.23119y x x =-+ D.23119y x x =--+答案:A5.数列{}n a 满足1120212112n n n nn a a a a a +⎧⎪⎪=⎨⎪-<⎪⎩,,,,≤≤≤若167a =,则2004a 的值为( )A.67B.57C.37D.17答案:C6.已知a b ,是不相等的正数,2a b x +=,y a b =+,则x ,y 的关系是( )A.x y >B.y x >C.2x y >D.不确定答案:B7.复数2()12m iz m i-=∈-R 不可能在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限答案:A(1),(2),8.定义A B B C C D D A ****,,,的运算分别对应下图中的(3),(4),那么,图中(A),(B)可能是下列( )的运算的结果( )A.B D *,A D * B.B D *,A C * C.B C *,A D * D.C D *,A D *答案:B9.用反证法证明命题“a b ∈N ,,如果ab 可被5整除,那么a ,b 至少有1个能被5整除.”则假设的内容是( )A.a ,b 都能被5整除 B.a ,b 都不能被5整除 C.a 不能被5整除D.a ,b 有1个不能被5整除答案:B10.下列说法正确的是( ) A.函数y x =有极大值,但无极小值 B.函数y x =有极小值,但无极大值 C.函数y x =既有极大值又有极小值 D.函数y x =无极值答案:B11.对于两个复数1322i α=+,1322i β=--,有下列四个结论:①1αβ=;②1αβ=;③1αβ=;④331αβ+=.其中正确的个数为( )A.1 B.2 C.3 D.4答案:B12.设()f x 在[]a b ,上连续,则()f x 在[]a b ,上的平均值是( ) A.()()2f a f b + B.()baf x dx ⎰C.1()2baf x dx ⎰ D.1()baf x dx b a -⎰答案:D二、填空题13.若复数222log (33)log (3)z x x i x =--+-为实数,则x 的值为 .答案:414.一同学在电脑中打出如下图形(○表示空心圆,●表示实心圆) ○●○○●○○○●○○○○●若将此若干个圆依此规律继续下去,得到一系列的圆,那么前2006年圆中有实心圆的个数为 .答案:6115.函数32()6(0)f x ax ax b a =-+>在区间[12]-,上的最大值为3,最小值为29-,则a ,b 的值分别为 .答案:2,316.由24y x =与直线24y x =-所围成图形的面积为 .答案:9三、解答题17.设n *∈N 且sin cos 1x x +=-,求sin cos n nx x +的值.(先观察1234n =,,,时的值,归纳猜测sin cos n n x x +的值.)解:当1n =时,sin cos 1x x +=-; 当2n =时,有22sin cos 1x x +=;当3n =时,有3322sin cos (sin cos )(sin cos sin cos )x x x x x x x x +=++-, 而sin cos 1x x +=-,12sin cos 1x x +=∴,sin cos 0x x =. 33sin cos 1x x +=-∴.当4n =时,有4422222sin cos (sin cos )2sin cos 1x x x x x x +=+-=. 由以上可以猜测,当n *∈N 时,可能有sin cos (1)n n n x x +=-成立.18.设关于x 的方程2(tan )(2)0x i x i θ-+-+=, (1)若方程有实数根,求锐角θ和实数根;(2)证明:对任意ππ()2k k θ≠+∈Z ,方程无纯虚数根.解:(1)设实数根为a ,则2(tan )(2)0a i a i θ-+-+=, 即2(tan 2)(1)0a a a i θ---+=.由于a ,tan θ∈R ,那么21tan tan 20tan 111a a a a θθ=-⎧--=⎧⇒⎨⎨=+=⎩⎩,,. 又π02θ<<, 得1π4a θ=-⎧⎪⎨=⎪⎩,.(2)若有纯虚数根()i ββ∈R ,使2()(tan )()(2)0i i i i βθβ-+-+=, 即2(2)(tan 1)0i βββθ-+--+=, 由β,tan θ∈R ,那么220tan 10βββθ⎧-+-=⎨+=⎩,,由于220ββ-+-=无实数解.故对任意ππ()2k k θ≠+∈Z ,方程无纯虚数根.19.设0t ≠,点(0)P t ,是函数3()f x x ax =+与2()g x bx c =+的图象的一个公共点,两函数的图象在点P 处有相同的切线.(1)用t 表示a b c ,,;(2)若函数()()y f x g x =-在(13)-,上单调递减,求t 的取值范围.解:(1)因为函数()f x ,()g x 的图象都过点(0)t ,,所以()0f t =,即30t at +=. 因为0t ≠,所以2a t =-.()0g t =,即20bt c +=,所以c ab =. 又因为()()f x g x ,在点(0)t ,处有相同的切线, 所以()()f t g t ''=,而2()3f x x a '=+,()2g x bx '=,所以232t a bt +=. 将2a t =-代入上式得b t =.因此3c ab t ==-.故2a t =-,b t =,3c t =-.(2)3223()()y f x g x x t x tx t =-=--+,2232(3)()y x tx t x t x t '=--=+-. 当(3)()0y x t x t '=+-<时,函数()()y f x g x =-单调递减.由0y '<,若0t >,则3tx t -<<;若0t <,则3tt x <<-.由题意,函数()()y f x g x =-在(13)-,上单调递减,则(13)3t t ⎛⎫-⊆- ⎪⎝⎭,,或(13)3t t ⎛⎫-⊆- ⎪⎝⎭,,. 所以9t -≤或3t ≥.又当93t -<<时,函数()()y f x g x =-在(13)-,上不是单调递减的. 所以t 的取值范围为(][)93--+ ,,∞∞.20.下列命题是真命题,还是假命题,用分析法证明你的结论.命题:若a b c >>,且0a b c ++=,则23b aca-<.解:此命题是真命题.0a b c ++=∵,a b c >>,0a >∴,0c <. 要证23b aca-<成立,只需证23b ac a -<, 即证223b ac a -<,也就是证22()3a c ac a +-<, 即证()(2)0a c a c -+>.0a c ->∵,2()0a c a c a b a +=++=-+>,()(2)0a c a c -+>∴成立,故原不等式成立.21.某银行准备新设一种定期存款业务,经预测,存款量与利率的平方成正比,比例系数为(0)k k >,且知当利率为0.012时,存款量为1.44亿;又贷款的利率为4.8%时,银行吸收的存款能全部放贷出去;若设存款的利率为x ,(00.048)x ∈,,则当x 为多少时,银行可获得最大收益?解:由题意,存款量2()f x kx =,又当利率为0.012时,存款量为1.44亿,即0.012x =时, 1.44y =;由21.44(0.012)k =·,得10000k =,那么2()10000f x x =,银行应支付的利息3()()10000g x x f x x ==·, 设银行可获收益为y ,则2348010000y x x =-,由于,296030000y x x '=-,则0y '=,即2960300000x x -=,得0x =或0.032x =. 因为,(00.032)x ∈,时,0y '>,此时,函数2348010000y x x =-递增; (0.0320.048)x ∈,时,0y '<,此时,函数2348010000y x x =-递减;故当0.032x =时,y 有最大值,其值约为0.164亿.22.已知函数2()(0)1x f x x x=>+,数列{}n a 满足1()a f x =,1()n n a f a +=.(1)求234a a a ,,;(2)猜想数列{}n a 的通项,并予以证明.解:(1)由1()a f x =,得2121222121()11211xa x x a f a axx x +====++⎛⎫+ ⎪+⎝⎭,22322222212()113112xa x x a f a axx x +====++⎛⎫+ ⎪+⎝⎭,23432223213()114113xa x x a f a a x x x +====++⎛⎫+ ⎪+⎝⎭.(2)猜想:2()1n x a n nx *=∈+N ,证明:(1)当1n =时,结论显然成立; (2)假设当n k =时,结论成立,即21k x a kx=+;那么,当1n k =+时,由212221()1(1)11k k xx kx a f a k xxkx ++===++⎛⎫+ ⎪+⎝⎭,这就是说,当1n k =+时,结论成立;由(1),(2)可知,21n xa nx=+对于一切自然数()n n *∈N 都成立.高中新课标数学选修(2-2)综合测试题一、选择题1.函数2()sin f x x =的导数是( ) A.2sin x B.22sin xC.2cos xD.sin 2x答案:D2.设复数1322z i =-+,则满足n z z =的大于1的正整数n 中,最小的是( ) A.7 B.4 C.3 D.2答案:B3.下列函数在点0x =处没有切线的是( )A.23cos y x x =+ B.sin y xx =· C.12y x x=+D.1cos y x=答案:C4.2231111dx x xx ⎛⎫++= ⎪⎝⎭⎰( )A.7ln 28+ B.7ln 22- C.5ln 28- D.17ln 28-答案:A5.编辑一个运算程序:112(1)2m n k m n k *=*=*+=+,,,则12005*的输出结果为( )A.4008 B.4006 C.4012 D.4010答案:D6.如下图为某旅游区各景点的分布图,图中一支箭头表示一段有方向的路,试计算顺着箭头方向,从A 到H 有几条不同的旅游路线可走( )A.15 B.16 C.17 D.18 答案:C7.在复平面内,复数2(13)1iz i i=+++对应的点在( ) A.第一象限 B.第二象限 C.第三象限D.第四象限答案:B8.在ABC △中,A B C ∠∠∠,,分别为a b c ,,边所对的角,若a b c ,,成等差数列,则B ∠的范围是( )A.π04⎛⎤ ⎥⎝⎦, B.π03⎛⎤ ⎥⎝⎦, C.π02⎛⎤ ⎥⎝⎦, D.ππ2⎛⎫ ⎪⎝⎭,答案:B9.设211111()123S n n n n n n=++++++++ ,则( ) A.()S n 共有n 项,当2n =时,11(2)23S =+ B.()S n 共有1n +项,当2n =时,111(2)234S =++ C.()S n 共有2n n -项,当2n =时,111(2)234S =++D.()S n 共有21n n -+项,当2n =时,111(2)234S =++答案:D10.若函数2()ln (0)f x x x x =>的极值点是α,函数2()ln (0)g x x x x =>的极值点是β,则有( ) A.αβ> B.αβ<C.αβ=D.α与β的大小不确定答案:A11.已知函数431()232f x x x m =-+,x ∈R ,若()90f x +≥恒成立,则实数m 的取值范围 是( )A.32m ≥ B.32m > C.32m ≤D.32m <答案:A12.如图,阴影部分的面积是( ) A.23B.23-C.323D.353答案:C二、填空题13.若复数22(2)(2)z a a a a i =-+--为纯虚数,则实数a 的值等于 .答案:014.若函数24()1xf x x =+在区中(21)m m +,上是单调递增函数,则实数m 的取值范围是 .答案:10m -<≤-15.类比等比数列的定义,我们可以给出“等积数列”的定义: .答案:对n *∈N ,若1n n a a k +=·(k 是常数),则称数列{}n a 为等积数列;2()3()n n a n =⎧⎨⎩,为奇数,为偶数51()225()2n n n S n n -=⎧⎪⎪⎨⎪⎪⎩,为奇数.为偶数16.已知函数32()39f x x x x m =-+++在区间[22]-,上的最大值是20,则实数m 的值等于 .答案:2-三、解答题17.已知抛物线2y x bx c =++在点(12),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值.解:由于2y x bx c =++,所以2y x b '=+,所以抛物线在点(12),)处的切线的斜率为2k b =+,因为切线与直线20x y ++=垂直,所以21b +=,即1b =-,又因为点(12),在抛物线上,所以12b c ++=,得2c =.因为22y x x =-+,于是函数没有最值,当12x =时,有最小值74.18.已知数列{}n a 满足条件1(1)(1)(1)n n n a n a +-=+-,26n a =,令()n n b a n n *=+∈N ,求数列{}n b 的通项公式.解:在1(1)(1)(1)n n n a n a +-=+-中,令1n =,得11a =;令2n =,得323(1)15a a =-=;令3n =,得4324(1)a a =-2,所以428a =.将1234a a a a ,,,代入n n b a n =+中,得12b =,23481832b b b ===,,. 由此猜想:22n b n =.以下用数学归纳法证明猜想正确. (1)当1n =和2n =时,结论成立;(2)假设当(2)n k k =≥时,结论成立,即22k b k =,所以22k k a b k k k =-=-,由已知有21(1)(1)(1)(1)(21)(1)(1)(21)k k k a k a k k k k k k +-=+-=+--=+-+,因为2k ≥,所以21(1)(21)231k a k k k k +=++=++,于是221(231)(1)2(1)k b k k k k +=++++=+,所以当1n k =+时,结论也成立,根据(1)和(2),对任意n *∈N ,均有22n b n =.19.已知数列1,11,111,1111, ,1111n 个, ,写出该数列的一个通项公式,并用反证法证明该数列中每一项都不是完全平方数.解:由于 1911111999(101)99n n n ==-个个·,所以该数列的一个通项公式是1(101)9n n a =-;证明:假设 1111n 个是一个完全平方数,由于 1111n 个是一个奇数,所以它必须是一个奇数的平方,不妨设 21111(21)n m =+ 个(m 为整数),于是1111104(1)n m m -=+ 个.故15552(1)n m m -=+ 个5此式中左边是奇数,右边是偶数,自相矛盾,所以 1111n 个不是一个完全平方数.20.已知1a i z i -=-,0a >,复数()z z i ω=+的虚部减去它的实部所得的差为32,求实数a . 解:()(1)1(1)1112222a i a i i a a i a a z i i --+++-+-====+-. 211111()222222a a a a a a a z z i i i i ω+-++++⎛⎫⎛⎫=+=++=+ ⎪⎪⎝⎭⎝⎭∵; 213222a a a ++-=∴,解得2a =±. 又因为0a >,故2a =.21.已知函数()sin cos (sin cos )f x x x m x x =-+.(1)若1m =,求函数()f x 在π02⎛⎫ ⎪⎝⎭,上的单调增区间; (2)若函数()f x 在区间ππ2⎛⎫ ⎪⎝⎭,上是单调递减函数,求实数m 的取值范围.解:(1)当1m =时,()sin cos sin cos f x x x x x =--,()sin cos sin cos f x x x x x =--,则22()cos sin cos sin (cos sin )(cos sin 0)f x x x x x x x x x '=--+=-+-,由于πcos sin 12sin 14x x x ⎛⎫+-=+- ⎪⎝⎭,而π02x ⎛⎫∈ ⎪⎝⎭,,所以cos sin 10x x +->,因此由()0f x '>,可得cos sin 0x x ->,即sin cos x x <,于是π02x ⎛⎫∈ ⎪⎝⎭,,故函数()f x 的单调增区间为π04⎛⎫ ⎪⎝⎭,; (2)22()cos sin (cos sin )(cos sin )(cos sin )f x x x m x x x x x x m '=---=-+-.因为函数()f x 在区是ππ2⎛⎫ ⎪⎝⎭,上是单调减函数,所以()0f x '<在ππ2⎛⎫ ⎪⎝⎭,上恒成立,而由于x ∈ππ2⎛⎫ ⎪⎝⎭,,所以cos sin 0x x -<,因此只要cos sin 0x x m +->在ππ2⎛⎫ ⎪⎝⎭,上恒成立,即sin cos m x x <+恒成立. 又πcos sin 2sin (11)4x x x ⎛⎫+=+∈- ⎪⎝⎭,,所以应有1m -≤.22.如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱,污水从A 孔流入,经沉淀后从B 孔流出,设箱体的长为a 米,高为b 米.已知流出的水中该杂质的质量分数与a ,b 的乘积ab 成反比,现有制箱材料60平方米,问当a ,b 各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A ,B 孔的面积忽略不计).解:设y 为流出的水中杂质的质量分数,则k y ab=, 根据题设,有其中(0)k k >为比例系数,依题意,即所求的a ,b 值使y 值最小,42260(00)b ab a a b ++=>>,得30(030)2a b a a-=<<+. 于是22(2)30302k k k a y a a ab a a a+===--+. 当0y '=时,6a =或10a =-(舍去). ∵本题只有一个极值点, 当6a =时,3b =, 即当a 为6米,b 为3米时,经沉淀后流出的水中该杂质的质量分数最小.。

人教版高中数学选修2-2综合测试卷2

人教版高中数学选修2-2综合测试卷2

人教版 高中数学 选修2-2综合测试卷2一、选择题:每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下面几种推理是合情推理的是( )①由圆的性质类比得出球的有关性质;②由直角三角形、等腰三角形、等边三角形内角和是180°,归纳出所有三角形的内角和都是180o; ③四边形内角和是360o ,五边形内角和是540o ,由此得出凸多边形内角和是(2)180n -og. A.①② B.①③ C.②③ D.①②③ 2.曲线y x 1=-在点122⎛⎫- ⎪⎝⎭,处的切线方程为( ) A.44y x =-B.4y x = C.4(1)y x =+D.24y x =- 3.定义运算a b ad bc c d =- ,则符合条件1142i i z z -=+ 的复数z 为( ) A.3i - B.13i +C.3i + D.13i - 4.在复数集C 内分解因式2245x x -+,则分解为( )A.(11x x -+-B. C.2(1i)(1i)x x -+--D.2(1i)(1i)x x +++- 5.设函数313y x ax c =-+在()-∞+∞,上单调递增,则( ) A.0a <且0c = B.0a >且c 是任意实数C.0a <且c 是任意实数 D.0a <且0c ≠6.观察按下列顺序排列的等式:9011⨯+=,91211⨯+=,92321⨯+=,93431⨯+=,…,猜想第*()n n ∈N 个等式应为( )A.9(1)109n n n ++=+B.9(1)109n n n -+=- C.9(1)101n n n +-=- D.9(1)(1)1010n n n -+-=- 7.曲线3πcos 02y x x ⎛⎫= ⎪⎝⎭≤≤与x 轴以及直线3π2x =所围图形的面积为( ) A.4B.2 C.52 D.38.平面几何中,有边长为a 的正三角形内任一点到三边距离之和为定值2a ,类比上述命题,棱长为a 的正四面体内任一点到四个面的距离之和为( )9.复平面内点A B C ,,对应的复数分别为i 142i +,,,由A B C D →→→按逆时针顺序作平行四边形ABCD ,则BD 等于( )A.510.已知函数()()()()f x x a x b x c =---,且()()1f a f b ''==,则()f c '等于( ) A.12- B.12 C.1- D.111.已知复数226(310)i()3a a z a a a a +-=+--∈+R 满足i 0z >或i 0z <,则a 等于( ) A.3 B.3- C.2或3- D.212.一个机器人每一秒钟前进一步或后退一步,程序设计师设计的程序是让机器人以先前进3步,然后再后退2步的规律移动.如果将机器人放在数轴的原点,面向正的方向在数轴上移动(1步的距离为1个单位长度).令()P n 表示第n 秒时机器人所在位置的坐标,且记(0)0P =,则下列结论中错误的是( )A.(3)3P =B.(5)1P = C.(2007)(2006)P P >D.(2003)(2006)P P < 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.*111()1()23f n n n =++++∈N L ,计算得3(2)2f =,(4)2f >,5(8)2f >,(16)3f >,7(32)2f >.由此推测,当2n >时,有 . 14.变速运动的物体的速度为2()1m/s v t t =-(其中t 为时间,单位:s ),则它在前2s 内所走过的路程为m .15.已知i 1i a z -=-,其中0a >,i 为虚数单位.复数(i)z z ω=+的虚部减去它的实部所得的差为32,则a = .16.已知32()3f x x x a =++(a 为常数),在[33]-,上有最小值3,那么在[33]-,上()f x 的最大值是.三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题13分)已知复数2(1i)3(1i)2iz ++-=+,若21i()z az b a b ++=+∈R ,,求a b +的值.18.(本小题13分)在圆222(0)x y r r +=>中,AB 为直径,C 为圆上异于A B ,的任意一点,则有1AC BCk k =-g .你能用类比的方法得出椭圆22221(0)x y a b a b+=>>中有什么样的结论?19.(本小题15分)如图,抛物线2y x =上有一点2()A a a ,,(01)a ∈,,过点A 引抛物线的切线l 分别交x 轴与直线1x =于B C ,两点,直线1x =交x 轴于点D .(1)求切线l 的方程;(2)求图中阴影部分的面积()S a ,并求a 为何值时,()S a 有最小值?20.(本小题14分)已知数列{}n a 的前n 项和*1()n n S na n =-∈N .(1)计算1a ,2a ,3a ,4a ;(2)猜想n a 的表达式,并用数学归纳法证明你的结论.21.(本小题15分)某地区的一种特色水果上市时间仅能持续5个月,预测上市初期和后期会因供不应求使价格呈连续上涨态势,而中期又将出现供大于求使价格下跌.现有三种价格模拟函数:①()x f x p q =g ;②2()1f x px qx =++;③2()()f x x x q p =-+.(以上三式中p q ,均为常数,且1q >)(1)为准确研究其价格走势,应选哪种价格模拟函数,为什么?(2)若(0)4f =,(2)6f =,求出所选函数()f x 的解析式(注:函数的定义域是[05],).其中0x =表示4月1日,1x =表示5月1日,…,依此类推;(3)为保护果农的收益,打算在价格下跌期间积极拓宽外销,请你预测该果品在哪几个月内价格下跌.。

高中数学人教A版选修2-2综合检测二.docx

高中数学人教A版选修2-2综合检测二.docx

综合检测(二)一、选择题1.“金导电、银导电、铜导电、锡导电,所以一切金属都导电”.此推理方法是() A.完全归纳推理B.归纳推理C.类比推理D.演绎推理2.复数21-i等于() A.1+i B.1-iC.-1+i D.-1-i3.设f(x)=10x+lg x,则f′(1)等于()A.10 B.10ln 10+lg eC.10ln 10+ln 10 D.11ln 104.若大前提:任何实数的平方都大于0,小前提:a∈R,结论:a2>0,那么这个演绎推理出错在() A.大前提B.小前提C.推理形式D.没有出错5.观察下列数表规律2→36→710→11↑↓↑↓↑↓0→1 4→58→912→…则数2 007的箭头方向是() A.2 007→B.↓↑ 2 007→C .↑D .→2 007→2 007 ↓6. 函数f (x )=x 3-ax 2-bx +a 2在x =1处有极值10,则a ,b 的值为( )A.⎩⎪⎨⎪⎧ a =3b =-3或⎩⎪⎨⎪⎧a =-4b =11 B.⎩⎪⎨⎪⎧a =-4b =11 C.⎩⎪⎨⎪⎧a =-1b =5D .以上都不对7. 给出下列命题:①ʃa b d x =ʃba d t =b -a (a ,b 为常数且a <b ); ②ʃ0-1x 2d x =ʃ10x 2d x ;③曲线y =sin x ,x ∈[0,2π]与直线y =0围成的两个封闭区域面积之和为2, 其中正确命题的个数为( )A .0B .1C .2D .38. 用数学归纳法证明不等式1n +1+1n +2+…+1n +n >12(n >1,n ∈N *)的过程中,从n =k 到n =k +1时左边需增加的代数式是( )A.12k +2B.12k +1-12k +2C.12k +1+12k +2D.12k +19. 已知结论:“在正三角形ABC 中,若D 是BC 的中点,G 是三角形ABC 的重心,则AG GD=2”.若把该结论推广到空间,则有结论:在棱长都相等的四面体A —BCD 中,若△BCD 的中心为M ,四面体内部一点O 到四面体各面的距离都相等,则AO OM 等于( )A .1B .2C .3D .410.曲线y =e 12x 在点(4,e 2)处的切线与坐标轴所围三角形的面积为( )A.92e 2 B .4e 2 C .2e 2D .e 211.设x ,y ,z 都是正数,则三个数x +1y ,y +1z ,z +1x的值( )A .都小于2B .至少有一个不大于2C .至少有一个不小于2D .都大于2二、填空题12.若复数z 满足z (1+i)=1-i(i 是虚数单位),则其共轭复数z =________.13.通过类比长方形,由命题“周长为定值l 的长方形中,正方形的面积最大,最大值为l 216”,可猜想关于长方体的相应命题为______________________________________ ________________________________________________________________________. 14.某物体做直线运动,其运动规律是s =t 2+3t(t 的单位是秒,s 的单位是米),则它在4秒末的瞬时速度为________.15.如图所示的数阵中,第20行第2个数字是________.1 12 12 13 14 13 14 17 17 14 15 111 111 111 15三、解答题16.已知复数z 1=2-3i ,z 2=15-5i(2+i )2. 求:(1)z 1+z 2;(2)z 1·z 2;(3)z 1z 2.17.设f (x )=⎩⎪⎨⎪⎧x 2,x ≤0,cos x -1,x >0,试求ʃπ2-1f (x )d x .18.已知a ,b ,c >0,且a +b +c =1,求证:(1)a 2+b 2+c 2≥13;(2)a +b +c ≤ 3.19.如图,已知平面α∩平面β=直线a ,直线b ⊂α,直线c ⊂β,b ∩a =A ,c ∥a .求证:b 与c 是异面直线.20.已知函数f (x )=4ln(x -1)+12x 2-(m +2)x +32-m (m 为常数),(1)当m =4时,求函数的单调区间;(2)若函数y =f (x )有两个极值点,求实数m 的取值范围.21.是否存在常数a ,b ,使等式121×3+223×5+…+n 2(2n -1)(2n +1)=an 2+n bn +2对一切n ∈N +都成立?若不存在,说明理由;若存在,请用数学归纳法证明.答案1.B 2.A 3.B 4.A 5.D 6.B 7.B 8.B 9.C 10.D 11.C 12.i13.表面积为定值S 的长方体中,正方体的体积最大,最大值为(S 6)3214.12516米/秒 15.119116.解 z 2=15-5i (2+i )2=15-5i 3+4i =5(3-i )(3-4i )(3+4i )(3-4i )=5-15i5=1-3i.(1)z 1+z 2=(2-3i)+(1+3i)=3.(2)z 1·z 2=(2-3i)(1-3i)=2-9-9i =-7-9i. (3)z 1z 2=2-3i 1-3i =(2-3i )(1+3i )(1-3i )(1+3i )=2+9+3i 10=1110+310i. 17.解 ʃπ2-1f (x )d x =ʃ0-1f (x )d x +ʃπ20f (x )d x =ʃ0-1x 2d x +ʃπ20(cos x -1)d x =13x 3|0-1+(sin x -x )|π20 =13+1-π2=43-π2. 18.证明 (1)∵a 2+19≥23a ,b 2+19≥23b ,c 2+19≥23c ,∴(a 2+19)+(b 2+19)+(c 2+19)≥23a +23b +23c =23. ∴a 2+b 2+c 2≥13.(2)∵a ·13≤a +132, b ·13≤b +132,c ·13≤c +132, 三式相加得a 3+b 3+c 3≤12(a +b +c )+12=1,∴a +b +c ≤ 3.19.证明 假设b ,c 不是异面直线,即b 与c 共面,设b 与c 确定的平面为γ,则γ∩α=b ,γ∩β=c . ∵a ∥c ,∴a ∥γ.又∵a ⊂α,且α∩γ=b ,∴a ∥b ,这与a ∩b =A 矛盾. 因此b 与c 不可能共面,故b 与c 是异面直线. 20.解 依题意得,函数的定义域为(1,+∞).(1)当m =4时,f (x )=4ln(x -1)+12x 2-6x -52.f ′(x )=4x -1+x -6=x 2-7x +10x -1=(x -2)(x -5)x -1.令f ′(x )>0,解得x >5,或1<x <2. 令f ′(x )<0,解得2<x <5.可知函数f (x )的单调递增区间为(1,2)和(5,+∞),单调递减区间为(2,5). (2)f ′(x )=4x -1+x -(m +2)=x 2-(m +3)x +m +6x -1若函数y =f (x )有两个极值点,则⎩⎪⎨⎪⎧Δ=[-(m +3)]2-4(m +6)>0,1-(m +3)+m +6>0,m +32>1.解得m >3.21.解 若存在常数a ,b 使等式成立,则将n =1,n =2代入上式,有⎩⎪⎨⎪⎧13=a +1b +2,13+415=4a +22b +2.得a =1,b =4,即有121×3+223×5+…+n 2(2n -1)(2n +1)=n 2+n 4n +2对于一切n ∈N +都成立. 证明如下:(1)当n =1时,左边=121×3=13,右边=1+14×1+2=13,所以等式成立.(2)假设n =k (k ≥1,且k ∈N +)时等式成立,即 121×3+223×5+…+k 2(2k -1)(2k +1) =k 2+k 4k +2, 当n =k +1时,121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3) =k 2+k 4k +2+(k +1)2(2k +1)(2k +3) =k +12k +1·(k 2+k +12k +3) =k +12k +1·2k 2+5k +22(2k +3) =k +12k +1·(2k +1)(k +2)2(2k +3) =(k +1)(k +2)4k +6=(k +1)2+(k +1)4(k +1)+2,也就是说,当n =k +1时,等式成立, 综上所述,等式对任何n ∈N +都成立.。

(完整版)高中数学选修2-2综合测试题(附答案).docx

(完整版)高中数学选修2-2综合测试题(附答案).docx

高二数学选修2-2 综合测试题f xg ′ x)>0 ,且 g ( 3) 0 , 不等式 f x g x)<0的解集是()( ) ( ( ) (一、 :A. ( -3,0) ∪(3 ,+∞)B. ( -3,0) ∪(0 , 3)1、 i 是虚数 位。

已知复数 Z1 3i (1i )4 , 复数 Z 点落在()C.( -∞,- 3) ∪(3 ,+∞)D. (-∞,- 3) ∪(0 , 3)3 iA .第四象限B .第三象限C .第二象限D .第一象限12、在古希腊, 达哥拉斯学派把 1, 3, 6, 10,15,21,28,⋯ 些数叫做三角形数, 8、已知函数 f ( x) x 2bx 的 象在点 A(1, f (1)) 的切 的斜率 3,数列因 些数 的点可以排成一个正三角形f (n)的前 n 和 S n ,S 2011 的 ()200820092010 2011A.B.C .D .200920102011201213610159、 函数 f(x) =kx 3 +3(k -1)x 2 k 2 + 1在区 ( , )上是减函数, k 的取 范 是第 n 个三角形数 (( )0 4)A . nB .n(n 1)C . n21D .n( n 1)1B. 0 k1C. 0 k1122A. k3 3D. k333、求由曲 yx ,直 yx 2 及 y 所 成的 形的面 的 ()10、函数 yf ( x) 在定 域 ( 3内可 ,其 象如 所示, yf ( x) 的 函数,3)..24x ) dx B.4xdx C.20 2)dyyf ( x) , 不等式 f ( x)0 的解集()A.(2 x0 (2 y y 2 )dy D.(4 y 0224、 复数 z 的共 复数是 z , 且 z1, 又 A( 1,0) 与 B(0,1) 定点 , 函数f ( z)( z1)A .1 U 2,3,13( z i ) ︱取最大 在复平面上以 z ,A,B 三点 点的 形是C .3 , 1 U 1,2 A,等 三角形B,直角三角形C,等腰直角三角形D,等腰三2 2角形11、 已知函数 f (x)5、函数 f(x) 的定义域为 R ,f(-1)=2,对任意 xR , f ' ( x) 2 , 则 f ( x)2x4 的解集为小 是(A)(-1 , 1)(B)(-1,+∞ )(c)(-∞, -l)(D)(-∞,+ ∞ )A.24n 12 n 14( k1) 12( k 1) 13用数学归纳法证明整除时, 当 nk1时,对于 335(n N) 能被 85可变形为6、A. 56·3 4k 14k 152k 1) B.4 4 k 12 2k4k 12 k 14 k 15 2k 1)12、函数 f ( x)x325(3 3 ·35 ·5 C. 35D. 25(3、 f x g x 分 是定 在 R 上的奇函数和偶函数, 当 x <0, f ′ x g x +的取 范 (7( ) ,( )( ) ( )A .(-24,8)B .1,2 U 4 , 83 3D .3, 1 U 1 , 4U 8,322 331 x 3 ax2 bx 1( a 、 bR) 在区 [-1,3] 上是减函数, ab 的最3B. 3C.2D. 323x 29x 3, 若函数 g( x) f ( x) m 在 x [ 2,5] 上有 3 个零点, m)B .( -24,1]C .[1,8]D .[1,8)高二数学选修2-2 综合测试题(答题卡)三、解答题:(70 分)一、选择题( 60分)。

高中数学人教A版选修2-2习题 综合检测2(基础卷) Word版含答案

高中数学人教A版选修2-2习题 综合检测2(基础卷) Word版含答案

第二章综合检测(基础卷)时间分钟,满分分.一、选择题(本大题共个小题,每小题分,共分,在每小题给出的四个选项中只有一个是符合题目要求的).下列表述正确的是( )①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理..②③④.①②③.①③⑤.②④⑤[答案][解析]由推理的特征知,归纳推理是由特殊到一般的推理,所以②不正确.类比推理是由特殊到特殊的推理..设<<,则在①>;②+>;③<;④+>+.这个不等式中恒成立的有( ).个.个.个.个[答案][解析]∵<<,∴>>,∴<,<,②④显然不正确..欲证-<-成立,只需证( ).(-)<(-).(-)<(-).(+)<(+).(--)<(-)[答案][解析]∵-<,-<,∴原不等式只需证+<+,∴只需证(+)<(+),故选..有下列叙述:①“>”的反面是“<”;②“=”的反面是“>或<”;③“三角形外心在三角形外”的反面是“三角形的外心在三角形内”;④“三角形的内角中最多有一个钝角”的反面是“三角形的内角中没有钝角”,其中正确的叙述有( ).个.个.个.个[答案][解析]只有②正确,故选..(≥,∈+)棱柱有()个对角面,则(+)棱柱的对角面个数(+)为( ).()++.()+-.()+-.()+[答案][解析]三棱柱有个对角面;四棱柱有个对角面(+=+(-));五棱柱有个对角面(+=+(-));六棱柱有个对角面(+=+(-)).猜想:若棱柱有()个对角面,则(+)棱柱有()+-个对角面.故选..观察下列式子:+<,++<,+++<,…,则可归纳出+++…+小于( ).[答案] [解析]所猜测的分式的分母为+,而分子…恰好是第+个正奇数,即+.故选..(·北京文,)某学校运动会的立定跳远和秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为名学生的预赛成绩,其中有三个数据模糊.,则( ).号学生进入秒跳绳决赛.号学生进入秒跳绳决赛.号学生进入秒跳绳决赛.号学生进入秒跳绳决赛[答案][解析]由数据可知,进入立定跳远决赛的人为~号,所以进入秒跳绳决赛的人从~号里产生.数据排序后可知号,号,号必定进入秒跳绳决赛,则得分为,,-的人中有人进入秒跳绳决赛.若号,号学生未进入秒跳绳决赛,则号学生就会进入决赛,与事实矛盾,所以号,号学生必进入秒跳绳决赛.故选..已知,,,∈,则=+,=的大小关系为( ).≥.>.> .≥[答案][解析]=(+)(+)=+++=(+)+(-)≥(+)=,。

高中数学综合测试题3新人教A版选修2-2

高中数学综合测试题3新人教A版选修2-2

3 时, f (x )
3 x3 3x 2 x 1
3
1 3x
8,
39
由函数 y x3 在 R 上的单调性,可知当 a 3 时, f ( x)( x R ) 是减函数; (3)当 a 3 时,在 R 上存在使 f ( x) 0 的区间,
4
所以,当 a 3 时,函数 f ( x)( x R ) 不是减函数. 综上,所求 a 的取值范围是 ( ∞ , 3) .
x (1,1.6) 时, V (x) 0 ,函数 V ( x) 递减;
0 ,函数 V (x) 递增;
所以,当 x 1时,函数 V (x) 有最大值 V (1) 1 (1 0.5) (3.2 2 1) 1.8m3 ,
即当高为 1.2m 时,长方体容器的空积最大,最大容积为
1.8m3 .
19.如图所示, 已知直线 a 与 b 不共面,直线 c a M ,直线 b c N ,又 a 平面 A , b 平面 B , c 平面 C ,求证: A,B,C 三点不共线.
A.第一象限
B.第二象限
C.第三象限
) D.第四象限
答案:D
9.一圆的面积以 10πcm2 / s 速度增加,那么当圆半径 ()
A. 1 cm/s 2
B. 1 cm/s 3
C. 1 cm/s 4
r 20cm 时,其半径 r 的增加速率 u 为
D. 1 cm/s 5
答案:C
10.用数学归纳法证明不等式“
2005 个点连线形成不重叠的小三角形,则一共可以形成小三角形的个数为(

A. 4005
B. 4002
C. 4007
D. 4000
答案:A
6.数列 1, 2, 2, 3, 3, 3,4, 4, 4,4, 的第 50 项( )

最新人教版高中数学选修2-2综合测试题及答案2套

最新人教版高中数学选修2-2综合测试题及答案2套

最新人教版高中数学选修2-2综合测试题及答案2套最新人教版高中数学选修2-2综合测试题及答案2套一、选择题1.复数z=2-i(i为虚数单位)在复平面内对应的点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限解析:∵z=2-i=5/√26-i√26/√26=(5-i√26)/√26。

在第四象限.∴复数z对应的点的坐标为(2.-1)。

答案:D2.函数f(x)=x^3+4x+5的图象在x=1处的切线在x轴上的截距为()A.10/3B.5/7C.-1/7D.-3/7解析:f′(x)=3x^2+4,f′(1)=7,f(1)=10,y-10=7(x-1),y=0时,x=-3/7.答案:D3.类比下列平面内的三个结论所得的空间内的结论成立的是()①平行于同一直线的两条直线平行;②一条直线如果与两条平行直线中的一条垂直,则必与另一条垂直;③如果一条直线与两条平行直线中的一条相交,则必与另一条相交。

A.①②③B.①③C.①D.②③解析:类比①的结论为:平行于同一个平面的两个平面平行,成立;类比②的结论为:一个平面如果与两个平行平面中的一个垂直,则必与另一个垂直,成立;类比③的结论为:如果一个平面与两个平行平面中的一个相交,则必与另一个相交,成立。

答案:A4.函数y=x^3-3x^2-9x(-2<x<2)有()A.极大值5,极小值-27B.极大值5,极小值-11C.极大值5,无极小值D.极小值-27,无极大值解析:y′=3x^2-6x-9=3(x-3)(x+1),得x=-1,x=3,当x0;当x>-1时,y′<0.当x=-1时,y极大值=5,x取不到3,无极小值。

答案:C5.函数y=4x^2+1/x的单调递增区间是()A.(0,+∞)B.(-∞,1)C.(1,2)D.(2,+∞)解析:令y′=8x-1/x^2=0,得x=1/2,y′<0时,x<1/2;y′>0时,x>1/2.答案:C6.下列计算错误的是()A.∫π-πsinxdx=0B.∫1/2xdx=1/8C.∫(x^2-1)(x+1)dx=∫(x^3-x^2+x-1)dxD.∫(x^2+1)/(x^2-2x+2)dx=∫(1+2/(x^2-2x+2))dx解析:B选项计算错误,正确结果为∫1/2xdx=1/8.答案:B1.剔除格式错误和明显有问题的段落:无明显问题的段落为第7、9、10、11题,保留。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中新课标数学选修(2-2)综合测试题一、选择题(每题小题5分)1.设y=2x -x ,则x ∈[0,1]上的最大值是( ) A 0 B -41 C 21 D 41 2.若质点P 的运动方程为S(t)=2t 2+t (S 的单位为米,t 的单位为秒),则当t=1时的瞬时速度为( )A 2米/秒B 3米/秒C 4米/秒D 5米/秒 3.曲线y=-313x -2在点(-1,35-)处切线的倾斜角为( )A 30º B 45º C 135º D 150º 4.函数y=-2x + 3x 的单调递减区间是( )A (-∞,-36) B (-36,36) C(-∞,-36)∪(36,+∞) D (36,+∞) 5.过曲线y=3x +1上一点(-1,0),且与曲线在该点处的切线垂直的直线方程是( ) A y=3x+3 B y=3x +3 C y=-3x -31D y=-3x-3 6.曲线y=313x 在点(1,31)处的切线与直线x+y-3=0的夹角为 A 30º B 45º C 60º D 90º7.已知函数)(x f =3x +a 2x +b 的图象在点P (1,0)处的切线与直线3x+y=0平行.则a 、b 的值分别为( ).A -3, 2B -3, 0C 3, 2D 3, -4 8.已知)(x f =a 3x +32x +2,若)1(/-f =4,则a 的值等于( ) A319 B 310 C 316 D 313 9.函数y = 3x -12x +16在 [-3,3]上的最大值、最小值分别是( ) A 6,0 B 32, 0 C 2 5, 6 D 32, 1610.已知a>0,函数y=3x -a x在[1,+∞)上是单调增函数,则a 的最大值为( ) A 0 B 1 C 2 D 311.已知)(x f =23x -62x +m (m 为常数),在[-2,2]上有最大值3,则此函数在[-2,2]上的最小值为( )A -37B -29C -5D -1112.已知)(x f =x +3x , 且x 1+x 2<0, x 2+x 3<0, x 3+x 1<0则( )A f(x 1)+f(x 2)+f(x 3)>0B f(x 1)+f(x 2)+f(x 3)<0C f(x 1)+f(x 2)+f(x 3)=0D f(x 1)+f(x 2)+f(x 3)符号不能确定. 二、填空题(每小题4分)13.过抛物线y=)(x f 上一点A (1,0)的切线的倾斜角为45°则)1(/f =__________. 14.函数)(x f =3x -3x 的递减区间是__________15.过点P(-1,2)且与曲线y=32x -4x +2在点M(1,1)处的切线平行的直线方程是__________.16.函数)(x f =x (1-2x )在[0,1]上的最大值为__________. 三、解答题17.已知函数)(x f =a 4x +b 2x +c 的图像经过点(0,1),且在x =1处的切线方程是y=x -2. 求)(x f 的解析式;12分18.证明:过抛物线y=a(x -x 1)(x -x 2)(a ≠0, x 1< x 2)上两点A(x 1,0),B(x 2,0)的切线与x 轴所成的锐角相等。

12分19.已知)(x f =a 3x +b 2x +cx (a ≠0)在x=±1时取得极值且f (1)= -1 试求常数a 、b 、c 的值并求极值。

12分 20.已知函数)(x f =1323++-x ax x a . (1)若)(x f 在(-∞,+∞)上是增函数,求a 的取值范围.(2) 若)(x f 在x=x 1及x=x 2 (x 1, x 2>0)处有极值,且1<21x x ≤5,求a 的取值范围。

12分 21.已知函数)(x f =ax 3+cx+d(a ≠0)在R 上满足 )(x f -=-)(x f , 当x=1时)(x f 取得极值-2. (1)求)(x f 的单调区间和极大值;(2)证明:对任意x 1,x 2∈(-1,1),不等式│)()(21x f x f -│<4恒成立. 14分22.如图在边长为4的正方形铁皮的四角切去相等的正方形,在把它的边沿虚线折起,做成一个无盖的方底盒子.xx(1)问切去的小正方形边长为多少时,盒子容积最大?最大容积1V 是多少?(2)上述做法,材料有所浪费,如果可以对材料进行切割、焊接,请你重新设计一个方案,使材料浪费最少,且所得无盖的盒子的容积2V >1V 14分答案:1.A2.D3.C4.B5.C6.D7.A8.B9.B10.D11.A12B13. 1 14.[-1,1] 15.2x -y+4=0 16.932 提示:1.A f(1)=f(0)=0最大2. D ∵S '=4t+1∴当t=1时的瞬时速度为5米/秒3. 选C∵)(/x f =-2x ∴)1(/-f =-1即tan α=-1∴α=135º4. 选B ∵y '=-2+32x <0,∴-36<x <36 5. C ∵23x y ='∴该点处的切线斜率为3,∴所求直线方程为y=-31(x+1)即C答案 6. 选D∵y ' =2x , y '│x=1=1,∴切线斜率为1,又直线斜率为-1∴两直线垂直∴夹角为90º7. A ∵)(/x f =32x +2ax ,切线的斜率k=3+2a ,3+2a= -3 ∴a=-3又∵f (1)=a+b+1=0 ∴b=2,故选A8. 选B ∵)(/x f =3a 2x +6x ∴)1(/-f =3a -6∴a=310 9. 选B ∵y '=32x -12, 由y '=0得x =±2当x =±2,x =±3时求得最大值32,最小值0 10. D ∵)(/x f =32x -a ,∴若)(x f 为增函数,则)(/x f >0即a<32x 要使a<32x , x ∈[1,+∞),上恒成立,∴a ≤3故选D 11. A 令)(/x f =0得x =0或x =2,而f(0)=m,f(2)=-8+m,f(-2)=-40+m 显然f(0)>f(2)>f(-2)∴m=3最小值为f(-2)=-37故选A12. B ∵)(/x f =32x +1,∴)(/x f >0∴)(x f 在上是增函数,且)(x f 是奇函数,∴f(x 1)<f(-x 2), f(x 2)<f(-x 3), f(x 3)<f(-x 1)∴f(x 1)+f(x 2)+f(x 3)<-[f(x 1)+f(x 2)+f(x 3)]即f(x 1)+f(x 2)+f(x 3)<0故选B13.由题意可知切线斜率为1,由导数定义知)1(/f =1 14. ∵)(/x f =32x -3∴令32x -3≤0解得-1≤x ≤115. ∵y '=6x -4∴k=y '│x=1=2∴直线方程为y -2=2(x +1)即2x -y+4=016. ∵)(x f =x -3x ∴)(/x f =1-32x =0得x =33可知当x =33时函数值为最大值,最大值是932 17. 解:由题意可知f(0)=1,f(1)=-1,)1(f '=1,.…………..6分∴⎪⎩⎪⎨⎧-=++=+=11241c b a b a c 解之得⎪⎪⎪⎩⎪⎪⎪⎨⎧-===29251b ac .………….11分∴)(x f =1292524+-x x .…………..12分 18. 证明:∵y= a(x -x 1)(x -x 2)=ax 2-a(x 1+ x 2)x+a x 1 x 2.…………..3分 ∴y '=2ax -a(x 1+x 2) .………….6分∴k 1=y '│x=x 1=a(x 1-x 2) k 2=y '│x=x 2=a(x 2-x 1) .…………..9分设两切线与x 轴所成锐角为θ1和θ 2则tan θ1=│a(x 1-x 2)│=│a │(x 2-x 1)>0, tan θ2=│a(x 2-x 1)│=│a │(x 2-x 1)>0………11分∴tan θ1= tan θ2.…………..12分19. 解:)(/x f =3a 2x +2bx+c ,.…………3分∵)(x f 在x=±1时取得极值∴x=±1是)(/x f =0即3a 2x +2bx+c=0的两根………6分 ∴⎩⎨⎧=+-=++)2(023)1(023c b a c b a ∵f (1)= -1 ∴ a+b+c=-1(3)由(1),(2),(3)得a=21, b=0,c=23-………9分 ∴)(x f = 213x 23-x ,∴)(/x f =23(x –1)(x+1)当x<-1或x>1时,)(/x f >0,当-1<x<1时,)(/x f <0∴)(x f 在(-∞,-1)及(1,+∞)上是增函数,在(-1,1)是减函数………11分 ∴当x= -1时函数取得极大值f (-1)=1当x=1时函数取得极小值f (1)= -1………12分20. 解:(1)∵)(x f '=ax 2-2ax+1……………………………...….1分∴当a=0时,,)(x f '=1>0,故结论成立………………………………2分 当a>0时,[ )(x f ']min =)1(f '=1-a ≥0,∴a ≤1即0<a ≤1.…………..4分 当a<0时, )(x f '在(0,+∞)上不恒大于或等于0,故舍去.…………..5分 综上得a 的取值范围是0≤a ≤1.(2) 令)(x f '=ax 2-2ax+1=0,由题知其二根为x 1,x 2且x 1+x 2=2,x 1x 2=a1…………..7分 ∵1<21x x ≤5 ∴x 1≤2-x 2≤5x 1 ∴31≤x 1<1 …………..9分∴x 1(2-x 2)=a 1 ∴a1=-(x 1-1)2+1…………..11分 ∴95≤a 1<1 ∴1<a ≤59…………..12分 21. 解:(1)由)(x f -=-)(x f (x ∈R)得.d=0∴)(x f = ax 3+cx , )(x f '=ax 2+c. (2)分由题设f(1)=-2为)(x f 的极值,必有)1(f '=0∴⎩⎨⎧=+=+030c a c a 解得a=1,c=-3∴)(x f ' =3x 2-3=3(x -1)(x+1) 从而)1(f '=)1(-'f =0. …………4分当x ∈(-∞,-1)时, )(x f '>0则)(x f 在(-∞,-1)上是增函数; …………5分 在x ∈(-1,1)时, )(x f '<0则)(x f 在(-1,1)上是减函数…………6分 当x ∈(1,+∞)时, )(x f '>0则)(x f 在(1,+∞)上是增函数…………7分 ∴)1(-f =2为极大值. …………9分(2)由(1)知, )(x f =x x 33-在[-1,1]上是减函数,且)(x f 在[-1,1]上的最大值M=)1(-f =2,在[-1,1]上的最小值m= f(2)=-2. …………12分对任意的x 1,x 2∈(-1,1),恒有│)()(21x f x f -│<M -m=2-(-2)=4…………14分. 22. 解:(1)设切去的正方形边长为x ,则焊接成的盒子的底面边长为4-2x ,高为x .所以1V =(4-2x )2²x =4(3x -42x +4x ),(0<x <2) ………5分∴1V '=4(32x -8x +4). ………6分令1V '=0得x 1=32 ,x 2=2(舍去)而1V '=12(x -32)(x -2)又当x <32时,1V '>0, 当32<x <2时,1V '<0∴当x =32时盒子容积最大,最大容积1V 是27128………9分 方案:如下图a ,在正方形的两个角处各切下一个边长为1的小正方形;如图b ,将切下的小正方形焊接成长方形再焊在原正方形一边;如图c 再焊成盒子123411212321图a 图b 图c新焊成的盒子的容积2V 为:3³2³1=6,显然2V >1V 故此方案符合要求。

相关文档
最新文档