七年级数学下册 第五章 生活中的轴对称 5.3 简单的轴对称图形 5.3.2 简单的轴对称图形课件

合集下载

七年级数学下册 第五章 生活中的轴对称 5.3 简单的轴对称图形(第1课时)课件_1

七年级数学下册 第五章 生活中的轴对称 5.3 简单的轴对称图形(第1课时)课件_1
原来的等腰三角形形状呢?
C
2021/12/12
A
B
第十七页,共十八页。
内容 总结 (nèiróng)
第1课时 等腰三角形的性质。C。作顶角的平分线AD. 在△BAD和△CAD中,。在△BAD和 △CAD中,。在Rt△BAD和Rt△CAD中,。(简写成“等边对等角”)。注意:等边对等角是指。
No 等边对等角。等边对等角。2、等腰三角形一个(yī ɡè)底角为70°,它的顶角为______.。55°,
2021/12/12
第十二页,共十八页。
例1 如图,在△ ABC中,AB=AC,点D在AC上, 且BD=BC=AD。求△ ABC各角的度数(dùshu)。
A
解:∵ AB=AC BD=BC=AD ∴ ∠ABC= ∠ C= ∠ 3
∠ A= ∠1(等边对等角)
设 ∠ A=x,则
∠ 3= ∠ A+ ∠ 1=2x
AD是顶角平分线
AD是BC的中线
12
AD是底边(dǐ biāAD是底边(dǐ biān)上的

性质2:
B
D
C
等腰三角形的顶角平分线、底边上的中线、底边上的高相互
(xiānghù)重合。(等腰三角形三线合一)
2021/12/12
第十一页,共十八页。
根据(gēnjù)等腰三角形性质定理2,在△ABC中, AB=AC
∴ ∠B=∠C ( 等边对等角)
2021/12/12
第九页,共十八页。
A C
1、等腰三角形一个顶角为70°,其它两个角为_________. 55°,55°
2、等腰三角形一个(yī ɡè)底角为70°,它的顶角为 _4_0__°__.
3、等腰三角形一个角为70°,它的另外(lìnɡ wài)两个角为 7_0_°__,4_0_°__或__5_5°__,_5_5_°__.

北师大版数学七年级下册5.3.2《简单的轴对称图形》教案

北师大版数学七年级下册5.3.2《简单的轴对称图形》教案

北师大版数学七年级下册5.3.2《简单的轴对称图形》教案一. 教材分析《简单的轴对称图形》是北师大版数学七年级下册第五章第三节的内容。

本节主要让学生了解轴对称图形的概念,学会判断一个图形是否为轴对称图形,以及如何找出轴对称图形的对称轴。

通过本节的学习,学生能更好地理解轴对称现象,提高他们的空间想象能力。

二. 学情分析学生在之前的学习中已经掌握了平面图形的知识,对图形的性质有一定的了解。

但是,对于轴对称图形的概念和判断方法,他们可能还比较陌生。

因此,在教学过程中,需要引导学生从实际例子中发现轴对称现象,逐步引入并讲解轴对称图形的概念和判断方法。

三. 教学目标1.让学生了解轴对称图形的概念,学会判断一个图形是否为轴对称图形。

2.让学生能够找出轴对称图形的对称轴,并理解对称轴的意义。

3.培养学生的空间想象能力,提高他们解决实际问题的能力。

四. 教学重难点1.轴对称图形的概念及其判断方法。

2.找出轴对称图形的对称轴。

五. 教学方法采用问题驱动法、案例分析法和小组合作法进行教学。

通过实际例子引导学生发现轴对称现象,讲解轴对称图形的概念和判断方法,然后让学生分组讨论,找出具体图形的对称轴,最后进行总结和拓展。

六. 教学准备1.准备一些轴对称图形的实例,如剪纸、图片等。

2.准备多媒体教学设备,用于展示实例和动画。

七. 教学过程1.导入(5分钟)通过展示一些轴对称图形的实例,如剪纸、图片等,引导学生发现轴对称现象,激发学生的兴趣。

让学生尝试解释这些实例中的对称现象,从而引入轴对称图形的概念。

2.呈现(10分钟)讲解轴对称图形的概念,让学生明白什么是轴对称图形。

通过展示一些动画和实例,让学生更好地理解轴对称图形的性质。

同时,讲解如何判断一个图形是否为轴对称图形,以及如何找出轴对称图形的对称轴。

3.操练(10分钟)将学生分成若干小组,每组提供一个轴对称图形,让学生找出该图形的对称轴。

通过小组合作,让学生加深对轴对称图形和对称轴的理解。

蠡县三中七年级数学下册第五章生活中的轴对称3简单的轴对称图形第3课时角平分线的性质课件新版北师大版

蠡县三中七年级数学下册第五章生活中的轴对称3简单的轴对称图形第3课时角平分线的性质课件新版北师大版

14.完成以下证明过程 , 如下图 , AB⊥BC , BC⊥CD , 且∠1=∠2 , 求 证 : BE∥CF.
证明 : ∵AB⊥BC , BC⊥CD(已知) , ∴____∠__A_B__C____=___∠__D_C__B____=90°(___垂__直_的__定__义_______). ∵∠1=∠2(已知) , ∴_____∠__E_B_C_____=____∠__F_C_B______(等式的性质) , ∴BE∥CF(_____内__错__角_相__等__,_两__直__线__平__行_______).
解 : (1)∵DE∥BC , ∴∠1=∠2.又∵∠1=∠3 , ∴∠2=∠3 , ∴CD∥FG.∵CD⊥AB , ∴∠CDB=90° , ∴∠BFG=90° , ∴FG⊥AB.
(2)真命题 , 理由 : ∵CD⊥AB , FG⊥AB , ∴∠CDF=∠GFB=90° , ∴CD∥FG , ∴∠2=∠3.又∵∠1=∠3 , ∴∠1=∠2 , ∴DE∥BC.
13.(2017·鼓楼区校级期末)如下图 , B , A , E三点在同一直线上 , (1)AD∥BC , (2)∠B=∠C , (3)AD平分∠EAC.
请你用其中两个作为条件 , 另一个作为结论 , 构造一个真命题 , 并证 明.
已知 : ____________________ 求证 : ____________________
OC=OC 所以△CDO≌ △CEO 所以CD=CE.
角平分线上的点到这个角的两边的距离 相等.
例2 利用尺规 , 作 ∠ AOB 的平分线. 已知 : ∠ AOB. 求作 : 射线 OC , 使 ∠ AOC =∠ BOC.
作法 :
1.在OA和OB上分别截取OD , OE , 使

七年级数学下册 5.3.2《简单的轴对称图形(二)》尺规作图数学史素材 (新版)北师大版

七年级数学下册 5.3.2《简单的轴对称图形(二)》尺规作图数学史素材 (新版)北师大版

初中尺规作图数学史尺规作图是起源于古希腊的数学课题.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.平面几何作图,限制只能用直尺、圆规.在历史上最先明确提出尺规限制的是伊诺皮迪斯.他发现以下作图法:在已知直线的已知点上作一角与已知角相等.这件事的重要性并不在于这个角的实际作出,而是在尺规的限制下从理论上去解决这个问题.在这以前,许多作图题是不限工具的.伊诺皮迪斯以后,尺规的限制逐渐成为一种公约,最后总结在《几何原本》之中.初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法.最简单的尺规作图有如下三条:⑴ 经过两已知点可以画一条直线;⑵ 已知圆心和半径可以作一圆;⑶ 两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题.历史上,最著名的尺规作图不能问题是:⑴ 三等分角问题:三等分一个任意角;⑵ 倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;⑶ 化圆为方问题:作一个正方形,使它的面积等于已知圆的面积.这三个问题后被称为“几何作图三大问题”.直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1r 时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题.若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书.还有另外两个著名问题:⑴ 正多边形作法·只使用直尺和圆规,作正五边形.·只使用直尺和圆规,作正六边形.·只使用直尺和圆规,作正七边形——这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的.·只使用直尺和圆规,作正九边形,此图也不能作出来,因为单用直尺和圆规,是不足以把一个角分成三等份的.·问题的解决:高斯,大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件:尺规作图正多边形的边数目必须是2的非负整数次方和不同的费马素数的积,解决了两千年来悬而未决的难题.⑵ 四等分圆周只准许使用圆规,将一个已知圆心的圆周4等分.这个问题传言是拿破仑·波拿巴出的,向全法国数学家的挑战.尺规作图的相关延伸:用生锈圆规(即半径固定的圆规)作图1.只用直尺及生锈圆规作正五边形2.生锈圆规作图,已知两点A、B,找出一点C使得AB BC CA==.3.已知两点A、B,只用半径固定的圆规,求作C使C是线段AB的中点.4.尺规作图,是古希腊人按“尽可能简单”这个思想出发的,能更简洁的表达吗?顺着这思路就有了更简洁的表达.10世纪时,有数学家提出用直尺和半径固定的圆规作图. 1672年,有人证明:如果把“作直线”解释为“作出直线上的2点”,那么凡是尺规能作的,单用圆规也能作出!从已知点作出新点的几种情况:两弧交点、直线与弧交点、两直线交点,在已有一个圆的情况下,那么凡是尺规能作的,单用直尺也能作出!.五种基本作图:初中数学的五种基本尺规作图为:1.做一线段等于已知线段2.做一角等于已知角3.做一角的角平分线4.过一点做一已知线段的垂线5.做一线段的中垂线下面介绍几种常见的尺规作图方法:⑴ 轨迹交点法:解作图题的一种常见方法.解作图题常归结到确定某一个点的位置.如果这两个点的位置是由两个条件确定的,先放弃其中一个条件,那么这个点的位置就不确定而形成一个轨迹;若改变放弃另一个条件,这个点就在另一条轨迹上,故此点便是两个轨迹的交点.这个利用轨迹的交点来解作图题的方法称为轨迹交点法,或称交轨法、轨迹交截法、轨迹法.【例1】 电信部门要修建一座电视信号发射塔,如下图,按照设计要求,发射塔到两个城镇A 、B 的距离必须相等,到两条高速公路m 、n 的距离也必须相等,发射塔P 应修建在什么位置?m【分析】 这是一道实际应用题,关键是转化成数学问题,根据题意知道,点P 应满足两个条件,一是在线段AB 的垂直平分线上;二是在两条公路夹角的平分线上,所以点P 应是它们的交点.【解析】 ⑴ 作两条公路夹角的平分线OD 或OE ;⑵ 作线段AB 的垂直平分线FG ;则射线OD ,OE 与直线FG 的交点1C ,2C 就是发射塔的位置.⑵ 代数作图法:解作图题时,往往首先归纳为求出某一线段长,而这线段长的表达式能用代数方法求出,然后根据线段长的表达式设计作图步骤.用这种方法作图称为代数作图法.【例2】 只用圆规,不许用直尺,四等分圆周(已知圆心).【分析】 设半径为1..我们的任务就是做出这个长度..设法构造斜边1.【解析】 具体做法:⑴ 随便画一个圆.设半径为1.⑵ 先六等分圆周.⑶ 以这个距离为半径,分别以两个相对的等分点为圆心,同向作弧,交于一点.(“两个相对的等分点”其实就是直径的两端点啦!两弧交点与“两个相对的等分点”形成的是一个底为2.可算出顶点距圆心距离)的长度等分圆周就可以啦!⑶ 旋转法作图:有些作图题,需要将某些几何元素或图形绕某一定点旋转适当角度,以使已知图形与所求图形发生联系,从而发现作图途径.【例3】 已知:直线a 、b 、c ,且a b c ∥∥.求作:正ABC ∆,使得A 、B 、C 三点分别在直线a 、b 、c 上.c b aD'DC B Acb a【分析】 假设ABC ∆是正三角形,且顶点A 、B 、C 三点分别在直线a 、b 、c 上.作AD b⊥于D ,将ABD ∆绕A 点逆时针旋转60︒后,置于'ACD ∆的位置,此时点'D 的位置可以确定.从而点C 也可以确定.再作60BAC ∠=︒,B 点又可以确定,故符合条件的正三角形可以作出.【解析】 作法:⑴ 在直线a 上取一点A ,过A 作AD b ⊥于点D ;⑵ 以AD 为一边作正三角形'ADD ;⑶ 过'D 作''D C AD ⊥,交直线c 于C ;⑷ 以A 为圆心,AC 为半径作弧,交b 于B (使B 与'D 在AC 异侧).⑸ 连接AB 、AC 、BC 得ABC ∆.ABC ∆即为所求.⑷ 位似法作图:利用位似变换作图,要作出满足某些条件的图形,可以先放弃一两个条件,作出与其位似的图形,然后利用位似变换,将这个与其位似得图形放大或缩小,以满足全部条件,从而作出满足全部的条件.【例4】 已知:一锐角ABC ∆.求作:一正方形DEFG ,使得D 、E 在BC 边上,F 在AC 边上,G 在AB 边上.C B AG'F'E'D'GF E D C B A【分析】 先放弃一个顶点F 在AC 边上的条件,作出与正方形DEFG 位似的正方形''''D E F G ,然后利用位似变换将正方形''''D E F G 放大(或缩小)得到满足全部条件的正方形DEFG .【解析】 作法:⑴ 在AB 边上任取一点'G ,过'G 作''G D BC ⊥于'D⑵ 以''G D 为一边作正方形''''D E F G ,且使'E 在'BD 的延长线上.⑶ 作直线'BF 交AC 于F .⑷ 过F 分别作''FG F G ∥交AB 于G ;作''FE F E ∥交BC 于E .⑸ 过G 作''GD G D ∥交BC 于D .则四边形DEFG 即为所求.⑸ 面积割补法作图:对于等积变形的作图题,通常在给定图形或某一确定图形上割下一个三角形,再借助平行线补上一个等底等高的另一个三角形,使面积不变,从而完成所作图形.【例5】 如图,过ABC ∆的底边BC 上一定点,P ,求作一直线l ,使其平分ABC ∆的面积.【分析】 因为中线AM 平分ABC ∆的面积,所以首先作中线AM ,假设PQ 平分ABC ∆的面积,在AMC ∆中先割去AMP ∆,再补上ANP ∆.只要NM AP ∥,则A M P ∆和AMP ∆就同底等高,此时它们的面积就相等了.所以PN 就平分了ABC ∆的面积.【解析】 作法:⑴ 取BC 中点M ,连接,AM AP ;⑵ 过M 作MN AP ∥交AB 于N ;⑶ 过P 、N 作直线l .直线l 即为所求. NM P CB Al。

5.3简单的轴对称图形(2)——线段的垂直平分线2024学年北师大版数学七年级下册

5.3简单的轴对称图形(2)——线段的垂直平分线2024学年北师大版数学七年级下册
BC上能否找到一点M,使得△EFM的周长最小?如果能,请作出该
点(要求写出作法,并保留作图痕迹).
解:作法:如图,
①作E关于BC的对称点E1,
②连接E1F交BC于点M.
则点M即为所求.
思维过关
7.如图,线段AB,BC的垂直平分线l1,l2相交于点O,连接AO,CO.
若∠OEB=46°,则∠AOC=( B )
3.如图,在△ABC中,AC的垂直平分线交AC于点E,交BC于点
D,△ABD的周长为20 cm,AE=5 cm.求△ABC的周长.
解:因为DE是AC的垂直平分线,所以AD=CD.
所以△ABD的周长为AB+BD+AD=AB+BD+
CD=AB+BC=20 cm.
因为AE=5 cm,所以AC=2AE=2×5=10(cm).
35°
5
2.(2023·揭阳惠来县期末)如图,已知在△ABC中,∠B=50°,
∠C=20°,AB的垂直平分线分别交AB,BC于点D,E,AC的垂直平
分线分别交AC,BC于点F,G,连接AE,AG,则∠EAG=_____.
40°
3.如图,在△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交
又因为BD是AC边上的高,
所以∠DBC=90°-∠C=18°.
巩固提能
1.(2023·揭阳榕城区期末)如图,在△ABC中,直线MN为BC的垂直
平分线,并交AC于点D,连接BD.若AD=3 cm,AC=9 cm,则BD的
长为( A )
A.6 cm
B.7 cm
C.8 cm
D.9 cm
2.(2023·茂名电白区期末 )如图,△ABC中,ED垂直平分AB.若

七年级数学下册第五章生活中的轴对称知识归纳

七年级数学下册第五章生活中的轴对称知识归纳

第五章生活中的轴对称轴对称图形轴对称分类轴对称角平分线轴对称实例线段的垂直平分线等腰三角形等边三角形生活中的轴对称轴对称的性质轴对称的性质镜面对称的性质图案设计轴对称的应用镶边与剪纸一、轴对称图形1、如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

2、理解轴对称图形要抓住以下几点:(1)指一个图形;(2)存在一条直线(对称轴);(3)图形被直线分成的两部分互相重合;(4)轴对称图形的对称轴有的只有一条,有的则存在多条;(5)线段、角、长方形、正方形、菱形、等腰三角形、圆都是轴对称图形;二、轴对称1、对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。

可以说成:这两个图形关于某条直线对称。

2、理解轴对称应注意:(1)有两个图形;(2)沿某一条直线对折后能够完全重合;(3)轴对称的两个图形一定是全等形,但两个全等的图形不一定是轴对称图形;(4)对称轴是直线而不是线段;三、角平分线的性质1、角平分线所在的直线是该角的对称轴。

2、性质:角平分线上的点到这个角的两边的距离相等。

四、线段的垂直平分线1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。

2、性质:线段垂直平分线上的点到这条线段两端点的距离相等.五、等腰三角形1、有两条边相等的三角形叫做等腰三角形;2、相等的两条边叫做腰;另一边叫做底边;3、两腰的夹角叫做顶角,腰与底边的夹角叫做底角;4、三条边都相等的三角形也是等腰三角形。

5、等腰三角形是轴对称图形,有一条对称轴(等边三角形除外),其底边上的高或顶角的平分线,或底边上的中线所在的直线都是它的对称轴。

6、等腰三角形的三条重要线段不是它的对称轴,它们所在的直线才是等腰三角形的对称轴。

7、等腰三角形底边上的高,底边上的中线,顶角的平分线互相重合,简称为“三线合一”。

8、“三线合一”是等腰三角形所特有的性质,一般三角形不具备这一重要性质。

新北师大版七年级数学下导学案 第五章 生活中的轴对称

新北师大版七年级数学下导学案 第五章  生活中的轴对称

教学反思第五章生活中的轴对称第一课时 5.1 轴对称现象一、学习目标:1、经历观察、分析现实生活实例和典型图案的过程,认识轴对称和轴对称图形培养学生探索知识的能力与分析问题、思考问题的习惯。

2、会找出简单对称图形的对称轴,了解轴对称和轴对称图形的联系与区别。

二、学习重点:通过对现实生活实例和典型图案的观察与分析,认识轴对称和轴对称图形,会找出简单的轴对称图形的对称轴。

三、学习难点:找出简单轴对称图形的对称轴与理解轴对称和轴对称图形的联系与区别(一)预习准备(1)预习书115~117页(2)预习作业:1.如图所示的几个图案中,是轴对称图形的是()2.如图所示,下面的5个英文字母中是轴对称图形的有()A.2个 B.3个 C.4个 D.5个3.如图所示的图案中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个(二)学习过程:1、如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做_______图形,这条直线叫做_______。

2、对称轴是一条_______,有些轴对称图形可能有几条,甚至无数条对称轴。

3、把一个图形沿着一条直线翻折过去,如果它能够与另一个图形重合,那么就说这_______图形成轴对称,这条直线就是对称轴,两个图形中的对应点叫做对称点。

4、轴对称图形与轴对称的区别:区别:轴对称是_______图形的位置关系,而轴对称图形是_______具有特殊形状的图形。

5.你认识世界上各国的国旗吗?如图7-4所示,观察下面的一些国家的国旗,是轴对称图形的有()A.甲乙丙丁戊 B.甲乙丁戊 C.甲乙丙教学反思戊 D.甲乙戊6.小红将一张正方形的红纸沿对角线对折后,得到等腰直角三角形,然后在这张重叠的纸上剪出一个非常漂亮的图案,她拿出剪出的图案问小冬,打开后的图案的对称轴至少有()A.0条 B.1条 C.2条 D.无数条7.如图所示,从轴对称的角度来看,你觉得下面哪一个图形比较独特?简单说明你的理由.8.观察如图所示的图案,它们都是轴对称图形,它们各有几条对称轴?在图中画出所有的对称轴.9.如图所示的四个图形中,从几何图形的性质考虑哪一个与其他三个不同?•请指出这个图形,并简述你的理由.拓展:1.如图所示,以虚线为对称轴画出图形的另一半.回顾小结:1.如果一个图形沿某一条直线折叠后,直线两旁的部分能够,那么这个图形叫做轴对称图形,这条直线叫做。

北师版初中数学七年级下册教案 第5章 生活中的轴对称 简单的轴对称图形 第3课时角平分线的性质及画法

北师版初中数学七年级下册教案 第5章 生活中的轴对称 简单的轴对称图形 第3课时角平分线的性质及画法

第3课时角平分线的性质及画法教师备课素材示例●复习导入生活中有许多图形是轴对称图形,验证一个图形是不是轴对称图形可以通过对折的方式.角是轴对称图形吗?如果是,它的对称轴是什么?你是怎么验证的?交流你的想法.【教学与建议】教学:体验角平分线的简易作法,让学生亲自动手折叠一个角,为整节课的学习奠定基础.建议:通过折纸及作图过程,由学生自己去发现结论.●置疑导入不利用工具,请你将一张用纸片做的角分成两个相等的角.你有什么办法?(对折)再打开纸片,看看折痕与这个角有何关系?【教学与建议】教学:让学生动手动脑体验操作将一个角分成两个相等的角,为新课作铺垫.建议:学生自己发现结论,发挥学生的主动作用.尺规作图就是只用没有刻度的直尺和圆规画图.【例1】如图,在△ABC中,BA=BC,∠B=80°,观察图中尺规作图的痕迹,则∠DCE的度数为(B)A.60°B.65°C.70°D.75°(例1题图)(例2题图)【例2】如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于12EF的长为半径画弧,两弧交于点P,作射线AP,交CD于点M.若∠ACD=120°,则∠MAB 的度数为__30°__.角平分线上的点到这个角的两边的距离相等.【例3】如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB 于点D.如果AC=3cm,那么AE+DE等于(B)A.2cmB.3cmC.4cmD.5cm(例3题图) (例4题图)【例4】如图,AB ∥CD ,BE 和CE 分别平分∠ABC 和∠DCB,AD 过点E ,且与AB 垂直,垂足为A ,交CD 于点D.若AD =4,则点E 到BC 的距离是__2__.线段垂直平分线上的点到这条线段两个端点的距离相等,角平分线上的点到这个角的两边的距离相等,综合运用这两条性质,选择合适条件和表示方法来解决问题.【例5】如图,已知△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于(C)A .10B .7C .5D .4【例6】如图,已知在Rt △ABC 中,∠A =90°,BD 是∠ABC 的平分线,DE 是BC 的垂直平分线,试说明:BC =2AB.解:因为DE 是BC 的垂直平分线,所以BE =EC =12BC ,DE ⊥BC ,所以∠DEB=90°.因为∠A=90°,所以∠A=∠DEB.又因为BD 是∠ABC 的平分线,所以∠ABD=∠EBD,DA =DE ,所以△ABD≌△EBD(AAS),所以AB =BE ,所以AB =12BC ,即BC =2AB.高效课堂 教学设计1.经历探索角的轴对称性质的过程,理解角平分线的有关性质. 2.利用折叠的方法说明角平分线的性质,并能够利用其解决相应的问题.▲重点探索并理解角平分线的有关性质.▲难点运用角平分线的性质解决问题.◆活动1 创设情境导入新课(课件)如图,在S区有一个集贸市场P,它建在公路与铁路所成角的平分线上,要从P点建两条路,一条到公路,一条到铁路.问题1:怎样修建道路最短?问题2:往哪条路走更近呢?这节课我们来利用角平分线的性质解决这类问题.◆活动2 实践探究交流新知【探究1】角的轴对称性操作:在一张纸上任意画一个角∠AOB,如图,沿角的两边将角剪下,并将这个角对折,使角的两边重合,再打开纸片,看看折痕与这个角有什么关系?【归纳】角是轴对称图形,角平分线所在的直线是它的对称轴.强调:角平分线是一条射线,而角的对称轴是角平分线所在的直线.【探究2】角平分线的性质请同学们按下列步骤完成折叠过程:(1)在一张纸上任意画∠AOB,沿角的两边将角剪下,将这个角对折,使角的两边重合,折痕就是∠AOB的平分线;(2)在∠AOB的平分线上任意取一点C,分别折出过点C且与∠AOB两边垂直的直线,垂足分别为D,E,将∠AOB再次对折,线段CD与CE重合吗?(3)改变点C 的位置,线段CD 和CE 还相等吗?你能说明理由吗? 【归纳】角平分线上的点到这个角的两边的距离相等. 【探究3】尺规作角的平分线下面我们探究用尺规作角的平分线.已知:∠AOB.求作:射线OC ,使∠AOC=∠BOC. 作法:(1)在OA 和OB 上分别截取OD ,OE ,使OD =OE ;(2)分别以D ,E 为圆心,以大于12DE 的长为半径作弧,两弧在∠AOB内交于点C ;(3)作射线OC.OC 就是∠AOB 的平分线(如图). 你能说明这样作的道理吗?理由:连接CE ,CD.因为OD =OE ,CD =CE ,OC =OC , 所以△COD≌△COE(SSS).所以∠COD=∠COE,即OC 是∠AOB 的平分线. ◆活动3 开放训练 应用举例【例1】如图,在Rt △ABC 中,BD 是角平分线,DE ⊥AB ,垂足为E ,DE 与DC 相等吗?为什么?【方法指导】角平分线性质的运用.解:相等.理由:因为BD 平分∠ABC,DE ⊥AB ,DC ⊥BC ,根据角平分线上的点到这个角的两边的距离相等,可知DE =DC.【例2】如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,S △ABC =7,DE =2,AB =4,则AC 的长是()A .6B .5C .4D .3 【方法指导】过点D 作DF⊥AC 于F.因为AD 是△ABC 的角平分线,DE⊥AB ,所以DF =DE =2,所以S △ABC =12×4×2+12AC×2=7,解得AC =3.答案:D【例3】如图,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E ,F 为圆心,大于12EF 的长为半径画弧,两弧交于点P ,作射线AP ,交CD 于点M.若∠ACD=120°,求∠MAB 的度数.【方法指导】根据AB∥CD,∠ACD =120°,得出∠CAB=60°.再根据尺规作图得出AM 是∠CAB 的平分线,即可得出∠MAB 的度数.解:因为AB∥CD,所以∠ACD+∠CAB=180°.又因为∠ACD=120°,所以∠CAB=60°. 由尺规作图知AM 是∠CAB 的平分线,所以∠MAB=12∠C AB =30°.◆活动4 随堂练习 1.用直尺和圆规作一个角的平分线如图所示,则能说明∠AOC=∠BOC 的依据是(A)A.SSS B .ASA C .AASD .角平分线上的点到角两边的距离相等2.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC,交BC 于点D.若AB =10,S △ABD =15,求CD 的长.解:CD=3.3.课本P126随堂练习.◆活动5 课堂小结与作业【学生活动】1.本节课你知道了哪些新知识?2.你还有哪些困惑?【教学说明】梳理本节课的重要方法和知识,加深对角平分线的理解和应用.【作业】课本P127习题5.5中的T1、T2、T3.课堂开始设计了折纸活动,让学生体验角的轴对称性,为学习角平分线的性质做好铺垫.通过学习尺规作图,以达到复习全等和再次验证猜想的目的,从而激发了学生学习数学的欲望和兴趣,使教学目标顺利达成.有效提高了学生对新知识的理解和感悟,教学效果较好.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 线段垂直平分线上的点到这条线段两个 端点的距离相等 .
作业
巩固提高,布置作业!
1. 作业本:简单的轴对称图形(一)
2. 一课一练:简单的轴对称图形
谢谢合作!
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
拓展 试一试 1 如图,点C在直线l上,试过点C画出直线l的 垂线.
能否利用画线段垂图 直平24分.4.8线的方法解决呢? 试试看,完成整个作图.
图24.4.9
以C为圆心,任一线段的长为半径画弧,交l 于A、B两点,则C是线段AB的中点.因此,过 C画直线l的垂线转化为画线段AB的垂直平分 线.
AA
O
BB
线段的对称轴经过线段的 中点且垂直于这条线段。
线段的对称轴上任意一点到 这条线段的两端点的距离相 AA 等。
C
O
BB
线段的垂直平分线
1 线段的对称轴是这条线段的 垂直平分线
2 垂直平分线是垂直且平分线段的一条直线
3 垂直平分线的性质:垂直平 分线上的点到这条线段两个端点
的距离相等。
O
A
B. 7
C. 8

A
E
B
D. 9
N
课外探究: 如图:A,B,C三点表示三个工厂,现要建
一供水站,使它到这三个工厂的距离相等,请在 图中标出供水站的位置P,请给予说明理由。
A

B
c


小结
1. 垂直于一条线段并且平分它的直线叫这条 线段的垂直平分线。
2. 线段是轴对称图形,它的垂直平分线是 它的一条对称轴 .
初中数学 七年级(下册)
5.3.2 简单的轴对称图形
复习
复习提问:
1、什么样的图形叫做轴对称图形?
答:把一个图形沿着某条直线对折,如果 对折的两部分是完全重合的,我们就称这 样的图形为轴对称图形,这条直线叫做这 个图形的对称轴。
2、下列图形哪些是轴对称图形?
探索1
线段是轴对称图形吗?如果是,你能找 出它的一条对称轴吗?这条对称轴与线 段存在着什么关系?
A
B
做一做
按照下面的步骤做一做:
(1)在纸片上画一条线段AB,
对折AB使点A,B重合, 折痕与AB的交点为O;
CC
(2)在折痕上任取一点C,
沿CA将纸折叠; (3)把纸展开,得到折痕CA和CB。AA O BB
想一想
CC
(1)CO与AB有怎样的位置关系?
垂直
(2)AO与BO相等吗?CA与CB呢? A O
B
能说明你的理由吗?
AO=BO CA=CB
(3)在折痕上另取一点,再试一试。
小结 1、线段是轴对称图形 它的一条 Nhomakorabea称轴就是
对折后能使之完全重合的那条折痕;
2、线段的对称轴过线段AB的 中 点,
3、线段的对称轴与线段
AB 垂直 。(位置关系)
C
4、线段的对称轴上的任意 一点C到线段AB的两端点A,B 的距离___相__等_
C D
A
E
B
(1)
3 如图,在△ABC中,AB=AC=16cm,AB的垂
直平分线交AC于D,如果BC=10cm,那么△BCD
的2周6 长是_______cm.
A
E D
B
C
(2)
4 如图,已知点D在AB的垂直平分线上,如果 AC=5cm,BC=4cm,那么△BDC的周长是(D)cm。
M
C
D
A. 6
则直线CD即为所求.
1练.习在△ABC中,BC=10,边BC的垂直平分 线分别交AB,BC于点E,D,BE=6,求 △BCE的周长.
解:因为DE是线段BC的垂直平分线 所以EC=EB=6 所以△BCE的周长=EB+EC+BC=6+6+10=22
2 如图,AB是△ABC的一条边,DE是AB的垂直
平AB=分8c线m,B,D=垂6c足m,那为么E ,EA=并__交__B4_C__于_,点DAD=,__6已__.知
试一试 2.如图,如果点C不在直线l上,试和同学讨论, 应采取怎样的步骤,过点C画出直线l的垂线?
图 24.4.10
作法:(1)以点C为圆心,以适当长为半径画弧, 交直线l于点A、B; (2)以点A为圆心,以CB长为半径在直线另一侧 画弧.
(3)以点B为圆心,以CB长为半径在直线另一侧 画弧,交前一条弧于点D. (4)经过点C、D作直线CD.
B
探索2 做一做
如图,已知线段AB,画出它的垂直平分线.
图 24.4.7
如图,已知线段AB,画出它的垂直平分线.
作法:(1)以点A图为圆2 4心.4 .7,以大于AB一半 的长为半径画弧; (2)以点B为圆心,以同样的长为半径画 弧,两弧的交点记为C、D; (3)经过点C、D作直线CD. 直线CD即为所求.
相关文档
最新文档