工程光学 第一章 习题及解答

合集下载

工程光学习题解答(第1章)

工程光学习题解答(第1章)

工程光学习题解答(第1章)(1)(2) m/s(3) 光在冕牌玻璃中的速度:v=3×108/1.51=1.99×108 m/s(4) 光在火石玻璃中的速度:v=3×108/1.65=1.82×108 m/s(5) 光在加拿大树胶中的速度:v=3×108/1.526=1.97×108 m/s(6) 光在金刚石中的速度:v=3×108/2.417=1.24×108 m/s*背景资料:最初用于制造镜头的玻璃,就是普通窗户玻璃或酒瓶上的疙瘩,形状类似“冠”,皇冠玻璃或冕牌玻璃的名称由此而来。

那时候的玻璃极不均匀,多泡沫。

除了冕牌玻璃外还有另一种含铅量较多的燧石玻璃(也称火石玻璃)。

3.一物体经针孔相机在屏上成像的大小为60mm ,若将屏拉远50mm ,则像的大小变为70mm ,求屏到针孔的初始距离。

解: 706050=+l l ⇒ l =300mm 657l4.一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:本题是关于全反射条件的问题。

若要在玻璃板上方看不到金属片,则纸片最小尺寸应能够挡住金属片边缘光线达到全反射的位置。

(1) 求α角:nsin α=n ’sin90 ⇒ 1.5sin α=1 α=41.81︒(2) 求厚度为h 、α=41.81︒所对应的宽度l : l =htg α=200×tg41.81︒=179mm(3) 纸片最小直径:d min =d金属片+2l=1+179×2=359mm5.试分析当光从光疏介质进入光密介质时,发生全反射的可能性。

6.证明光线通过平行玻璃平板时,出射光线与入射光线平行。

7.如图1-15所示,光线入射到一楔形光学元件上。

已知楔角为α,折射率为n ,求光线经过该楔形光学元件后的偏角δ。

工程光学第一章练习参考答案

工程光学第一章练习参考答案

l 2 ' 15 mm
第一章 16
(2)凸面镀反射膜 r1
l , r 30 , n 1 , n ' 1 n' l' l' n l n' n ' n n ' n r r 1 11 30 15 mm
第一章 16
(3)凹面镀反射膜 (a)在左球面折射
l 2 ' 10 mm
第一章 16
(4)凹面镀反射膜 (a)在左球面折射 (b)在右球面第二次反射
r1
r2
l 2 ' 10 mm
(c)再左球面第三次折射
l 50 mm , r 30 , n 1 . 5 , n ' 1 n' l' 1 l' n l 1 .5 50 n ' n r 1 1 .5 30
n1
I2’
n 1 sin I 1 n 1 sin I 2 ' I1 I 2'
第一章 8
I1’ I1 n 0 sin I 1 n 1 sin I 1 ' n 1 sin I 2 n 2 sin 90 n 2 I 1 ' 90 I 2 I2
n0 n2 n1
3 10 1 . 526
8
1 . 966 10 m / s
8 8
3 10 2 . 417
1 . 241 10 m / s
第一章 4
D=?
h=200mm
全反射问题. (1)
n sin I 1 sin 90 sin I 1 I 41 . 81 n

I
1

工程光学第一章习题及解答

工程光学第一章习题及解答

解题技巧总结
建立清晰的解题思路
根据题目要求,建立清晰的解 题思路,明确解题方向和步骤。
提高计算能力
通过练习和总结,提高自己的 计算能力和准确性,避免因计 算失误导致错误。
仔细审题
在开始解题之前,务必仔细阅 读题目,明确题目要求和给定 条件。
准确应用公式和定理
在解题过程中,准确应用相关 的公式和定理,确保适用条件 和范围正确。
注意细节和隐含条件
在解题过程中,注意细节和隐 含条件,确保解题思路和结果 完整准确。
05 习题拓展
相关知识点拓展
01
光的干涉
光的干涉是光波动性的重要表现之一,它涉及到光的相干性、干涉条件、
干涉图样等知识点。可以进一步了解干涉现象在日常生活和科技领域中
的应用,如光学干涉仪、薄膜干涉等。
02
光的衍射
光的衍射描述了光在传播过程中遇到障碍物时发生的偏离直线传播的现
象。可以深入了解衍射与干涉的区别和联系,以及衍射在光学仪器设计、
光谱分析等领域的应用。
03
光学仪器
了解各种光学仪器的基本原理和应用,如显微镜、望远镜、照相机等。
探究这些仪器中光的干涉、衍射等现象的应用,以及如何提高光学仪器
的性能。
类似题目推荐
题目
什么是光的偏振现象?请举例说明。
答案
光的偏振现象是指光波的电矢量或磁矢量在某一特定方向 上振动。例如,自然光通过偏振片后,只能沿特定方向振 动的光波通过,形成线偏振光。
题目
简述光的色散现象。
答案
光的色散现象是指不同波长的光在传播速度上存在差异, 导致白光通过棱镜后分解成不同颜色的光谱。这是因为不 同波长的光在介质中的折射率不同。
取为无穷大。

大学工程光学_郁道银_光学习题很全的解答

大学工程光学_郁道银_光学习题很全的解答

第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学习题答案

工程光学习题答案

工程光学习题答案第一章习题及答案1、已知真空中的光速c=3*108m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中, n=1.333 时,v=2.25*108m/s,当光在冕牌玻璃中,n=1.51 时,v=1.99*108m/s,当光在火石玻璃中,n=1.65 时,v=1.82*108m/s,当光在加拿大树胶中,n=1.526 时,v=1.97*108m/s,当光在金刚石中,n=2.417 时,v=1.24*108m/s。

2、一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm 即屏到针孔的初始距离为300mm。

3、一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

工程光学基础 习题参考答案-第一章_02

工程光学基础 习题参考答案-第一章_02

光线入射到玻璃球表面一部分反射回 空气中,另一部分经过折射入射到玻璃球 内部。根据折射定律 n' SinI ' = nSinI (1-2) 有: 折射角 I ' = 30 o 光线通过玻璃球以 30 o 入射到玻璃球 后表面再次发生反射和折射,根据公式 (1-2)可得折射角 I ' ' = 60 o 以此类推,其传播情况如图所示: 16、一束平行细 一束平行细光束入射到一半径 r=30mm、折射率 n=1.5 的玻璃球上, 的玻璃球上,求其会 聚点的位置。 聚点的位置。如果在凸面上镀反射膜, 如果在凸面上镀反射膜,其会聚点应该在何处? 其会聚点应该在何处?如果凹面镀反射 膜,则反射光束在玻璃中的会聚点又在何处? 则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后, 反射光束经前表面折射后,会聚 点又在何处? 点又在何处?说明各会聚点的虚实。 说明各会聚点的虚实。 解: (1)求入射光线经前表面折射后的会聚点 n' n n'− n 根据公式 − = (1-20)得: l' l r 1 .5 1 1 .5 − 1 − = ⇒ l ' = 90mm l' − ∞ 30 该像点在玻璃球后表面以后 30mm 处,再经后表面折射,此时将前表面成 的像作为后表面的物再次在后表面成 像,各项参数为物距 l=(90-60)=30mm, 折 射 面 半 径 r=-30mm , 物 方 折 射 率 n=1.5,像方折射率 n’=1。同理根据公式(1-20)有: 1 1 .5 1 − 1 .5 − = ⇒ l ' ' = 15mm l ' ' 30 − 30 所以,最终光线会聚到玻璃球后表面之后 15mm 处。 (2)求当凸面上镀反射膜,其会聚点位置 1 1 2 根据公式 + = (1-30)得: l' l r 1 1 2 + = ⇒ l ' = 15mm l ' − ∞ 30 所以,其成像在反射面之后 15mm 处,为虚象。 (3)求凹面镀反射膜,反射光束在玻璃中的会聚点位置 平行细光束经凸面折射成像后再经凹面镀的反射膜反射成像, 利用第一步中 结果可得对于凹面镀的反射膜反射成像其物距 l=(90-60)=30mm ,折射面半径 r=-30mm,根据公式(1-30)得: 1 1 2 + = ⇒ l ' = −10mm l ' 30 − 30

工程光学基础教程 习题参考答案

工程光学基础教程 习题参考答案

第一章 几何光学基本定律1. 已知真空中的光速c =3810⨯m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s ,当光在金刚石中,n=2.417时,v=1.24 m/s 。

2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm 。

3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n = 66666.01sin 22==n I745356.066666.01cos 22=-=I1mm I 1=90︒n 1 n 2200mmL I 2 x88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学基础教程 习题参考答案

工程光学基础教程 习题参考答案

第一章 几何光学基本定律1. 已知真空中的光速c =3810⨯m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s ,当光在金刚石中,n=2.417时,v=1.24 m/s 。

2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm 。

3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n = 66666.01sin 22==n I745356.066666.01cos 22=-=I1mm I 1=90︒n 1 n 2200mmL I 2 x88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ON =
M
dl r l r l ' ≈ + =0 ' d l l
h
Q C
1 1 2 + = ' l l r
l
l' r
Q'
N
O
6. 两薄透镜的焦距为 f1' = 5.0cm 和 f 2' = 10.0cm ,相距5.0cm.若 相距 . 一高为2.50cm的物体位于第一透镜前 的物体位于第一透镜前15.0cm处,求最后所成像 一高为 的物体位于第一透镜前 处 的位置和大小,并作出成像的光路图. 的位置和大小,并作出成像的光路图.
F
' 1
' 1
F2'
f = 5.0cm
f 2' = 10.0cm
解:
(1) 对第一个透镜成像
l1 = 15cm
f1' = 5.0cm
1 1 1 = ' ' l l f
l β= l
'
得:
1 1 l = ( ' + ) 1 = 7.5cm f 1 l1
' 1
7 .5 β1 = = 0.5 15
处生成缩小实像. 即,物在右端7.5cm处生成缩小实像.该实像作为的虚物求像. 物在右端 处生成缩小实像 该实像作为的虚物求像.
' l 3 = l 2 = 10cm
β = nl ' / n'l
' n3 = 1
n3 = 1.5
y3 = 1 / 6cm
r3 = 20cm
得:
' l 3 = 8cm
β 3 = 1.2
y3 = 0.2cm

L() = ( l + ) 2 + h 2 + ( l ' + ) 2 + h 2
dl rl r l' = 2 + 2 d l + 2(r l ) l ' + 2( r l ' )
= l 2 + 2 ( r l ) + l ' 2 + 2( r l ' )
<< l , l , r
'



A'
A B
从右侧观察: 从右侧观察:
l A = 300mm
r = 200mm n′ n n′ n ∵ = l′ l r
l B = 200mm
从左侧观察
l B = 200 mm
l A = 100 mm r = 200mm
n′ l′ = n′ n n + r l
代入求解得 ′ l A = 80mm
∑1
∑2
.
C
3. 有平凸透镜r=100mm,r=∞,d=300mm, n=1.5,当物体在-∞时,求高斯像的位置l'. 在第二面上刻一十字丝, 问: 其通过球面的共轭像处? 当入射高度h=10mm时,实际光线的像方 截距为多少?与高斯像面的距离为多少?
I
B'
B藼mm
∑1
∑2
.
C
解: 满足近轴成像:n / l n' / l ' = ( n n' ) / r 满足近轴成像: 面成像: (1)对 ∑ 1面成像: )
1/ l' + 1/ l = 2 / r
①式 ②式
n1 = 1
n = 1 .5
' 1
l1 = ∞
r1 = 30mm
带入①式可得: 带入①式可得:l = 90mm (虚像) 虚像)
y1
解:
1)第一次折射成像,满足 第一次折射成像,
n / l n' / l ' = ( n n' ) / r
y1
β = nl ' / n' l
l1 = 40cm
r1 = 20cm
n1 = 1
n'1 = 1.5
y1 = 1cm
得:
' l1 = 30cm
β 1 = 0.5
y1 = 0.5cm
2)第二次折射成像,满足 )第二次折射成像,
解:
1 1 2 + = l′ l r
l′ β = l
5. 试从费马原理出发,导出凹球面反射镜 试从费马原理出发, 近轴成像公式: 做出示意图. 近轴成像公式: 1 + 1 = 2 ,做出示意图.
l
'
l
r
M
h
Q C
ON =
l
l' r
Q'
N
O
解: L ( ) = Q M + M Q '
h 2 = ( 2r + )
1/ l' + 1/ l = 2 / r
' l 2 = l1 = 30cm
β = l ' / l
y2 = 0.5cm
y1 = 1 / 6cm
r2 = 15cm
β 2 = 1 / 3
得:
' l 2 = 10cm
y1
3)第三次折射成像,满足 第三次折射成像,
n / l n' / l ' = ( n n' ) / r ,
r4 = 30mm
代入② 代入②式,得:4' = 10mm (实像) l 实像) 面左侧10mm处 距 ∑ 2 面左侧 处
∑1
∑2
.
C
解: (4)利用(3)的结论 )利用( )
l5 = (60 10) = 50mm n5 = 1.5 n = 1
' 5
r5 = 30mm
代入①式,得:5' = 75mm (虚像) 代入① l 虚像) 面右侧75mm处 距 ∑ 1 面右侧 处
L2 = L1 d = 0.626mm


I 2 = u ′ = 1.9172 °
n ′ I 2 = 2.87647 ° sin I 2 = * sin I 2 = 1.5 * sin 1.9172° = 0.05018 1 ′ ′ u 2 = u 2 + I 2 I 2 = 1.9172 ° 1.9172 ° + 2.87647 ° = 2.87647 °
1) 由 n / l n' / l ' = ( n n' ) / r 代入:l1 = ∞ 得:

′ n1 = 1.5
I
n1 = 1
B'
B"
A' '
r1 = 100
n=1.5 d=300mm
x
l1 = 300mm
′ l 2 = l1 d = 300 300 = 0mm
∴ l 2 = 0mm
即:物体位于-∞时,其高斯像点在第二面的中心处.
B'
B"
A' '
x
I ′ = arcsin 0.06667 = 3.822 °
n=1.5 d=300mm
sin I / 0.06667 L ′ = r * (1 + ) = 100 * (1 + ) = 299.374mm sin u ′ 0.0334547
u ′ = u + I I ′ = 0 + 5.739 3.822 = 1.9172 °
I
由△关系可得:
x = L2 tgu ′ = 0.626 * tg1.9172 = 0.02095mm
0.02095 ′ L2 = = 0.4169mm ° tg 2.87467
°
B'
B"
A' '
x
n=1.5 d=300mm
它与高斯像面的距离为-0.4169mm 0.4169mm
4. 一球面镜半径 一球面镜半径r=-100mm,求β=0,-0.1, -0.2, , , 1 02 -1,1,5,10,∞时的物距和像距. 时的物距和像距. 1 , 时的物距和像距

2)由光路的可逆性可知 :第二面上的十字丝像在物方∞处.
3)当 h1 = 10 mm 时
h1 10 sin I = = = 0.1 r1 100
(以下推导参看 均非近轴情况 以下推导参看P7,均非近轴情况 均非近轴情况) 以下推导参看
I
sin I ′ =
n 1 * sin I = * 0.1 = 0.06667 n′ 1.5
' 1
由于d=60mm<90mm,所以虚物对∑ 2 面再次成像 < 由于 所以虚物对 面成像: 对∑ 2 面成像:
n2 = 1.5 n = 1 r2 = 30mm
' 2
∑1
∑2
l 2 = 90 60 = 30mm ' (实像) 带入①式可得: 带入①式可得:l 2 = 15mm 实像)
面右侧15mm处 距 ∑ 2 面右侧 处
.
C
解: (2)满足②式 1 / l ' + 1 / l = 2 / r )满足②
l 3 = ∞ r3 = 30mm ' 带入②式可得: 带入②式可得:l 3 = 15mm (虚像) 虚像)
面右侧15mm处 距 ∑ 1 面右侧 处 (3)利用(1)的结论得: )利用( )的结论得:
l4 = 90 60 = 30mm
F
' 1
F2'
f1' = 5.0cm
f 2' = 10.0cm
(2) 对第二个透镜成像
l 2 = 2.5cm
得:l 2' = ( 所以, 所以,
相关文档
最新文档