抽象代数课本讲义第一章第六节

合集下载

抽象代数基础第一章1.6 群的同构与同态

抽象代数基础第一章1.6 群的同构与同态
(2)若H是G的正规子群且 ,则
证明:(1)易知HN是G的子群,又由于N是G的正规子群,自然有N也是HN的正规子群,因而有商群 。令
则f是一个群同态。易知f是满同态,又 ,由同态基本定理有 。
(2)令 ,若aN=bN,则 ,而 ,所以 ,即 ,因而g的定义是合理的,易见g是一个满同态且 ,所以有同态基本定理,
《 抽象代数基础 》教案
复习思考题、作业题:
课本P28 1、4、6、9、10
下次课预习要点
有限群
实施情况及教学效果分析
学院审核意见
学院负责人签字
年月日
教学内容:
对 若 则 ,于是
,因而 ,故 ,所以 是单射,从而 是双射,
又由于,对 有
所以 是群 到 的一个同构,因而 。
10、定理5设G是循环群,如果G的阶无限,则 ;如果G的阶为n,则 。
由同态基本定理,我们可以得到两个重要的同构
11、定理6设G是一个群,N是G的正规 和 是两个群,f是集合G到 的一个映射,如果对 都有
,则称f是群G到 的一个同态。
5、命题1 f是群G到 的一个同态,e和 分别是G和 的单位元,则
(1)
(2)对 有 。
6、命题2 f是群G到 的一个同态,则
(1)Ker(f)是群G的正规子群
(2)Im(f)是群 的子群。
7、定理2 f是群G到 的一个同态,则
(1)如果H是G的子群,则f(H)是 的子群
(2)如果 是 的子群,则 是G的子群;如果 是 的正规子群,则 也是G的正规子群。
8、定理3设f是群G到 的一个满同态,如果H是G的正规子群,则f(H)是 的正规子群。
9、定理4(群的同态基本定理)设f是群G到 的一个满同态,则

抽象代数——精选推荐

抽象代数——精选推荐

抽象代数⼀、课程⽬的与教学基本要求本课程是在学⽣已学习⼤学⼀年级“⼏何与代数”必修课的基础上,进⼀步学习群、环、域三个基本的抽象的代数结构。

要求学⽣牢固掌握关于这三种抽象的代数结构的基本事实、结果、例⼦。

对这三种代数结构在别的相关学科,如数论、物理学等的应⽤有⼀般了解。

⼆、课程内容第1章准备知识(Things Familiar and Less Familiar)10课时复习集合论、集合间映射及数学归纳法知识,通过学习集合间映射为继续学习群论打基础。

1、⼏个注记(A Few Preliminary Remarks)2、集论(Set Theory)3、映射(Mappings)4、A(S)(The Set of 1-1 Mappings of S onto Itself)5、整数(The Integers)6、数学归纳法(Mathematical Induction)7、复数(Complex Numbers)第2章群(Groups) 22课时建⽴关于群、⼦群、商群及直积的基本概念及基本性质;通过实例帮助建⽴抽象概念,掌握群同态定理及其应⽤;了解有限阿贝尔群的结构。

1、群的定义和例⼦(Definitions and Examples of Groups)2、⼀些简单注记(Some Simple Remarks)3、⼦群(Subgroups)4、拉格朗⽇定理(Lagrange’s Theorem)5、同态与正规⼦群(Homomorphisms and Normal Subgroups)6、商群(Factor Groups)7、同态定理(The Homomorphism Theorems)8、柯西定理(Cauchy’s Theorem)9、直积(Direct Products)10、有限阿贝尔群(Finite Abelian Groups) (选讲)11、共轭与西罗定理(Conjugacy and Sylow’s Theorem)(选讲)第3章对称群(The Symmetric Group) 8课时掌握对称群的结构定理,了解单群的概念及例⼦。

抽象代数高等数学教材

抽象代数高等数学教材

抽象代数高等数学教材抽象代数,作为数学的一个重要分支,研究的是代数结构的抽象概念及其性质。

它是现代数学的基石之一,也是高等数学中的一门重要课程。

本教材旨在全面而系统地介绍抽象代数的基本概念、理论和方法,帮助读者建立起对抽象代数的深入理解和应用能力。

第一章:群论1.1 群的定义与性质1.2 群的子群与商群1.3 幺半群与半群1.4 群同态与同构1.5 群的作用与置换群第二章:环论2.1 环的定义与性质2.2 整环与域2.3 环的同态与同构2.4 素理想与极大理想2.5 多项式环与唯一因子分解整环第三章:域论3.1 域的定义与性质3.2 代数扩域与超越扩域3.3 有限域与伽罗华理论3.4 不可约多项式与域的扩张第四章:线性代数4.1 线性空间的定义与性质4.2 线性变换与矩阵4.3 特征值与特征向量4.4 正交矩阵与对角化4.5 线性空间的直和与内积空间第五章:模论5.1 模的定义与性质5.2 子模与商模5.3 生成元与基本定理5.4 非交换环上的模5.5 自由模与有限生成模第六章:域扩张与代数闭包6.1 域扩张的概念与性质6.2 代数元与超越元6.3 代数闭包与代数簇6.4 代数闭域与代数不变量6.5 有理函数与分式域的构造第七章:范畴论与同调代数7.1 范畴的基本概念与性质7.2 范畴的构造与自然变换7.3 函子与函子范畴7.4 外代数与同调代数基础7.5 奇异同调与同调算子第八章:群表示论8.1 群表示的基本概念与性质8.2 单群与群同态8.3 群表示与欣格尔引理8.4 卷积公式与算术引理8.5 特殊群的表示与表示的构造结语:本教材通过系统而严谨的讲解,涵盖了抽象代数的核心内容,旨在培养读者对抽象代数的兴趣和学习动力,提升读者对数学的抽象思维能力和证明能力。

在学习的过程中,读者还可结合习题和实例进行巩固和应用,从而更好地掌握抽象代数的理论与方法。

希望本教材能成为读者学习抽象代数的重要参考资料,为他们在数学领域的探索和研究奠定坚实基础。

抽象代数教学大纲

抽象代数教学大纲

《抽象代数》课程教学大纲课程编号:总学时: 54 总学分: 3 开课学期:第5学期适用专业小学教育(理)一、课程性质、目的与任务本课程是小学教育(理)专业选修课,课程主要内容为集合与映射、群论初步、环与域。

整环的因子分解理论和域的扩张二、课程教学的基本要求通过对本课程的学习,使学生掌握《近世代数》的一系列基本概念与基本理论,掌握现代数学的基本方法,培养学生正确运用现代数学的知识和方法来解决实际问题的能力,并为进一步学习后续课程及相关课程打好基础。

三、课程的主要内容、重点和难点第一章基本概念(一)、教学内容集合:子集与真子集,并集、交集。

映射:映射的定义,以及象与逆象的概念。

代数运算:代数运算的定义及表示法,二元运算的概念。

结合律:结合律的定义。

交换律:交换律的定义。

分配律:分配律的定义。

一一映射:满射、单射、一一映射;变换、单射变换、满射变换及一一变换。

同态:同态映射、同态满射。

同构、自同构:同构映射、自同构。

等价关系与集合:关系、等价关系,分类、全体代表团、剩余类。

重点:一一映射、同态、同构、自同构、分类。

难点:建立映射关系与同构关系,等价关系与分类之间的相互转换。

(二)教学基本要求1、理解集合的概念,了解元素与集合之间的关系,以及集合之间的运算。

2、理解映射的概念,能在集合之间建立映射关系,并能判断两个映射是否相同。

3、掌握代数运算与映射的关系,能建立有限集合之间的运算表。

4、掌握将结合律、交换律、第一、第二分配律推广到n元的定理,并能判断给定的运算能否满足结合律、交换律以及两种分配律。

5、掌握一一映射的定义,并能建立两个集合之间的满射、单射、一一映射,能判定给定的映射是否是一一映射。

6、掌握同态映射的概念,理解同态与同态满射的关系,并能判定映射是否是同态满射,掌握具有同态满射的集合之间的联系。

7、掌握同构映射和自同构的概念,能区分同态与同构的差别,理解两个具有同构关系的集合之间的关系,并能判定给定的映射和运算是否是同构关系,能建立两个集合之间的同构映射。

近世代数(抽象代数)课件

近世代数(抽象代数)课件

意一个二元运算,并将其称为乘法.当 ab c
时, c 称为 a 与 b 的乘积;甚至还将等式 ab c
简写成 ab c .

6
Logo
§1 代数运算
例 1 设 R 是实数集.于是,平常的加法“”,减 法“-”和乘法“”都是 R 上的二元运算;除法“”是 R , R \{0}到 R 的代数运算,不是 R 上的二元运算.
第一章 群 论
LOGO
1
目录
§1 代数运算 §2 群的概念 §3 子 群 §4 循环群 §5 正规子群与商群 §6 群的同构与同态 §7 有限群

2
Logo
§1 代数运算
设 A1, A2 , , An ( n 为正整数)都是集合.我们将 集合
{(a1, a2 , , an ) | ai Ai , i 1, 2, n} 称为 A1, A2 , , An 的直积或笛卡儿积,记作
A1 A2 An . 特别地,当 A1 A2 An A 时, A1 A 2 A n 可 以简记作 An (读作 A 的 n 次方).这里约定,当 n 1 时, A1 A 2 A n 就是 A1 .

3
Logo
§1 代数运算
定义 1.1 设 A1, A2 , , An ( n 为正整数)和 A 都是非空集合. A1 A2 An 到 A 的映射 又 称 为 A1, A2 , , A n 到 A 的 代 数 运 算 ; 特 别 地, An 到 A 的映射又称为 A 上的 n 元运算.
设 A 是一个非空集合. f 是 A 上的一个二
元运算.于是,对于任意的 a, b A ,存在唯
一的 c A ,使得 f (a, b) c .我们约定,将等
式 f (a, b) c 改写成 afb c .

《抽象代数》课程大纲(草稿-细节待完善)

《抽象代数》课程大纲(草稿-细节待完善)

《抽象代数》课程大纲(草稿-细节待完善)一、课程简介课程名称:抽象代数学时/学分:68/4先修课程:线性代数(E)面向对象:致远学院本科生(计算机班)教学目标:本课程是为致远学院(计算机班)开设的系列代数课程的第二部分。

通过整个课程的学习使学生掌握近世代数学(又叫抽象代数)的基本理论、思想与方法,使学生的计算能力和抽象思维能力得到系统的训练和提高,为将来进一步学习其它专业课程和将来的应用奠定坚实的代数基础。

在教学过程中特别强调结合具体的例子来理解近世代数学的数学思想和思维方法,注意介绍最新的科研成果以开阔同学的视野。

主要内容:群(子群、群同态及基本定理、 Sylow定理、群作用及其应用),环(环同态、理想、商环、 多项式环与矩阵环),域(素子域,域的扩张, 可裂域与有限域)二、教学内容第一章 预备知识主要内容:等价关系、等价类、商集合与满映射; 数论中的整除与同余:Euler定理与Fermat小定理重点与难点:商集合与满映射的一一对应性第二章群与对称性主要内容:群的定义以及重要例子(循环群、二面体群与其他旋转群);子群与旁集(Coset): Lagrange定理,计数公式(1);正规子群与商群;群同态基本定理重点与难点:群同态基本定理;商群第三章群作用主要内容:群作用与群方程;各种具体的群作用(共轭作用;Cayley定理;抽象群作用);Burnside引理及其应用;Sylow定理及其应用重点与难点:群作用;轨道个数的计数公式(即群方程)第四章环主要内容:子环与理想、商环;多项式环及其商环;模n的剩余类环;PID与欧氏整环;整环中的素元与不可约元;UFD重点与难点:理想与商环;环的特征;分解问题第五章域主要内容:素域与域扩张; 单扩域;代数扩域:定义及例子;分裂域、正规扩域; 有限域:重点是分裂域和有限域重点与难点:域扩张;分裂域三、教学进度安排第一章.预备知识(6课时)1.1.等价关系、等价类、商集合与满映射(4学时)1.2.初等数论中的整除与同余:Euler定理与Fermat小定理(2学时)习题课(2学时)第二章. 群与对称性(20学时)2.1.群的定义以及重要例子(循环群、二面体群与其他旋转群;置换群) (4学时)2.2.子群与旁集(Coset): Lagrange定理,计数公式(1);由子集生成的子群;群的表达式(generators and relations)(6学时)2.3.正规子群与商群: 定义;重要例子;Cauchy引理(作为商群的应用)(4学时)2.4. 群同态基本定理以及第一第二同构定理; (2学时)2.5. 自同构与内自同构(2学时)2.6. 群的内、外直积(2学时)习题课(2学时)第三章. 群作用(共10学时)3.1抽象群作用: 轨道; 稳定化子; 计数公式(2)(2学时)3.2 群方程;各种具体的群作用(共轭作用;Cayley定理;抽象群作用)(3学时)3.3 Burnside引理及其应用(2学时)3.4 Sylow定理及其应用(3学时)习题课(2学时)第四章.环(16学时)4.1 定义(均有单位元且为结合环)以及重要例子(矩阵环,多项式环,形式幂级数环, 整数剩余类环) (2学时)4.2子环与理想: 重点是理想; 理想的生成问题;(2学时)4.3商环与环同态:同态基本定理及其应用(4学时)4.4 素理想与整环;最大理想与域 (2学时)4.5 多项式环及其商环的表达(与多项式带余除法的联系)(2学时)4.6. PID与欧氏环(2学时)4.7. 整环中的不可约元与素元;UFD理论介绍(2学时)习题课(2学时)第五章. 域(共12学时)5.1素域与域扩张: 强调与线性代数的联系(2学时)5.2单扩域;代数扩域: 强调与多项式环商环构造的联系(4学时)5.3 分裂域与正规扩域(2学时)5.4有限域(4)习题课(2学时)第六章. 偏序集、格与Bool代数(共4学时)6.1 偏序集与格 (2学时)6.2 Bool代数(2学时)习题课-总复习(2学时)四、课程考核及说明(1) 20%为平时成绩20%为大作业(小论文)60%为考试成绩(2)总课时(68学时)之外安排大约12学时习题课,由助教唱主角;另有若干次答疑(一般放在第8周后的周六或者周日进行)。

简单的抽象代数基本知识2

简单的抽象代数基本知识2
Department of Mathematics
2,环的又一定义 代数系统[R;+,*],其中+和*为定义在R上的二元 运算,满足下述条件, (1) [R;+]为Abel群 (2) [R;*]为半群 (3) +,*满足分配律: a*(b+c)=(a*b)+(a*c), (b+c)*a=(b*a)+(c*a) 则称[R;+,*]为环。
域f上的所有多项式在多项式加法和乘法下作成一个有幺元的交换环记为fx称为域f多项式运算department这个域称为二元域应用在电话电报电视传真计算机中数据传输打印机vcd机cd机纠错码上以及卫星图片的传输等
编 码 理 论 基 础
哈尔滨工程大学理学院 信息与计算科学系 林 锰
Department of Mathematics, College of Sciences
第一章 简介抽象代数基本知识
1 2 3 授课预计 (6学时) 群的相关概念 环的相关概念 域及域上多项式
§2.2 环 的 相 关 概 念 一, 环的定义及相关内容 1,定义:设R是一个非空集合,其中有“+” “·” 两种二元代数运算,R叫做一个环,如果 1) a+b=b+a, 2) a+(b+c)=(a+b)+c, 3) G中有一个元素0,适合a+0=a, 4) 对于G中任意a,有-a,适合a+(-a)=0, 5) a·(b·c)=(a·b)·c, 6) a·(b+c)=a·b+a·c,(a+b) ·c=a·c+b·c。
则集合:
(a + I ) ⊗ (b + I ) = a ⋅ b + I

《近世代数》PPT课件

《近世代数》PPT课件

定理1.5.1 假设一个集合A的代数运算 同时适合结合
律与交换律,那么在 a1a2 an中,元素的次序 可以调换.
例 判定下列有理数集Q上的代数运算 是否适合结合律,
交换律?
(1) a b a b ab (适合结合律和交换律 )
(2) ab(ab)2 (适合交换律,但不适合结合律)
(3) aba (适合结合律,但不适合交换律 )
定义1.9.2 设 是集合 A的代数运算. 若 是 A到 A的 一个同构映射(同态映射),则称 是 A的一个自 同构 (自同态).
小结
同态是把代数运算考虑在内的映射,即是用来
比较两个代数结构的工具.
返回
在代数学中,两个同构的代数结构一般认为是相同的. 22
§1.10 等价关系与集合的分类
定义1.10.1 A设 是集合,D对,.错 一个 AA 到 D 的映射
注: 变换 是 A到A自身的一个映射.
小结
为了比较两个集合,我们引入了单射,满射,一
一映射和变换的概念.
返回
19
§1.8 同态
定义1.8.1 设 , 分别是集合的代数运算, : A A 是一个映
射,若 a,bA,有 (ab ) (a ) (b ),
则称 是 A到 A 的一个同态.
例1 A=Z (整数集), 是普通加法; A ={1,-1}, 是普通乘法.
定义1.2.2 设 1 , 2是A到B的两个映射,若对 aA,
有 1(a)2(a), 则称 1 与 2 是相等的,记作 1 2.
注: 映射相等 构成映射的三要素(值域、定义域、对
应法则)全相同.
例5 设 AB 为正整数集 .
定义 1 : ; a1 1 ( a ) , a ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档