HB415ET中文资料

合集下载

雷泰红外线测温仪

雷泰红外线测温仪

雷泰红外线测温仪Compact 系列测温范围从-40 to 600°C (-40 to 1112°F) ,高性能、价格低廉、是OEM用户的理想选择。

Compact GP雷泰GP系列红外测温仪是一种多用途、二件式的温度监测仪器,它由小巧、性能价格比高的显示表和红外探头组成。

GP系列具有较强的红外测量功能,包括:峰值/谷值保持、平均值和零点可调;可连接多种探头。

GP系列红外测温仪结实、耐用、有标准焦距和近焦距两种型号,精度为目标温度读数值的1%。

Compact MIRaytek MI 传感器是一个由两部分组成的红外温度测量系统,由微型传感头和单独的电子部分组成。

微型传感头的尺寸很小,可以安装在任何地方,但其性能却与一些较大和较昂贵的系统相当。

MI 传感器可以测量-40 至600°C(-40 至1112°F)范围内的温度。

MI 传感器的信号处理电路具有发射率、峰值保持、谷值保持和平均功能,可以通过5 位LCD 显示屏轻松进行调节。

Raytek CI Compact CI ™系列红外传感器能精确重复测量从一个物体发出的热量并把能量转化为可测电信号。

CI ™测量的目标温度范围是0 到 500°C (32 到 932°F)。

CI ™电路板由耐用的符合IP65(NEMA-4)标准的不锈钢机壳保护。

无冷却时,传感头可耐环温70°C (160°F) ;有冷却套时,能承受的环境温度高达260°C (500°F)。

Raytek CM雷泰新一代CM 高性能迷你型红外测温仪,专为满足工业设备用户的多种应用需求。

CM 红外测温仪温度范围广、精度高、体积小、多种输出模式、性价比高,是系统集成商、设备配套商的最佳选择。

Raytek MI3测温范围-40 到 1650°C 和各种类型的传感头选项,MI3 系列为OEM 和工业制造过程提供了创新的解决方案Marathon 系列更高级别的温度测量传感器、更远光学分辨率、光纤探头,特别适用于恶劣工作环境下的应用,温度测量范围 -40 到 3000ºC (-40 to 5432ºF).新型Marathon MM 系列平台,温度测量范围为-40℃ ~ 3000℃(-40℉ ~5432℉),由6 种红外线(IR)温度传感器组成,每一种传感器都可以测量一定范围的波长,并分别可以测量低温(-40℃~800℃/-40℉~1472℉)、中温(250℃~1100℃/482℉~2012℉),或者高温(300℃~3000℃/572℉~3273℉)等温度范围的物体。

特瑞德产品

特瑞德产品

10
Ø
技术要求:
1、材料:圆钢 18/ Q235A; 2、未注公差尺寸的极限偏差按GB/T1804-m; 3、未注明倒角为0.5X45°。
Itemref
Quantity
Title/Name,designation,material,dimension etc
Designed by
Checked by
分指示
2
1
8TEC.127.028
支架
1
1
8TEC.127.026

Itemref
Quantity
Title/Name,designation,material,dimension etc
Designed by Alice Wang
Checked by leo Zhang
Approved by - date Robin Deng
TAVRIDA ELECTRIC 8TEC.127.012
Article No./Reference Date 2009-3-13
Scale 1.5:1
Edition 0
Sheet 1/1
1x45°
n6
+0.1 0
1x45°
Edition 0
Sheet
5
4
3
2
1
A
Shell 侧装 正装
A(mm) 440.5 420.5
技术说明:
1、连接牢靠; 2、未注公差尺寸的极限偏差按GB/T1804-m; 3、表面处理:Ep.Zn12.P。
5
1 8TEC.127.012
轴头
4
2 Washer GB 93-87 8 单弹簧锁紧垫圈,普通型

baosteel标准对照 外标含量

baosteel标准对照 外标含量

5、“热轧带钢”1.产品:普通碳素结构钢钢带标准:(GB/T3524-1992 、GB/T8164-1993 、QJ/HG02.22-1995规格:厚度: 2.0 -5.0mm 宽度:100 -230mm钢种:HG5 、Q215 、Q2352.产品:优质碳素结构钢钢带标准:(GB8749-1998 、GB/T8164-1993 size="3"> )规格:厚度: 2.5 -4.5mm 宽度:钢种:10# 、20# 、45# 、50# 、40Mn 、45Mn 、65Mn 3.产品:自行车链条用钢带标准:QJ/HG02.15-1991规格:厚度: 2.75 -4.5mm 宽度:125 -205mm钢种:ZL20MnSi用途:焊接管用、工业链条用、自行车变速链条用、建筑机械、工具用、弹簧用(卷帘门弹簧、卡簧等)“ 冷轧带钢”1.产品:碳素结构钢冷轧钢带标准:(GB716-1991 、QJ/HG02.22-1995 )规格:厚度:0.5 -2.0mm 宽度:≤ 205mm 钢种:HG5 、Q215 、Q2352.产品:优质碳素结构钢冷轧钢带标准:GB3522-1983 规格:厚度:0.5 -2.0mm 宽度:≤ 205mm钢种:10# 、20# 、40Mn 、45# 、50#3.产品:自行车链条用冷轧钢带标准:(QJ/HG02.15-1991 、GB3522-1983 )规格:厚度:0.5 -2.0mm 宽度:125 -205mm钢种:ZL20MnSi 用途:工业链条用、自行车变速链条用、刀具用、家具用“ 小型材”1.产品:圆钢(小轧股份公司生产)标准:(GB699-1988 、GB700-1988 、GB3077-1988 、GB702-1986 、QJ/HG02.17-1991 )规格:10 -42mm (10 、12 、14 、16 、18 、20 、22 、25 、28 、30 、32 、34 、35 、36 、38 、40 、42mm )钢种:Q215 、Q235 、45# 、50# 、HG3 、20CrMnTi 、20Cr 、20CrMo 、35CrMo 、42CrMo 、60Si2Mn 、40Cr用途:机械零件、轴、五金工具、齿轮用钢、标准件用钢等;螺铆、螺栓、轴、销、自行车、摩托车等配件2.产品:螺纹钢筋标准:(GB1499-1991 、BS4449:1988 )规格:10 、12 、14 、16 、18 、20 、22 、25 、28 、32 、36 、40mm钢种:20MnSi 、20MnV 、25MnSi 、BS20MnSi 。

常见焊条焊丝型号牌号对照一览表

常见焊条焊丝型号牌号对照一览表
0.40
0.030
0.030
Cu0.20/0.50
Ni0.20/0.50
420
(例值)
535
(例值)
27
(例值)
-40℃
36
(例值)
耐候钢专用焊条,用于铁路耐候车辆的焊接
THJ502NiCrCu
E5003-G
(TB)
0.12
0.30/0.90
0.40
0.030
0.030
Cr0.20/0.50
Ni0.20/0.50
THJ506NiCrCu
E5016-G
(TB)
0.10
1.25
0.60
0.020
0.025
Cu0.20/0.40
Cr0.30/0.80
Ni0.20/0.50
400
500
22
-40℃
60
用于50Kg级耐候钢的焊接
THJ506NH
E5016-G
0.10
0.50/1.30
0.40
0.020
0.030
Cu0.20/0.35
用于相同类型不锈钢以及复合钢结构的焊接
THT-317
THS-317
H08Cr19Ni14Mo3
用于重要的耐腐蚀化工容器的焊接
THT-317L
THS-317L
H03Cr19Ni14Mo3
用于重要的耐腐蚀化工容器的焊接
THT-321
THS-321
H08Cr19Ni10Ti
用于304、321、347型不锈钢以及耐热钢的焊接
THJ506
E5016
E7016
THA107
E308-15
E308-15

RI-415中文说明书

RI-415中文说明书
第 5 页 共 17 页
传感器连接错误
大约 5 秒钟
WARMING UP 30sec
大约 30 秒钟 STAND BY OK
大约 5 秒钟 0.0%LEL
进入检测模式
(1) 显示:泵连接错误;(见 3.1)
FAIL
PUMP
(2) 显示:电池电压低;(见 4.1)
(灯:亮;蜂鸣器:持续鸣叫)
REPLACE BATTERY
2.6 测量结束 (1) 测量结束后的操作
在连接采样螺旋管的情况下,吸入新鲜空气,直到 LCD 显示浓度值接近零点。 (2) 关闭电源
按住 POWER 开关大约 5 秒钟,电源关闭。 在按住开关关闭电源时,蜂鸣器鸣叫 10 次。 注意: 不要忘记通入空气回到零点。 不管测量气体状况,通入空气至少 5 秒钟。 如果没有通入空气回零,会发生如下情况造成测量故障: a. 如果有水、油和水蒸气粘着灰尘,水和油会在下次测量时被吸入仪器。 b.由于吸入的可燃性气体依然存在管路中,对下次测量产生故障。
HOLD ZERO KEY
按住 ZERO 键 3 秒钟
APPLY FRESH AIR
确认新鲜空气进入仪器后按 ENTER
第 6 页 共 17 页
APPLY FRESH AIR
确认
ADJUSTING ZERO
大约 3 秒钟 大约 3 秒钟
ZERO SET OK 0.0%LEL
零点校准错误 浓度显示
气体零点调整错误显示如下:(见 3.1)
显示校准气体名称。 (8) 显示单元(LCD 伴有背光)
显示气体浓度或其它内容。 (9) 报警灯
报警时闪烁。 (10) 光敏传感器窗口
敏感周围光强度来点亮液晶背光。 (11) 气体入口

高频燃烧-红外吸收光谱法测定钢铁中超低含量的碳硫

高频燃烧-红外吸收光谱法测定钢铁中超低含量的碳硫

高频燃烧-红外吸收光谱法测定钢铁中超低含量的碳硫王楠;童晓旻;高春英【摘要】通过对气体净化,坩埚处理,试样处理及称样量选择,助熔剂种类及用量等因素的优化,建立了钢铁中超低含量碳硫的测定方法,实验结果表明:比较器水平设为1%,分析时间设为45 s,坩埚在1 350℃下预烧45 min,选择钨作为助熔剂且使用前在140℃烘3h,助熔剂用量为1.5g,称样量为0.5g时,是分析钢铁中碳硫含量在0.001%~0.01%的最佳条件,方法重复性好,准确度高,在实际操作中切实可行.【期刊名称】《中国无机分析化学》【年(卷),期】2014(004)004【总页数】3页(P39-41)【关键词】钢铁;碳硫分析;高频燃烧红外吸收光谱法【作者】王楠;童晓旻;高春英【作者单位】东北大学分析测试中心,沈阳110004;东北大学分析测试中心,沈阳110004;东北大学分析测试中心,沈阳110004【正文语种】中文【中图分类】O657.33;TH744.120 引言高频燃烧红外吸收光谱法测定钢中碳硫是较为普遍也较为成熟的碳硫分析方法[1-2],所分析的碳的范围多数在0.10%~4.3%,硫的范围0.05%~0.30%[3]。

随着市场对钢材优质化和品种多样化要求不断提高,各种新型钢种特殊钢种不断出现,这些新钢种的杂质元素很多都要求控制在μg/g级[4],因此对钢中超低含量碳硫的准确分析,是科研和生产活动的迫切需要,同时也对未来出现的新钢种中超低碳硫的分析具有一定的指导意义,目前对钢铁中超低含量碳硫的分析有相关文献报道,柳轶男[5]等对影响钢铁中碳硫分析的相关因素进行了探讨建立了最佳分析条件,并对碳含量0.08%,硫含量0.027%的标准样品进行了测定,取得了满意效果,刘金祥[6]等通过对氧气净化、坩埚预处理等条件的优化实现了对碳含量0.027%,硫含量0.013%的标准样品的准确测定,相关的报道还有很多[7-10],在吸取前人经验的基础上,对钢铁中超低含量碳硫的测定进行了更加详实的研究。

ASTME415-2008

ASTME415-2008

Designation:E415–08Standard Test Method forAtomic Emission Vacuum Spectrometric Analysis of Carbon and Low-Alloy Steel1This standard is issued under thefixed designation E415;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(´)indicates an editorial change since the last revision or reapproval.1.Scope1.1This test method covers the simultaneous determination of20alloying and residual elements in carbon and low-alloy steels in the concentration ranges shown(Note1).Concentration Range,%Element Applicable Range,%A Quantitative Range,%B Aluminum0to0.0750.02to0.075Arsenic0to0.10.05to0.1Boron0to0.0070.002to0.007Calcium0to0.0030.001to0.003Carbon0to1.10.08to1.1Chromium0to2.250.02to2.25Cobalt0to0.180.008to0.18Copper0to0.50.04to0.5Manganese0to2.00.10to2.0Molybdenum0to0.60.03to0.6Nickel0to5.00.02to5.0Niobium0to0.0850.02to0.085Nitrogen0to0.0150.004to0.015 Phosphorous0to0.0850.02to0.085Silicon0to1.150.07to1.15Sulfur0to0.0550.01to0.055Tin0to0.0450.01to0.045Titanium0to0.20.004to0.2Vanadium0to0.30.004to0.3Zirconium0to0.050.02to0.05A Applicable range in accordance with Guide E1763for results reported in accordance with Practice E1950.B Quantitative range in accordance with Practice E1601.N OTE1—The concentration ranges of the elements listed have been established through cooperative testing2of reference materials.Included, in addition to the original data of Test Method E415–71,are data from cooperative testing of a broader range of reference materials to expand the element concentration ranges.1.2This test method covers analysis of specimens having a diameter adequate to overlap the bore of the spark stand opening(to effect an argon seal).The specimen thickness can vary significantly according to the design of the spectrometer stand,but a thickness between10mm and38mm has been found to be most practical.1.3This test method covers the routine control analysis in iron and steelmaking operations and the analysis of processed material.It is designed for chill-cast,rolled,and forged specimens.Better performance is expected when reference materials and specimens are of similar metallurgical condition and composition.However,it is not required for all applica-tions of this standard.1.4This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2.Referenced Documents2.1ASTM Standards:3E135Terminology Relating to Analytical Chemistry for Metals,Ores,and Related MaterialsE158Practice for Fundamental Calculations to Convert Intensities into Concentrations in Optical Emission Spec-trochemical Analysis4E305Practice for Establishing and Controlling Atomic Emission Spectrochemical Analytical CurvesE350Test Methods for Chemical Analysis of Carbon Steel, Low-Alloy Steel,Silicon Electrical Steel,Ingot Iron,and Wrought IronE406Practice for Using Controlled Atmospheres in Spec-trochemical AnalysisE1019Test Methods for Determination of Carbon,Sulfur, Nitrogen,and Oxygen in Steel and in Iron,Nickel,and Cobalt AlloysE1329Practice for Verification and Use of Control Charts in Spectrochemical AnalysisE1601Practice for Conducting an Interlaboratory Study to Evaluate the Performance of an Analytical MethodE1763Guide for Interpretation and Use of Results from Interlaboratory Testing of Chemical Analysis MethodsE1806Practice for Sampling Steel and Iron for Determi-nation of Chemical Composition1This test method is under the jurisdiction of ASTM Committee E01on Analytical Chemistry for Metals,Ores and Related Materials and is the directresponsibility of Subcommittee E01.01on Iron,Steel,and Ferroalloys.Current edition approved June1,2008.Published July2008.Originally approved st previous edition approved in2005as E415–99a(2005).2Supporting data have beenfiled at ASTM International Headquarters and may be obtained by requesting Research Report RR:E2-1004.3For referenced ASTM standards,visit the ASTM website,,or contact ASTM Customer Service at service@.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.4Withdrawn.Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.E1950Practice for Reporting Results from Methods of Chemical Analysis3.Terminology3.1For definitions of terms used in this test method,refer to Terminology E135.4.Summary of Test Method4.1A capacitor discharge is produced between theflat, ground surface of the disk specimen and a conically shaped electrode.The discharge is terminated at a predetermined intensity time integral of a selected iron line,or at a predeter-mined time,and the relative radiant energies of the analytical lines are recorded.The most sensitive lines of arsenic,boron, carbon,nitrogen,phosphorus,sulfur,and tin lie in the vacuum ultraviolet region.The absorption of the radiation by air in this region is overcome by evacuating the spectrometer andflush-ing the spark chamber with argon.5.Significance and Use5.1This test method for the spectrometric analysis of metals and alloys is primarily intended to test such materials for compliance with compositional specifications.It is assumed that all who use this test method will be analysts capable of performing common laboratory procedures skillfully and safely.It is expected that work will be performed in a properly equipped laboratory.6.Apparatus6.1Sampling Devices:6.1.1Refer to Practice E1806for devices and practices to sample liquid and solid iron and steel.6.2Excitation Source,capable of providing electrical pa-rameters to spark a sample.See11.1for details.6.3Spark Chamber,automaticallyflushed with argon.The spark chamber shall be mounted directly on the spectrometer and shall be provided with a spark stand to hold aflat specimen and a lower counter electrode of rod form.N OTE2—Follow the manufacturer’s recommendations for cleaning the excitation chamber(during continuous operation,this typically should be done every24h).Follow the manufacturer’s recommendations for cleaning the entrance lens or window(verifier data or other reference sample intensity data can typically indicate when this is necessary). 6.4Spectrometer,having a reciprocal linear dispersion of 0.60nm/mm,or better,in thefirst order and a focal length of 0.75m to3m.Its approximate range shall be from120.0nm to400.0nm.Masks shall be provided in the spectrometer to eliminate scattered radiation.The spectrometer shall be pro-vided with an air inlet and a vacuum outlet.The spectrometer shall be operated at a vacuum of3.33Pa(25µm of mercury) or below.The primary slit width can range from20µm to50µm.Secondary slit widths can vary(normally between37µm and200µm)depending on the element wavelength and possible interfering wavelengths.6.5Measuring System,consisting of photomultipliers hav-ing individual voltage adjustments,capacitors in which the output of each photomultiplier is stored,a voltage measuring system to register the voltages on the capacitors either directly or indirectly,and the necessary switching arrangements to provide the desired sequence of operation.6.6Vacuum Pump,capable of maintaining a vacuum of3.33 Pa(25µm Hg)or less.N OTE3—A pump with a displacement of at least0.23m3/min(8 ft3/min)is usually adequate.6.7Gas System,consisting of an argon supply with pressure andflow regulation.Automatic sequencing shall be provided to actuate theflow at a given rate for a specific time interval.The flow rate may be manually or automatically controlled.The argon system shall be in accordance with Practice E406.7.Reagents and Materials7.1Counter Electrodes—The counter electrodes can be silver or thoriated tungsten rods,or other material,provided it can be shown experimentally that equivalent precision and bias is obtained.The rods can vary in diameter from1.5mm to6.5 mm(depending on the instrument manufacturer)and typically are machined to a90°or120°angled tip.N OTE4—A black deposit will collect on the tip of the electrode.This deposit should be removed between specimens(typically with a wire brush).If not removed,it can reduce the overall intensity of the spectral radiation or transfer slight amounts of contamination between specimens, or both.The number of acceptable excitations on an electrode varies from one instrument to another,and should be established in each laboratory.It has been reported that thousands of excitations can be performed on a thoriated tungsten electrode before replacement is necessary.7.2Inert Gas,Argon,in accordance with Practice E406.8.Reference Materials8.1Certified Reference Materials(CRMs)—These are avail-able from the National Institute of Standards and Technology (NIST)and other sources and span all or part of the concen-tration ranges listed in1.1.They are used to calibrate the spectrometer for the elements of interest or to validate the performance of the test method.It is not recommended to use CRMs as verifiers or to establish the repeatability of the chemical measurement process.Differences can occur between CRMs and production samples prepared by the sampling procedures recommended in this test method.Certain el-ement’s(for example,sulfur)calibrations may need to be corrected with values from reference materials made by normal production sampling techniques and analyzed by Test Methods E350and E1019.N OTE5—Certified Reference Materials manufactured by NIST are trademarked with the name,“Standard Reference Materials,SRMs.”8.2Reference Materials(RMs)—These are available from multiple suppliers or can be developed in house.RMs are typically used to control(verifiers)and drift correct(standar-dants)the spectrometer.These reference materials shall be homogenous and contain appropriate concentrations of each element to be controlled or drift corrected,or both.9.Preparation of Specimens and Reference Materials 9.1The specimens and reference materials must be prepared in the same manner.A specimen cut from a large sample section must be of sufficient size and thickness forpreparationand to properlyfit the spectrometer stand.A10mm to38-mm thick specimen is normally most practical.9.2Ensure the specimens are free from voids and pits in the region to be excited(Note6).Initially grind the surface with a 50-grit to80-grit abrasive belt or disc(wet or dry).Perform the final grind with a dry abrasive belt or disc.Afiner abrasive grinding media(for example,120-grit)may be used for the final grind,but is not essential(Note7).N OTE6—Specimen porosity is undesirable because it leads to the improper“diffuse-type”rather than the desired“concentrated-type”dis-charge.The specimen surface should be kept clean because the specimen is the electron emitter,and electron emission is inhibited by oily,dirty surfaces.N OTE7—Reference materials and specimens must be refinished dry on an abrasive belt or disc before being re-excited on the same area10.Preparation of ApparatusN OTE8—The instructions given in this test method apply to most spectrometers;however,some settings and adjustments may need to be varied,and additional preparation of the equipment may be required.It is not within the scope of an ASTM test method to prescribe the minute details of the apparatus preparation,which may differ not only for each manufacturer,but also for different equipment from the same manufac-turer.For a description of and further details of operation of a particular spectrometer,refer to the manufacturer’s handbook.10.1Program the spectrometer to accommodate the internal standard lines and one of the analytical lines for each element listed in Table1.Multiple lines may be used for a given element(for example,nickel)depending on the concentration range and the individual spectrometer software.N OTE9—The lines listed in Table1have proven satisfactory for the elements and concentration ranges described in the scope.Other internal standard and analytical lines,such as those listed in Table2,may be used provided that it can be shown experimentally that equivalent precision and accuracy are obtained.10.2Test the positioning of the spectrometer entrance slit to ensure that peak radiation is entering the spectrometer cham-ber.This shall be done initially and as often as necessary to maintain proper entrance slit alignment.Follow the manufac-turer’s recommended procedures.The laboratory will deter-mine the frequency of positioning the alignment based on instrument performance.10.3Exit slit positioning and alignment is normally per-formed by the manufacturer at spectrometer assembly.Under normal circumstances,further exit slit alignment is not neces-sary(Note10).N OTE10—The manner and frequency of positioning or checking the position of the exit slits will depend on factors such as:the type of spectrometer,the variety of analytical problems encountered,and the frequency of use.Each laboratory should establish a suitable check procedure utilizing qualified service engineers.11.Excitation and Exposure11.1Electrical Parameters(Note11):11.1.1Excitation parameters are normally established by the spectrometer manufacturer.The following ranges are his-torical guidelines and newer instruments may vary from these.Triggered Capacitor DischargeCapacitance,µF10to15Inductance,µH50to70Resistance,V3to5Potential,V940to1000TABLE1Internal Standard and Analytical LinesElement Wavelength,nmLineClassification APossible Interference BAluminum394.40I V,Mn,Mo,Ni308.22I V,MnArsenic197.20I Mo,W193.76I MnBoron182.64I S,Mn,Mo182.59I W,Mn,CuCalcium396.85II NbCarbon193.09I AlChromium298.92II Mn,V,Ni,Nb,Mo267.72II Mn,Mo,WCobalt345.35I Cr,Mo228.62II Ni,CrCopper327.40I Nb213.60II Mo,CrIron(IS)271.44II273.07II CoManganese293.31II Cr,Mo,Ni255.86II ZrMolybdenum379.83II Mn277.54I Cu,V,Co,Mn386.41I V,CrNickel231.60II Co,Ti227.02II Nb,WNiobium319.50II Mo,Al,VNitrogen149.26I Fe,Ti,Si,Mn,Cu,Niand nitride formingelements such as Ti Phosphorus178.29I MoSilicon288.16I Mo,Cr,W251.61I Fe,VSulfur180.73I MnTin189.99II Mn,Mo,AlTitanium337.28II Nb324.20II NbVanadium310.23II Fe,Mo,Nb,Ni311.07II Mn,Ti,FeZirconium343.82II WA The numerals I or II in the line classification column indicate that the line has been classified in a term array and definitely assigned to the normal atom(I)or to the singly ionized atom(II).B Interferences are dependent upon instrument design,spectrum line choices, and excitation conditions,and those listed require confirmation based upon specimens selected especially to demonstrate suspected interferences.TABLE2Other Analytical LinesElement Wavelength,nmLineClassification APossible Interference B Arsenic189.04I V,CrCarbon165.81ICopper224.26II Ni324.75I Mn,NbMolybdenum202.03II281.62II MnSilicon212.415II Mo,Ni,V,Cu,NbA The numerals I or II in the line classification column indicate that the line has been classified in a term array and definitely assigned to the normal atom(I)or to the singly ionized atom(II).B Interferences are dependent upon instrument design,dispersion,spectrum line choices,and excitation conditions,and those listed require confirmation based upon specimens selected especially to demonstrate suspectedinterferences.Current,A,r-f0.3to0.8Number of discharges60N OTE11—When parameter values are established,maintain them carefully.The variation of the power supply voltage shall not exceed 65%and preferably should be held within62%.11.1.2Initiation Circuit—The initiator circuit parameters shall be adequate to uniformly trigger the capacitor discharge. The following settings are historical guidelines and newer instruments may vary from these:Capacitance,µF0.0025Inductance,µH residualResistance,V 2.5Peak voltage,V1800011.1.3Other Electrical Parameters—Excitation units,on which the precise parameters given in11.1.1and11.1.2are not available,may be used provided that it can be shown experi-mentally that equivalent precision and accuracy are obtained.11.2Excitation Conditions(Note12)—The following ranges are normally adequate:Argonflush period,s5to15Preburn period,s5to20Exposure period,s3to30Argonflow(Note13)ft3/h L/minFlush5to45 2.5to25Preburn5to45 2.5to25Exposure5to30 2.5to15N OTE12—Select preburn and exposure periods after a study of vola-tization rates during specimen excitations.Once established,maintain the parameters consistently.N OTE13—A high-purity argon atmosphere is required at the analytical gap.Molecular gas impurities,nitrogen,oxygen,hydrocarbons,or water vapor,either in the gas system or from improperly prepared specimens should be minimized.11.3Electrode System—The specimen,electrically nega-tive,serves as one electrode.The opposite electrode is a thoriated tungsten or silver rod,the tip of which has been machined to a90°or120°angled e either a3mm,4 mm,or5-mm(60.1-mm)analytical gap.Condition a fresh counter electrode with two to six excitations using the operat-ing conditions described in11.1and11.2.11.4Photomultiplier Potentials—The sensitivity of the photomultipliers is normally established and set by the spec-trometer manufacturer based on the particular wavelengths selected.N OTE14—The range of anode to cathode potentials for a given tube should be specified,that is650V dc to1000V dc.If within the potential range the tube is either too sensitive or too insensitive for the element concentration range,select another photomultiplier.The potentials on the capacitors may be read directly,or a number of different readout systems may be employed,which yield linear or logarithmic functions of the potentials and which may be displayed as relative numbers or as numbers calibrated directly in terms of percent.12.Calibration,Standardization,and Verification12.1Calibration—Using the conditions given in11.1-11.3, excite calibrants and potential standardants in a random se-quence,bracketing these with excitations of any materials intended for use as verifiers.(A verifier may be used as a calibrant even though it is burned only as a verifier.)There shall be at least three calibrants for each element,spanning the required concentration range.Excite each calibrant,standar-dant,and verifier two to four times and use the average value. If the spectrometer system and software permits,repeat with different random sequences at least two ing the averages of the data for each point,determine analytical curves as directed in Practices E158and E305.12.2Standardization—Following the manufacturer’s rec-ommendations,standardize on an initial setup or anytime that it is known or suspected that readings have shifted.Make the necessary corrections either by adjusting the controls on the readout or by applying arithmetic corrections.Standardization will be done anytime verification indicates that readings have gone out of statistical control.12.3Verification—Verify that the instrument’s standardiza-tion is valid immediately after each standardization and as required in accordance with12.3.2.12.3.1Analyze verifiers in accordance with Section13.If results do not fall within the control limits established in12.4, run another standardization or investigate why the instrument may be malfunctioning.12.3.2Each laboratory shall determine the frequency of verification necessary based on statistical analysis.Typically every4h to8h is practical and adequate.If the results are not within the control limits established in12.4,perform a stan-dardization and repeat verification.Repeat standardization as necessary so verifications are within control limits or investi-gate further for instrument problems.12.4Quality Control—Establish control limits in accor-dance with MNL7A,5Practice E1329,or other equivalent quality control procedure.13.Excitation and Radiation Measurements13.1Place the prepared surface of the specimen on the excitation stand so that excitation will impinge on a location approximately6mm(1⁄4in.)from the edge of the specimen. N OTE15—With certain spectrometers,a properly excited specimen usually exhibits a dark ring around the pitted sparked area.With that equipment,a smooth,white,texture burn without the characteristic dark ring indicates an improperly excited specimen.However,if boron nitride disks are used to mechanically restrict the excited area of the sample,a properly excited specimen may not exhibit a dark ring.13.2Excite specimens in duplicate and report the average of the duplicate results.14.Calculation14.1Using the average results obtained in13.2,calculate the concentration of the elements from the analytical curves developed in12.1.15.Precision and Bias15.1Precision—Up to eight laboratories cooperated in performing this test method and obtained the statistical infor-mation summarized in Table3.Additional data for within-laboratory variability of results,obtained by analyzing three specimens of one material in seven laboratories in accordance 5MNL7A Manual on Presentation of Data and Control Chart Analysis,ASTM Manual Series,ASTM International,7th ed.,2002.with source conditions specified in this method,are given inTable4.Other specimens may exhibit greater or less variabilityusing the same instrument and excitation conditions.TABLE3Statistical Information(Test Method E415Extension Study)ElementAverageConcentrationNumber ofLaboratoriesRepeatability,R1ARelativeRepeatability,%Reproducibility,R2ARelativeReproducibility,%Aluminum0.066970.004 5.980.02534.70.062550.003 4.800.02336.80.021270.00523.60.01151.9 Antimony0.003820.000718.40.00126.3 Arsenic0.041560.00512.00.027265.60.014460.00748.60.0247172. Boron0.006370.000711.10.001117.50.003870.000718.40.0042110.0.000670.000350.00.0009150. Carbon 1.05470.053 5.030.10810.20.50770.025 4.930.06112.00.03370.02575.80.042127. Chromium 1.57470.043 3.380.17613.81.30760.1239.410.1249.492.12870.057 2.680.23210.90.11870.003 2.540.0119.320.09370.003 3.230.0088.60 Cobalt0.15740.008 5.100.05736.30.11470.0119.650.02320.20.008680.00078.140.00446.5 Copper0.43570.025 5.750.0398.970.15070.009 6.000.02617.30.05470.00814.80.02240.7 Manganese 1.89370.052 2.750.1819.561.49470.052 3.480.1419.440.55970.023 4.110.07413.20.31670.013 4.110.05116.1 Molybdenum0.56170.012 2.140.16829.90.32570.008 2.460.03711.40.14770.005 3.400.01610.9 Nickel 4.79660.275 5.730.69114.12.20870.112 5.070.1647.430.18060.012 6.670.02212.20.10870.006 5.560.0109.260.057870.003 5.190.01526.0 Niobium0.07670.0079.210.01013.20.008450.00335.70.018214.0.007850.00338.50.014179. Phosphorus0.077570.005 6.450.01721.90.037970.0037.920.01231.70.012470.00324.20.00972.6 Silicon 1.06370.031 2.920.10710.10.39170.015 3.840.09925.30.17670.006 3.410.03519.9 Sulfur0.050570.00611.90.01529.70.020970.00528.90.00733.50.014670.00213.70.00541.1 Tin0.04070.002 5.000.02460.00.02470.0028.330.01145.80.005670.00117.90.007125. Titanium0.19070.02412.60.04523.7ElementAverage ConcentrationNumber of LaboratoriesRepeatability,R 1ARelative Repeatability,%Reproducibility,R 2ARelativeReproducibility,%0.02970.00413.80.01758.60.001970.000736.80.002105.Vanadium0.27970.007 2.510.04114.70.09170.002 2.200.01516.50.002670.00027.690.00276.9Zirconium0.043950.00613.70.00920.50.007550.00226.70.012160.0.002550.00140.00.008320.AR 1is equivalent to r ,Practice E 1601;R 2is equivalent to R ,Practice E 1601.TABLE 4Variability of Results Within Individual Laboratories (NBS 1262)Element NBSValue Average Con-centration,%Labo-ratory Standard Deviation,%ARelative StandardDeviation,RSD%B Element NBSValue Average Con-centration,%Labo-ratory Standard Deviation,%ARelative Standard Deviation,RSD %BAluminum 0.08710.0032 3.70Molybdenum 0.06810.0012 1.460.0950.093620.0047 5.030.0680.068120.0040 5.910.082330.008310.100.066330.00173 2.600.099240.0030 3.010.06940.000640.920.099950.0019 1.900.06850.0011 1.600.09560.0015 1.580.06960.000680.980.089970.0012 1.360.064570.00050.73Antimony 0.012510.001814.40Nickel ...1no value no value 0.012no value 2no value no value 0.590.59720.0078 1.31no value 3no value no value 0.56030.0069 1.22no value 4no value no value 0.58940.00220.36no value 5no value no value 0.60650.0097 1.600.011060.00031 2.850.58960.004430.75no value 7no value no value 0.55670.00270.49Arsenic 0.06010.0024 4.00Niobium 0.29010.0120 4.100.076no value 2no value no value 0.290.29220.0108 3.690.108530.0045 4.160.32130.0098 3.06no value 4no value no value 0.29240.0037 1.260.071850.0029 4.000.28950.0137 4.700.087160.00243 2.790.28360.0059 2.080.078470.0021 2.640.263670.0042 1.58Boron 0.002610.0004015.40Phosphorus 0.041410.0022 5.300.00250.0017420.0004324.680.0420.035520.00144 4.040.003030.000310.130.041430.0012 2.850.0025740.00009 3.500.039440.00039 1.000.0030350.00014 4.600.04050.0014 3.500.0024260.00007 2.890.036960.00063 1.720.002870.0001 2.230.034270.0004 1.30Carbon 0.16010.0080 5.00Silicon 0.40310.0046 1.140.160.16420.0094 5.760.390.39220.0058 1.490.15830.0046 2.920.39330.0126 3.210.16240.0022 1.370.39840.00300.750.15950.007 4.400.38950.0059 1.500.15960.0037 2.290.43760.00320.730.16270.0038 2.24Chromium 0.29610.0048 1.62Sulfur 0.037610.0020 5.300.300.30020.0038 1.280.0380.040420.00239 5.940.30930.0039 1.260.036330.00118 2.850.30240.00150.490.038740.00103 2.650.30050.0032 1.100.039250.0014 3.500.30460.002200.720.037660.00132 3.510.29870.00200.680.037570.0014 3.78Cobalt 0.29910.0054 1.80Tin 0.016410.00067 3.750.300.30220.0044 1.450.0160.015720.00048 3.080.25230.01375.450.020730.000462.21Element NBSValueAverage Con-centration,%Labo-ratory Standard Deviation,%A Relative Standard Deviation,RSD%B Element NBSValueAverage Con-centration,%Labo-ratory Standard Deviation,%ARelative Standard Deviation,RSD %B0.30440.00200.660.017840.00072 4.04no value 5no value no value 0.015850.0026 2.900.29960.00597 2.000.01660.00044 2.770.303870.00290.970.017570.0004 2.27Copper 0.49910.0116 2.32Titanium 0.07910.0043 5.440.500.50220.0098 1.950.0840.08920.0025 2.810.49430.0212 4.280.089930.000324 3.600.50540.003460.690.09140.0011 1.170.49650.012 2.400.088250.0005 1.300.49960.00852 1.710.08560.00135 1.590.53470.0099 1.850.107370.0017 1.55Manganese 1.05610.00920.87Vanadium 0.04010.000370.921.04 1.0020.00810.810.0410.040220.00054 1.341.1030.0143 1.290.041030.0010 2.431.05040.00720.690.041340.000220.521.03850.015 1.500.038750.0005 1.301.01660.0117 1.150.03960.000360.921.03870.00870.840.045870.00040.78Zirconium 0.19210.0089 4.70Zirconium 0.19150.0081 4.200.19no value 2no value no value 0.190.17360.00495 2.8630.30530.0177 5.810.194170.00703.6110.18740.00482.58AStandard Deviation (s )was calculated as follows:s 5Œ(d 2N 21where:d =difference of determination from mean,and N =number of determinations.BRelative Standard Deviation (RSD)was calculated as follows:RSD 5sx ¯~100!where:s =standard deviation,and x ¯=average concentration,%.15.1.1Precision for Calcium and Nitrogen —Up to eight laboratories cooperated in performing this test method and obtained the precision information summarized in Table 5.6An approximate value for the expected reproducibility index,R ,in the range of 0%to 0.0030%calcium can be calculated from the following equation in which Ca %is the expected calcium level:R 5=@0.0004821~Ca %30.30!2#(1)15.1.2For nitrogen,the reproducibility index,R ,has the approximate value of 0.0020throughout the range of 0%to 0.015%nitrogen.N OTE 16—The interlaboratory test data summarized in Tables 5and 6has been evaluated in accordance with Practice E 1601.15.2Bias —At least three specimens that previously had been analyzed by chemical techniques in more than one laboratory were analyzed following the conditions of this test method.The data are given in Table 7(Note 16).15.2.1Bias for Calcium and Nitrogen —The bias of this test method at certain concentration levels may be judged by comparing the accepted reference values with the arithmetic average obtained by interlaboratory testing (see Table 6).16.Keywords16.1carbon steel;low-alloy steel;optical emission;spec-trometric analysis6Supporting data have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR:E01-1022.。

四氯化碲化学品安全技术说明书

四氯化碲化学品安全技术说明书

化学品安全技术说明书产品名称: 四氯化碲按照GB/T 16483、GB/T 17519 编制修订日期:最初编制日期:版本:第1部分化学品及企业标识化学品中文名:四氯化碲化学品英文名:Tellurium(IV) Chloride (Metals Basis)企业名称:企业地址:传真:联系电话:企业应急电话:产品推荐及限制用途:For industry use only.。

第2部分危险性概述紧急情况概述:造成严重皮肤灼伤和眼损伤。

GHS危险性类别:皮肤腐蚀/ 刺激类别1B标签要素:象形图:警示词:危险危险性说明:H314 造成严重皮肤灼伤和眼损伤。

防范说明:•预防措施:•P260 不要吸入粉尘/烟/气体/烟雾/蒸气/喷雾。

•P264 作业后彻底清洗。

•P280 戴防护手套/穿防护服/戴防护眼罩/戴防护面具。

•事故响应:•P301+P330+P331 如误吞咽:漱口。

不要诱导呕吐。

•P303+P361+P353 如皮肤(或头发)沾染:立即脱掉所有沾染的衣服。

用水清洗皮肤/淋浴。

•P363 沾染的衣服清洗后方可重新使用。

•P304+P340 如误吸入:将人转移到空气新鲜处,保持呼吸舒适体位。

•P310 立即呼叫解毒中心/医生•P321 具体治疗 ( 见本标签上的…… )。

•P305+P351+P338 如进入眼睛:用水小心冲洗几分钟。

如戴隐形眼镜并可方便地取出,取出隐形眼镜。

继续冲洗。

•安全储存:•P405 存放处须加锁。

•废弃处置:•P501 按当地法规处置内装物/容器。

物理和化学危险:无资料健康危害:造成严重皮肤灼伤和眼损伤。

环境危害:无资料第3部分成分/组成信息第4部分急救措施急救:吸入: 如果吸入,请将患者移到新鲜空气处。

皮肤接触: 脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。

如有不适感,就医。

眼晴接触: 分开眼睑,用流动清水或生理盐水冲洗。

立即就医。

食入: 漱口,禁止催吐。

立即就医。

对保护施救者的忠告:将患者转移到安全的场所。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1:1
Cable
Chip Typical TX Circuit
1:1
Cable
T1
Optional TX EMI CMC
Optional TX Auto Transformer (See Table)
Optional TX EMI CMC (See Table)
T1
Optional TX Auto Transformer (See Table)
RX2+ RX2-
TD2- 14 15 RD2+ 16
TX2CT
RDCT2 17 RD2- 18
TX2+ TX2-
19 20
HB4xxET Schematic
HB4xxET-1 Schematic
1601
Transpower Technologies, Inc., Park Center West Building, 9805 Double R Blvd, Suite #100, Reno, NV 89511 (775) 852-0140 (800) 511-7308 FAX: (775) 852-0145 Page 2 of 2
1 2 3 4 5 TX Circuit
40 39 38 37 36 35 RX Circuit 34 33 32 31 30 29 TX Circuit 28 27 26 25 RX Circuit 24 23 22 21 RX2+ RX2CT RX2TX2+ TX2CT TX2RX1+ RX1CT RX1TX1+ TX1CT TX1-
RDCT1
4 5
TD1+ TD1-
6 7 8
TX1+ TX1-
RD1+ RDCT1 RD1-
6 7 8 9 10 11
TDCT1
9 10 11
TX1CT
RDCT2 12 13 RD2+ 14 RD2- 15 16 TDCT2 17 18 TD2+ 19 TD2- 20
RX2CT
TD2+ 12 TDCT2 13
The part number will be a combination of the part number chosen from the tables above and, based upon the schematic chosen, a signal routing number from below. For example, if you chose the HB406ET from the chart, and want the HB4ETxx-1signal routing, the part number would be HB406ET-1.
1901
.100 MHz - .999 MHz 1.0 MHz - 15.0 MHz 15.1 MHz - 60.0 MHz 60.1 MHz - 80.0 MHz 80.1 MHz - 100.0 MHz
* Indicated Insertion Loss refers to magnetic cir Part Number Table
Part Number HB408ET HB414ET TX EMI CMC Yes No TX Auto Transformer Note 1 Yes
10/100 Part Number Table
Part Number HB406ET HB415ET HB426ET TX EMI CMC Yes No No RX EMI CMC Yes No No TX Auto Transformer Note 1 Yes Note 1 RX Auto Transformer Note 1 Yes Note 1
元器件交易网 10/100 Magnetics, Industrial Temperature Dual Port, Surface Mount Ethernet Modules
HB4xxET, Rev B 08 May 01
Standard Features:
-Dual port interface for 10/100Mbps Ethernet & Auto MDIX applications -Compliant with IEEE 802.3 and ANSI X3.263 Standards -OCL of 350uH min. when biased at 8mA DC bias from -40o C to +85o C -Surface mount package designed for reflow process (240oC peak) -Dielectric Isolation is 1500Vrms minimum -Tube or Tape & Reel packaging available
1:1
08 May 01
HB4xxET Auto MDIX Schematic
Optional RX EMI CMC (See Table)
Typical RX Circuit
1:1
Optional RX Auto Transformer (See Table)
T2
T2
Chip Typical TX Circuit
1.10 Max
0.004 40 Surfaces
0.050 Typ
0.015
0.010
0.230 Max
0.030
0.100 0.47 Max 0.625 Max 0.580
0.050(38X) 0.950
All dimensions are ±0.005 unless otherwise noted.
Important
RD1+ RD1-
1 2 3 RX Circuit
40 39 38 37 36 35 TX Circuit 34 33 32 31 30 29 28 RX Circuit 27 26 25 24 23 TX Circuit 22 21
RX1+ RX1TD1+ TDCT1 RX1CT TD1+-
Suggested Pad Layout
1601
10/100 INDUSTRIAL TEMP CHARACTERISTICS @ 25°C
Inductance: Rise time (10 - 90%): Dielectric Isolation: Frequency 350uH Min with 8mA DC Bias, -40°C - +85°C 2.5 nSec typical 1500 Vrms minimum Insertion Loss (dB MAX) * 1.0 0.5 0.8 1.1 1.1 Return Loss (dB MIN) 18.0 18.0 18.0 15.0 12.0 Crosstalk Attenuation (dB MIN) 43.0 43.0 43.0 38.0 38.0 TX CMRR (dB MIN) 42.0 42.0 42.0 38.0 35.0 RX CMRR (dB MIN) 42.0 42.0 42.0 38.0 35.0
See page 2 for schematics and signal routings.
Transpower Technologies, Inc., Park Center West Building, 9805 Double R Blvd, Suite #100, Reno, NV 89511 (775) 852-0140 (800) 511-7308 FAX: (775) 852-0145 Page 1 of 2
1801
1901 Notes: 1. The auto transformer is not included. The center tap termination is made directly to the cable side of T1/T2.
Notes: 1. The auto transformer is not included. The center tap termination is made directly to the cable side of T1/T2.
元器件交易网 10/100 Magnetics, Industrial Temperature, Dual Port, Surface Mount Ethernet Modules
HB4xxET, Rev B
HB4xxET 10/100 Schematic
Typical RX Circuit
相关文档
最新文档