一元二次方程导学案

合集下载

《一元二次方程》导学案

《一元二次方程》导学案

22.1一元二次方程导学案责任学校方屯中学责任教师武艳芬一、学习目标(1)、理解一元二次方程的概念,能根据一元二次方程的一般式,确定各项系数;(2)、会灵活应用一元二次方程概念解决有关的实际问题.(3)、理解一元二次方程解的概念,并能解决相关问题二、预习内容1、自学课本1页至3页。

2、思考完成:(1)、什么叫方程?我们学过那些方程?分别举例说一说;(2)、什么叫一元一次方程的解?举例说一说(3)什么叫二元一次方程?举例说一说。

三、探究学习1、口答(1)、什么叫方程?我们学过那些方程?分别举例说一说;(2)、什么叫一元一次方程的解?举例说一说。

2、自主学习、思考完成:问题1 要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为多高?分析:设雕像下部高x m,则上部高________,列方程得:_____________________________整理得:_____________________________问题2如图,有一块长方形铁皮,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为x cm,则盒底的长为__________,宽为__________.列方程______________ 整理得___________________问题3 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为___________.设应邀请x个队参赛,每个队要与其他_____个队各赛1场,所以全部比赛共_____场.列方程____________________________化简整理得________________________3、由上面三个问题,我们可以得到三个方程:(1)x 2+2x -4=0 (2) x 2-75x+350=0 (3) x 2-x-56=0先观察思考,再小组议一议:(1)、联系我们以前过的一元一次方程和分式方程说说上述三个方程有什么共同特点?(2)、和以前所学的方程比较它们叫什么方程? 请定义。

一元二次方程导学案

一元二次方程导学案

一元二次方程导学案第1课时一元二次方程一、学习目标1.理解一元二次方程的概念;2.知道一元二次方程的一般形式,会把一个一元二次方程化为一般形式;3.会判断一元二次方程的二次项系数、一次项系数和常数项;4.理解一元二次方程根的概念.二、知识回顾1.多项式3x2y-2x-1是三次二项式,其中最高次项是3x2y ,二次项系数为0 ,一次项系数为-2 ,常数项是-1 .2.含有未知数的等式叫方程,我们学过的方程类型有:一元一次方程、二元一次方程、分式方程等.三、新知讲解1.一元二次方程的概念等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是 2 (二次)的方程,叫做一元二次方程.概念解读:(1)等号两边都是整式;(2)只含有一个未知数;(3)未知数的最高次数是2.三个条件缺一不可.2.一元二次方程的一般形式一般地,任何一个关于x的一元二次方程,经过整理,都能化成ax2+bx+c=0(a≠0)的形式,这种形式叫做一元二次方程的一般形式.其中ax2 是二次项,a 是二次项系数;bx 是一次项, b 是一次项系数; c 是常数项.概念解读:(1)“a≠0”是一元二次方程一般形式的重要组成部分. 如果明确了ax +bx+c=0是一元二次方程,就隐含了a≠0这个条件;(2)二次项系数、一次项系数和常数项都是在一般形式下定义的,各项的系数包括它前面的符号.3.一元二次方程的根的概念使一元二次方程两边相等的未知数的值叫一元二次方程的解,也叫做一元二次方程的根..概念解读:(1)一元二次方程可能无解,但是有解就一定有两个解;(2)可用代入法检验一个数是否是一元二次方程的解.四、典例探究1.根据定义判断一个方程是否是一元二次方程【例1】(2015浠水县校级模拟)下列方程是一元二次方程的是()A.x2+2x﹣y=3 B. C.(3x2﹣1)2﹣3=0 D. x2﹣8= x总结:一元二次方程必须满足四个条件:是整式方程;含有一个未知数;未知数的最高次数是2;二次项系数不为0.练1(2015科左中旗校级一模)关于x的方程:(a ﹣1) +x+a2﹣1=0,求当a= 时,方程是一元二次方程;当a= 时,方程是一元一次方程.2.把一元二次方程化成一般形式(写出其二次项系数、一次项系数和常数项)【例2】(2014秋忠县校级期末)一元二次方程(1﹣3x)(x+3)=2x2+1的一般形式是;它的二次项系数是,一次项系数是,常数项是.总结:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)(1)特别要注意a≠0的条件;(2)在一般形式中,ax2叫二次项,bx叫一次项,c 是常数项,其中a,b,c分别叫二次项系数、一次项系数和常数项.练2将方程x(x-1)=5(x-2)化为一元二次方程的一般形式,并写出二次项系数、一次项系数和常数.练3(2014东西湖区校级模拟)将一元二次方程4x2+5x=81化成一般式后,如果二次项系数是4,则一次项系数和常数项分别是()A.5,81 B.5,﹣81 C.﹣5,81 D.5x,﹣81 3.根据一元二次方程的根求参数【例3】(2015临淄区校级模拟)若0是关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的一根,则m的值为()A.1 B.0 C.1或2 D.2总结:使一元二次方程两边相等的未知数的值叫一元二次方程的解,也叫做一元二次方程的根.一元二次方程可能无解,但是有解就一定有两个解.可用代入法检验一个数是否是一元二次方程的解.已知一元二次方程的一个解,将这个解直接代入原方程,原方程仍然成立,由此可求解原方程中的字母参数.若二次项系数含有字母参数,求出的字母参数值要保证二次项系数不为0.这一步容易被忽略,谨记.练4(2014绵阳模拟)若关于x的一元二次方程(a+1)x2+4x+a2﹣1=0的一根是0,则a= .练5(2015绵阳)关于m的一元二次方程 nm2﹣n2m ﹣2=0的一个根为2,则n2+n﹣2= .五、课后小测一、选择题1.(2015春莒县期中)下列关于x的方程中,一定是一元二次方程的为()A.ax2+bx+c=0 B.x+y=2 C.x2+3y﹣5=0 D.x2﹣1=02.(2014泗县校级模拟)方程x2﹣2x﹣5=0,x3=x,y2﹣3x=2,x2=0,其中一元二次方程的个数是()A.1个 B.2个 C.3个 D.4个3.(2014秋沈丘县校级期末)要使方程(a﹣3)x2+(b+1)x+c=0是关于x的一元二次方程,则()A.a≠0 B.a≠3C.a≠1且b≠﹣1 D.a≠3且b≠﹣1且c≠04.(2015石河子校级模拟)把方程x(x+2)=5(x ﹣2)化成一般式,则a、b、c的值分别是()A.1,﹣3,10 B.1,7,﹣10 C.1,﹣5,12 D.1,3,25.(2015石河子校级模拟)关于x的方程(3m2+1)x2+2mx﹣1=0的一个根是1,则m的值是()A.0 B.﹣ C. D.0或,6.(2014祁阳县校级模拟)已知x=3是关于方程3x2+2ax﹣3a=0的一个根,则关于y的方程y2﹣12=a的解是()A. B.﹣C.± D.以上答案都不对7.(2014秋南昌期末)关于x的方程(k+2)x2﹣kx﹣2=0必有一个根为()A.x=1 B.x=﹣1 C.x=2 D.x=﹣2二、填空题8.(2015东西湖区校级模拟)已知(m﹣2)x2﹣3x+1=0是关于x的一元二次方程,则m的取值范围是.9.(2014秋西昌市校级期中)方程2x2﹣1= 的二次项系数是,一次项系数是,常数项是. 10.(2015厦门校级质检)若m是方程x2﹣2x=2的一个根,则2m2﹣4m+2010的值是.三、解答题11.把方程先化成一元二次方程的一般形式,再写出它的二次项系数、一次项系数和常数项.(1)5x2=3x;(2)(﹣1)x+x2﹣3=0;(3)(7x﹣1)2﹣3=0;(4)(﹣1)( +1)=0;(5)(6m﹣5)(2m+1)=m2.12.(2015春亳州校级期中)已知关于x的方程(m ﹣1)x2+5x+m2﹣3m+2=0的常数项为0,(1)求m的值;(2)求方程的解..(2015春嵊州市校级月考)已知,下列关于x的一元二次方程(1)x2﹣1=0 (2)x2+x﹣2=0 (3)x2+2x﹣3=0 …(n)x2+(n﹣1)x﹣n=0(1)求出方程(1)、方程(2)、方程(3)的根,并猜测方程(n)的根.(2)请指出上述几个方程的根有什么共同特点,写出一条即可..关于y的方程my2﹣ny﹣p=0(m≠0)中的二次项的系数,一次项的系数与常数项的和为多少.典例探究答案:【例1】【解析】根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.解:A、方程含有两个未知数,故选项错误;B、不是整式方程,故选项错误;C、含未知数的项的最高次数是4,故选项错误;D、符合一元二次方程的定义,故选项正确.故选:D.点评:本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否只含有一个未知数且未知数的最高次数是2.练1.【解析】根据一元二次方程和一元一次方程的定义进行解答.解:依题意得,a2+1=2且a﹣1≠0,解得 a=﹣1.即当a=﹣1时,方程是一元二次方程.当a2+1=0或a﹣1=0即a=1时,方程是一元一次方程.故答案是:﹣1;1.点评:本题考查了一元二次方程和一元一次方程的定义.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.【例2】【解析】将方程整理为一般形式,找出二次项系数,一次项系数,以及常数项即可.解:一元二次方程(1﹣3x)(x+3)=2x2+1的一般形式是5x2+8x﹣2=0;它的二次项系数是5,一次项系数是8,常数项是﹣2.故答案为:5x2+8x﹣2=0,5,8,﹣2点评:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在解题过程中容易忽视的地方.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.练2.【解析】将一元二次方程化为一般形式,主要包括几个步骤:去括号、移项、合并同类项.去括号,得x2-x=5x-10.移项、合并同类项,得x2-6x+10=0.其中二次项系数是1,一次项系数为-6,常数项为10.练3.【解析】根据一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件,其中a,b,c分别叫二次项系数,一次项系数,常数项,可得答案.解:一元二次方程4x2+5x=81化成一般式为4x2+5x﹣81=0,二次项系数,一次项系数,常数项分别为4,5,﹣81,故选:B.点评:本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【例3】【解析】把方程的一个根0直接代入方程即可求出m的值.解:∵0是关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的一根,∴(m﹣1)×0+5×0+m2﹣3m+2=0,即m2﹣3m+2=0,解方程得:m1=1(舍去),m2=2,∴m=2,故选:D.点评:本题考查了一元二次方程的解,解题的关键是直接把方程的一根代入方程,此题比较简单,易于掌握.练4.【解析】将一根0代入方程,再依据一元二次方程的二次项系数不为零,问题可求.解:∵一根是0,∴(a+1)×(0)2+4×0+a2﹣1=0 ∴a2﹣1=0,即a=±1;∵a+1≠0,∴a≠﹣1;∴a=1.练5.【解析】先根据一元二次方程的解的定义得到4 n﹣2n2﹣2=0,两边除以2n得n+ =2 ,再利用完全平方公式变形得到原式=(n+ )2﹣2,然后利用整体代入的方法计算.解:把m=2代入 nm2﹣n2m﹣2=0得4 n﹣2n2﹣2=0,所以n+ =2 ,所以原式=(n+ )2﹣2=(2 )2﹣2=26.故答案为:26.点评:本题考查了一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了代数式的变形能力.课后小测答案:一、选择题1.【解析】根据一元二次方程的定义进行判断.解:A、当a=0时,该方程不是关于x的一元二次方程,故本选项错误;B、该方程中含有2个未知数,且未知数的最高次数是1,它属于二元一次方程,故本选项错误;C、该方程中含有2个未知数,且未知数的最高次数是2,它属于二元二次方程,故本选项错误;D、符合一元二次方程的定义,故本选项正确.故选:D.点评:本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2.【解析】直接根据一元二次方程的定义可得到在所给的方程中x2﹣2x﹣5=0,x2=0是一元二次方程.解:方程x2﹣2x﹣5=0,x3=x,y2﹣3x=2,x2=0,其中一元二次方程是x2﹣2x﹣5=0,x2=0.故选:B.点评:本题考查了一元二次方程的定义:只含有一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程.3.【解析】本题根据一元二次方程的定义求解,一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.解:根据一元二次方程的定义中二次项系数不为0得,a﹣3≠0,a≠3.故选:B.点评:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.当a=0时,上面的方程就不是一元二次方程了,当b=0或c=0时,上面的方程在a≠0的条件下,仍是一元二次方程,只不过是不完全的一元二次方程.4.【解析】a、b、c分别指的是一元二次方程的一般式中的二次项系数、一次项系数、常数项.解:由方程x(x+2)=5(x﹣2),得x2﹣3x+10=0,∴a、b、c的值分别是1、﹣3、10;故选A.点评:本题考查了一元二次方程的一般形式.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.5.【解析】一元二次方程的根就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.解:把1代入方程得3m2+1+2m﹣1=0,解得m=0或,故选:D.点评:本题的关键是把x的值代入原方程,得到一个关于待定系数的一元二次方程,然后求解.6.【解析】由于x=3是关于x的方程3x2+2ax﹣3a=0的一个根,根据方程解的含义,把x=3代入原方程,即可解出a的值,然后再解出关于y的方程的解.解:∵x=3是关于x的方程3x2+2ax﹣3a=0的一个根,∴3×32+2a×3﹣3a=0,解得:a=﹣9,则关于y的方程是y2﹣12=﹣9,解得y= .故选:C.点评:本题考查一元二次方程解的含义,解题的关键是确定方程中待定系数的值.7.【解析】分别把x=1、﹣2、﹣2代入(k+2)x2﹣kx﹣2=0中,利用一元二次方程的解,当k为任意值时,则对应的x的值一定为方程的解.解:A、当x=1时,k+2﹣k﹣2=0,所以方程(k+2)x2﹣kx﹣2=0必有一个根为1,所以A选项正确;B、当x=﹣1时,k+2+k﹣2=0,所以当k=0时,方程(k+2)x2﹣kx﹣2=0有一个根为﹣1,所以B选项错误;C、当x=2时,4k+8﹣2k﹣2=0,所以当k=﹣3时,方程(k+2)x2﹣kx﹣2=0有一个根为2,所以C选项错误;D、当x=﹣2时,4k+8+2k﹣2=0,所以当k=﹣1时,方程(k+2)x2﹣kx﹣2=0有一个根为﹣2,所以D选项错误.故选A.点评:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.二、填空题8.【解析】根据一元二次方程的定义得到m﹣2≠0,然后解不等式即可.解:根据题意得m﹣2≠0,所以m≠2.故答案为:m≠2.点评:本题考查了一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.9.【解析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.解:方程2x2﹣1= 化成一般形式是2x2﹣﹣1=0,二次项系数是2,一次项系数是﹣,常数项是﹣1.点评:要确定一次项系数和常数项,首先要把法方程化成一般形式.注意在说明二次项系数,一次项系数,常数项时,一定要带上前面的符号10.【解析】根据一元二次方程的解的定义得到m2﹣2m=2,再变形2m2﹣4m+2010得到2(m2﹣m)+2010,然后利用整体代入的方法计算.解:根据题意得m2﹣2m=2,所以2m2﹣4m+2010=2(m2﹣m)+2010=2×2+2010=2014.故答案为2014.点评:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.三、解答题11.【解析】各项方程整理后,找出二次项系数,一次项系数,以及常数项即可.解:(1)方程整理得:5x2﹣3x=0,二次项系数为5,一次项系数为﹣3,常数项为0;(2)x2+(﹣1)x﹣3=0,二次项系数为1,一次项系数为﹣1,常数项为﹣3;(3)方程整理得:49x2﹣14x﹣2=0,二次项系数为49,一次项为﹣14,常数项为﹣2;(4)方程整理得: x2﹣1=0,二次项系数为,一次项系数为0,常数项为﹣1;(5)方程整理得:11m2﹣4m﹣5=0,二次项系数为11,一次项系数为﹣4,常数项为﹣5.点评:此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.12.【解析】(1)首先利用关于x的方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0得出m2﹣3m+2=0,进而得出即可;(2)分别将m的值代入原式求出即可.解:(1)∵关于x的方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,∴m2﹣3m+2=0,解得:m1=1,m2=2,∴m的值为1或2;(2)当m=2时,代入(m﹣1)x2+5x+m2﹣3m+2=0得出:x2+5x=0x(x+5)=0,解得:x1=0,x2=﹣5.当m=1时,5x=0,解得x=0.点评:此题主要考查了一元二次方程的解法,正确解一元二次方程是解题关键.13.【解析】(1)利用因式分解法分别求出方程(1)、方程(2)、方程(3)的根,根据以上3个方程的根,可猜测方程(n)的根;(2)观察即可得出上述几个方程都有一个公共根是1.解:(1)(1)x2﹣1=0,(x+1)(x﹣1)=0,x+1=0,或x﹣1=0,解得x1=﹣1,x2=1;(2)x2+x﹣2=0,(x+2)(x﹣1)=0,x+2=0,或x﹣1=0,解得x1=﹣2,x2=1;(3)x2+2x﹣3=0,(x+3)(x﹣1)=0,x+3=0,或x﹣1=0,解得x1=﹣3,x2=1;…猜测方程(n)x2+(n﹣1)x﹣n=0的根为x1=﹣n,x2=1;(2)上述几个方程都有一个公共根是1.点评:本题考查了一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了一元二次方程的解法.14.【解析】令y=1,即可确定出方程的二次项的系数,一次项的系数与常数项的和.解:令y=1,得到m﹣n﹣p=0,则方程my2﹣ny﹣p=0(m≠0)中的二次项的系数,一次项的系数与常数项的和为0.点评:此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.。

一元二次方程导学案

一元二次方程导学案

x一元二次方程导学案一、交流预习:问题1要设计一座2m 高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为多高?1、用红笔画出问题中的关键语句2、将此语句写成等量关系式为_____________________________3、若设雕像下部高为x m ,那么上部高为_______m,4、等量关系式变为方程为_________________________5、将方程去分母,把所有项移项到等号左边并化简得____________________① 问题2如图,有一块长方形铁皮,长100cm ,宽50cm ,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒。

如果要制作的无盖方盒的底面积为3600c ㎡,那么铁皮各角应切去多大的正方形?1、底面是______形,由面积公式可得等量关系式为_______________2、若设切去正方形边长为x cm ,底面长为_______cm,底面宽为_______cm3、等量关系式变为方程为______________________4、将方程所有项移项到等号左边并化简得___________________②问题3要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。

根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?1、如果有2个队参赛是____场比赛,3个队是_____场,4个队是______场,如果是x 个队参赛是______________场比赛。

2、由题意可知方程为_______________________________3、将方程所有项都移项到等号左边并化简得_______________________③二、探究新知探究新方程:观察上面方程①②③回答下面问题1、这三个方程含有几个未知数?________________2、这三个方程等号两边是什么代数式?___________3、在三个方程中最高次项的次数是多少?___________方程①②③的共同特点是: 这些方程的两边都是_________,只含有_______未知数(一元),并且未知数的最高次数是_____的方程.类比一元一次方程的定义思考具有上面特点的方程应该叫_____________.怎么判断一个方程是一元二次方程1、方程()()2513+=-x x x 是一元二次方程吗?为什么?2、方程()412+=-x x x 是一元二次方程吗?为什么?通过上面两个问题我们发现要想判断这类整式方程是否为一元二次方程一定要先将方程________________________________________________.经过这样整理的一元二次方程都可化为形如02=++c bx ax 其中a 应满足________.这种形式我们叫一元二次方程的一般形式。

一元二次方程导学案

一元二次方程导学案

一、知识准备:1、只含有_____个未知数,且未知数的最高次数是_______的整式方程叫一元一次方程2、方程2(x+1)=3的解是____________3、方程3x+2x=0.44含有____个未知数,含有未知数项的最高次数是_____,它____ (填“是”或“不是”)一元一次方程。

二、本节知识点:含有______个未知数,并且含有未知数的最高次数是_______的整式方程叫一元二次方程,它的 一般形式是_______________________,二次项是_________,一次项是_________,常数项是_________。

一元二次方程的解是_______________________,_________是解一元二次方程。

三.基础练习⑴正方形桌面的面积是2㎡,求它的边长。

设正方形桌面的边长是x m ,根据题意,得方程_______________,这个方程含有_____个未知数,未知数的最高次数是_____。

⑵如图4-1,矩形花园一面靠墙,另外三面所围的栅栏的总长度是19m ,如果花园的面积是24㎡,求花园的长和宽。

设花园的宽是x m,则花园的长是____________,根据题意,得方程: ____________,去括号,得:______________这个方程含有____________个未知数,含有未知数项的最高次数是________。

⑶如图,长5m 的梯子斜靠在墙上,梯子的底端与墙的距离是3m 。

若梯子底端向右滑动的距离与梯子顶端向下滑动的距离相等,求梯子滑动的距离。

设梯子滑动的距离是x m ,根据勾股定理,滑动之前梯子的顶端离地面4m ,则滑动后梯子的顶端离地面(4-x )m ,梯子的底端与墙的距离是(3+x )m 。

根据题意,得:___________________,去括号,得:____________________移项,合并同类项,得:_________________,此方程含有______个未知数,含有未知数项的最高次数是______。

九年级一元二次方程求根公式的推导 人教版教学设计导学案

九年级一元二次方程求根公式的推导 人教版教学设计导学案
(注:确定根的判别式时,需先将方程化为_______,确定______后再计算)
2、一元二次方程根的情况与根的判别式的关系:
(1)Δ〉0⟺方程_______________________________
(2)Δ=0⟺方程_______________________________
(3)Δ<0⟺方程_______________________________
年级
九年级
科目
数学
备课人
课题
21.2.2.1一元二次方程的根的判别式
学习
目标
(1分钟)
1、能记住一元二次方程的根的判别式,掌握求根公式的推导过程(重点)
2、能运用根的判别式进行相关的计算和推理(难点)
学法
指导
分析法、转化法、类比法的学习方法





(9分钟)
自主复习
请每位同学编写一道一元二次方程,由同桌用配方法求方程的解,并填写步骤和每步的依据
题组2:(组内共同完成后交流展示,做好记录,总结归纳,做好笔记)
1、若方程x2+mx+2=0的根的判别式的值为4,则m=_____
2、关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根, 则k的取值范围是___________
方法归纳:在已知含字母系数的一元二次方程根的情况下,用逆向思维来解决问题:
1.根据判别式建立2. 一元二次方程的二次项系数0





题组3:(课堂检测:针对性检测,独立完成后展示)
1、一元二次方程x2-2x=0根的判别式的值为( )
A 4 B 2 C 0 D -4

2.1一元二次方程(1)导学案

2.1一元二次方程(1)导学案

2.1 一元二次方程(1)班级__________________ 姓名__________________〖学习目标〗1.经历一元二次方程概念的发生过程;2.理解一元二次方程的概念;3.了解一元二次方程的一般形式,会辨别一元二次方程的二次项系数、一次项系数和常数项。

〖学习重点与难点〗重点:一元二次方程的概念,包括它的一般形式。

难点:例1第(4)题包括了代数式的变形和等式变形两个方面,计算容易产生差错,是本节学习的难点。

一、课前准备(把握时间,独立完成)1.知识回忆:什么叫一元一次方程?答:只含有 ,并且未知数的最高次数是 次的方程叫一元一次方程。

2.探索新知:阅读课本第24页合作学习,列出问题(1)、(2)关于未知数x 的方程: (1) ; (2) 。

观察整理后的两个式子:(1)上面三个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次? (3)有等号吗?还是与多项式一样只有式子? 特征(1) ;(2) ; (3) 。

二、自主学习(合作学习,相互帮助)1.下列方程中哪些是一元二次方程?试说明理由。

(1)3x+2=5y-3 (2) x 2=4 (3) 3x 2-y=0 (4) x 2-4=(x+2) 2 (5) ax 2+bx+c=0 (6)x 2+3x=-3 (7)x3+7=x 2-5 (8)x 2+4xy+4y 2=02.下列关于x 的方程中,一元二次方程的个数有( )2x 2-32x=0;xx 1-=2x -1;x 2-3y=0 ;x 2-x 2(x 2+1)-3=0A.0个B.1个C.2个D.3个 3.下列方程中,关于x 的一元二次方程是( )A.3(x+1)2= 2(x+1) B .05112=-+xxC.ax 2+bx+c= 0 D.x 2+2x= x 2-1 三、继续探索观察刚刚做题涉及到的一元二次方程,你能否发现他们的共同点? 能否用共同的形式来表示?一元二次方程通常可写成如下的一般形式:讨论:为什么二次项系数a 不能为0?假如a=0会出现什么情况?b 、c 能不能为0? 练习:将下列方程化为一般形式,并指出二次项、二次项系数、一次项、一次项系数和常数项。

一元二次方程导学案(教案)第

一元二次方程导学案(教案)第

第7 课时教学后记:第8-9 课时课题一元二次方程根与系数的关系课型新授课教学目标1、引导学生在已有的一元二次方程解法的基础上,探索出一元二次方程根与系数的关系,及其此关系的运用。

2、通过观察、实践、讨论等活动,经历从发现问题,发现关系的过程。

3、在积极参与数学活动的过程中,初步体验发现问题,总结规律的态度以及养成质疑和独立思考的习惯。

教学重点启发学生,观察数字系数的一元二次方程的两个根之和,及两个根之积与原方程系数之间的关系,猜想一般性质、指导学生用求根公式加以确证。

教学难点对根与系数这一性质进行应用。

教学方法合作探究法教学内容及过程备注一、提出问题解下列方程,将得到的解填入下面的表格中,你发现表格中两个解的和与积和原来的方程有什么联系?(1)x2-2x=0;(2)x2+3x-4=0;(3)x2-5x+6=0二、尝试探索,发现规律1、完成如上表格。

2、猜想一元二次方程的两个解的和与积和原来的方程有什么联系?小组交流。

同学各抒已见后,老师总结:两个根的和等于一元二次方程的一次项系数的相反数,两个根的积等于一元二次方程的常数项。

第10 课时第11 课时教学内容及过程备注一、复习提问1、列方程解应用题的一般步骤是什么?2、说一说,菱形的面积与它的对角线长有什么关系?二、例题讲解例1展示教材P22例4。

(1)引导学生审题,弄清已知数、未知数以及它们之间的关系;(2)确定本题的等量关系是:菱形的面积=1/5矩形面积;(3)引导学生根据题意设未知数;(4)引导学生根据等量关系列出方程;(5)引导学生求出所列方程的解;(6)检验所求方程的解的合理性;(7)根据题意作答;(8)教师板书解题过程。

例2如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方米.求截去正方形的边长。

解:设截去正方形的边长x厘米,底面(图中虚线线部分)长等于厘米,宽等于厘米,底面= 。

一元二次方程全章导学案(不分版本,通用)

一元二次方程全章导学案(不分版本,通用)

1 反思:【学习目标】1、体会方程是刻画现实世界中数量关系的一个有效数学模型;2、理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项. 【学习重点】由实际问题列出一元二次方程和一元二次方程的概念. 【学习过程】【活动一】知识链接(5分钟)(1) 多项式2321x y x --是 次 项式,其中最高次项是 ,二次项系数为 ,一次项系数为 ,常数项为 .(2) 叫方程,我们学过的方程类型有 . 【活动二】自主交流 探究新知(25分钟)1.自学教材P17——19,回答以下问题.(1)一元二次方程的定义:只含有 个求知数(一元),并且求知数的最高次数是 (二次)的 方程,叫做一元二次方程. (2)一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,经过整理,都能化成如下形式: (a ≠0),这种形式叫做一元二次方程的一般形式.其中 是二次项, 是二次项系数, 是一次项, 是一次项系数, 是常数项.【注意】①方程20ax bx c ++=只有当a ≠0时才叫一元二次方程,如果a=0,b ≠0时就是 方程了.所以在一般形式中,必须包含a ≠0这个条件.②二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.2. 一元二次方程的解:一元二次方程的解也叫做一元二次方程的_____,即使一元二次方程等号左右两边值相等的_______________的值. 【活动三】课内小结 (学生归纳总结) (3分钟)【活动四】快乐达标(学生先独立完成5分钟,后组内互查2分钟.)1.下列方程是一元二次方程的是有 :(1)3239x x +=,(2)(1)(1)0x x +-=,(3)220y =,(4)01122=-+xx ,(5)232m =, (6)05322=-+y x .2.把方程()()11212=+-y y 化为一般形式为: ;其二次项系数是 ;一次项系数是 ;常数项是 .3.若033)3(2=++--nx x m n 是关于x 的一元二次方程,则m= ,n= .4.下面哪些数是方程260x x --=的根? -4, -3, -2, -1, 0, 1, 2, 3, 4.5. 已知m 是方程260x x --=的一个根,则代数式2m m -=________.6.已知:关于x 的方程()()021122=-++-x k x k . (1)当k 取何值时,此方程为一元一次方程. (2)当k 取何值时,此方程为一元二次方程.【活动五】拓展延伸(独立完成3分钟,班级展示2分钟)1.当a______时,关于x 的方程22()(1)a x x x +=-+是一元二次方程.2.若关于x 的方程27(3)(5)50m m x m x -++-+=是一元二次方程,试求m 的值,•并指出这个方程的各项系数.3.关于x 的方程21()36m m m x x +-+=可能是一元二次方程吗?为什么?2 反思:§22.2.1《一元二次方程的解法——直接开平方法》导学案【学习目标】1、理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.2、提出问题,列出缺一次项的一元二次方程ax 2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a (ex+f )2+c=0型的一元二次方程. 【学习重点】运用开平方法解形如(x+m )2=n (n ≥0)的方程;领会降次──转化的数学思想. 【学习过程】【活动一】知识链接(5分钟) 1.我们知道x 2=25,根据平方根的意义,直接开平方得x= ,如果x 换元为2x-1,即2(21)5x -=,也用直接开平方的方法可以这样求解. 2.(1) 解:由方程 2(21)5x -=,得21x -=_______即 21x -=____,21x -=_____∴ 1x =_______, 2x =_____(2) 解:由方程 2692x x ++=,得(_________)2=2∴ ______________=_______ 即 ____________, ____________ ∴ 1x =_______, 2x =_____ 【活动二】自主交流 探究新知(15分钟) 仿照知识链接中的方法解下列方程:(1) 28x = (2) 22(1)4x -=(3) 2694x x++=(4)2490m -= (5)291241x x ++=【活动三】课内小结 (学生归纳总结) (3分钟)1、形如2x p =(0)p ≥或2()mx n p +=(0)p ≥的一元二次方程可利用平方根的定义用开平方的方法直接求解,这种解方程的方法叫做直接开平方法.2、如果方程能化成2x p =或2()mx n p +=(0)p ≥的形式,那么可得x =mx n +=【活动四】快乐达标(学生先独立完成5分钟,后组内互查2分钟.) 1.若224()x x p x q-+=+,那么p 、q 的值分别是( ).A .p=4,q=2B .p=4,q=-2C .p=-4,q=2D .p=-4,q=-2 2.方程2390x +=的根为( ).A .3 B .-3 C .±3 D .无实数根 3.解方程:(1)28160x -=(2)22(3)72x -=【活动五】拓展延伸(独立完成8分钟,班级展示2分钟) 1.如果a 、b 21236b b -+=0,求ab 的值.2.用直接开平方法解方程:22(1)180x --=3.解关于x 的方程2()(0)x m n n +=≥.4. 已知关于x 的一元二次方程043)2(22=-++-m x x m 有一个解是0,求m 的值.3 反思:§22.2.2《一元二次方程的解法——因式分解法》导学案【学习目标】1.正确理解因式分解法的实质.2.熟练掌握运用因式分解法解一元二次方程. 【学习重点】用因式分解法解一元二次方程. 【学习过程】【活动一】知识链接(5分钟)1.分解因式:(1)2832x - (2)244x x -+ (3)228x x --2.填空:填上适当的数,使下列等式成立:(1) 25____(____x x x ++=+2) (2) 21____(____2x x x ++=+2) (3) 2____(____x x +=-2) (4) 2____(____bx x x a++=+2) 【活动二】自主交流 探究新知(20分钟)仿照知识链接中的方法解下列方程:(1)2410x -= (2)22150x x --=【活动三】课内小结 (学生归纳总结) (3分钟)总结因式分解的步骤: ①通过___________把一元二次方程右边化为0; ②将方程左边分解为两个一次因式的______;③令每个因式分别为______,得到两个一元一次方程; ④解 ,它们的解就是原方程的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十二章 一元二次方程 单元要点分析 教材内容 1.本单元教学的主要内容. 一元二次方程概念;解一元二次方程的方法;一元二次方程应用题. 2.本单元在教材中的地位与作用. 一元二次方程是在学习《一元一次方程》、《二元一次方程》、分式方程等基础之上学习的,它也是一种数学建模的方法.学好一元二次方程是学好二次函数不可或缺的,是学好高中数学的奠基工程.应该说,一元二次方程是本书的重点内容. 教学目标 1.知识与技能 了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题. 2.过程与方法 (1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型.•根据数学模型恰如其分地给出一元二次方程的概念. (2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等. (3)通过掌握缺一次项的一元二次方程的解法──直接开方法,•导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程. (4)通过用已学的配方法解ax2+bx+c=0(a≠0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b2-4ac>0,b2-4ac=0,b2-4ac<0. (5)通过复习八年级上册《整式》的第5节因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它. (6)提出问题、分析问题,建立一元二次方程的数学模型,•并用该模型解决实际问题. 3.情感、态度与价值观 经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣. 教学重点 1.一元二次方程及其它有关的概念. 2.用配方法、公式法、因式分解法降次──解一元二次方程. 3.利用实际问题建立一元二次方程的数学模型,并解决这个问题. 教学难点 1.一元二次方程配方法解题. 2.用公式法解一元二次方程时的讨论. 3.建立一元二次方程实际问题的数学模型;方程解与实际问题解的区别. 教学关键 1.分析实际问题如何建立一元二次方程的数学模型. 2.用配方法解一元二次方程的步骤. 3.解一元二次方程公式法的推导. 课时划分 本单元教学时间约需16课时,具体分配如下: 22.1 一元二次方程 2课时 22.2 降次──解一元二次方程 7课时 22.3 实际问题与一元二次方程 4课时 教学活动、习题课、小结 3课时

22.1 一元二次方程 第一课时 教学内容 一元二次方程概念及一元二次方程一般式及有关概念. 教学目标 了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;•应用一元二次方程概念解决一些简单题目. 1.通过设置问题,建立数学模型,•模仿一元一次方程概念给一元二次方程下定义. 2.一元二次方程的一般形式及其有关概念. 3.解决一些概念性的题目. 4.态度、情感、价值观 4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情. 重难点关键 1.•重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题. 2.难点关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念. 教学过程 一、复习引入 学生活动:列方程. 问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,•两隅相去适一丈,问户高、广各几何?” 大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,•那么门的高和宽各是多少? 如果假设门的高为x•尺,•那么,•这个门的宽为_______•尺,•根据题意,•得________. 整理、化简,得:__________.

问题(2)如图,如果ACCBABAC,那么点C叫做线段AB的黄金分割点.

BCAwww.czsx.com.cn 如果假设AB=1,AC=x,那么BC=________,根据题意,得:________.

整理得:_________. 问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少? 如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______. 整理,得:________. 老师点评并分析如何建立一元二次方程的数学模型,并整理. 二、探索新知 学生活动:请口答下面问题. (1)上面三个方程整理后含有几个未知数? (2)按照整式中的多项式的规定,它们最高次数是几次? (3)有等号吗?或与以前多项式一样只有式子? 老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)•都有等号,是方程. 因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程. 一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式. 一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项. 例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项. 分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)•(•5-2x)=18必须运用整式运算进行整理,包括去括号、移项等. 解:去括号,得: 40-16x-10x+4x2=18 移项,得:4x2-26x+22=0 其中二次项系数为4,一次项系数为-26,常数项为22. 例2.(学生活动:请二至三位同学上台演练) 将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项. 分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式. 解:去括号,得: x2+2x+1+x2-4=1 移项,合并得:2x2+2x-4=0 其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4. 三、巩固练习 教材P32 练习1、2 四、应用拓展 例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程. 分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17•≠0即可. 证明:m2-8m+17=(m-4)2+1 ∵(m-4)2≥0 ∴(m-4)2+1>0,即(m-4)2+1≠0 ∴不论m取何值,该方程都是一元二次方程. 五、归纳小结(学生总结,老师点评) 本节课要掌握: (1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)•和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用. 六、布置作业 1.教材P34 习题22.1 1、2. 2.选用作业设计.

作业设计 一、选择题 1.在下列方程中,一元二次方程的个数是( ).

①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-5x=0 A.1个 B.2个 C.3个 D.4个 2.方程2x2=3(x-6)化为一般形式后二次项系数、•一次项系数和常数项分别为( ). A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,6 3.px2-3x+p2-q=0是关于x的一元二次方程,则( ). A.p=1 B.p>0 C.p≠0 D.p为任意实数 二、填空题 1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________. 2.一元二次方程的一般形式是__________. 3.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________. 三、综合提高题

1.a满足什么条件时,关于x的方程a(x2+x)=3x-(x+1)是一元二次方程?

2.关于x的方程(2m2+m)xm+1+3x=6可能是一元二次方程吗?为什么? 3.一块矩形铁片,面积为1m2,长比宽多3m,求铁片的长,小明在做这道题时,•是这样做的: 设铁片的长为x,列出的方程为x(x-3)=1,整理得:x2-3x-1=0.小明列出方程后,想知道铁片的长到底是多少,下面是他的探索过程: 第一步: x 1 2 3 4 x2-3x-1 -3 -3 所以,________第二步: x 3.1 3.2 3.3 3.4 x2-3x-1 -0.96 -0.36 所以,________(1)请你帮小明填完空格,完成他未完成的部分; (2)通过以上探索,估计出矩形铁片的整数部分为_______,十分位为______.

答案: 一、1.A 2.B 3.C 二、1.3,-2,-4 2.ax+bx+c=0(a≠0) 3.a≠1

三、1.化为:ax2+(a-3+1)x+1=0,所以,当a≠0时是一元二次方程.

2.可能,因为当21220mmm, ∴当m=1时,该方程是一元二次方程. 3.(1)-1,3,3,4,-0.01,0.36,3.3,3.4 (2)3,3

相关文档
最新文档