等比数列

合集下载

等比数列的概念与计算

等比数列的概念与计算

等比数列的概念与计算等比数列是指一个数列中的每一项与它的前一项的比值都相等的数列。

在等比数列中,我们可以通过已知的首项和公比来计算数列中的任意项,也可以根据数列中的某几项来求解首项和公比。

下面将详细介绍等比数列的概念与计算方法。

一、等比数列的概念等比数列可表示为:a,ar,ar^2,ar^3,...其中,a为首项,r为公比,n为项数。

首项:等比数列中的第一项,通常表示为a。

公比:等比数列中的相邻两项之比,通常表示为r。

在等比数列中,如果一个数列的任意两项之比等于一个常数r,则这个数列就是等比数列。

二、等比数列的计算1. 根据首项和公比计算数列已知等比数列的首项为a,公比为r,项数为n,我们可以通过以下公式来计算数列中的任意项:第n项 = a * r^(n-1)其中,r表示公比,n表示项数。

2. 根据数列中的某几项计算首项和公比已知等比数列中的任意两项的值为a和b(a≠0),两项的下标分别为m和n,我们可以通过以下公式计算首项和公比:首项 a = b * (r^(m-n))公比 r = (b/a)^(1/(m-n))其中,m和n表示两项的下标,a和b表示两项的值,r表示公比。

三、等比数列的应用举例1. 求解等比数列中的某一项的值已知等比数列的首项为2,公比为3,求解该数列中的第5项的值。

解:根据公式第n项 = a * r^(n-1),我们可以计算出第5项的值:第5项 = 2 * 3^(5-1) = 2 * 3^4 = 2 * 81 = 162所以,等比数列中的第5项的值为162。

2. 求解等比数列中的首项和公比已知等比数列的第2项为4,第5项为128,求解该数列的首项和公比。

解:根据公式首项 a = b * (r^(m-n)),我们可以计算出首项和公比:首项 a = 4 * (128^(2-5)) = 4 * 128^(-3) = 4 * 1/(128^3) = 4/(128^3)公比 r = (128/4)^(1/(2-5)) = 32^(-1) = 1/32所以,等比数列的首项为4/(128^3),公比为1/32。

等比数列的概念及通项公式

等比数列的概念及通项公式
a4 a7 512 ,且公比 2、等比数列{an}中,a3 a8 124 , 是整数,则 a10 等于( C ) A.256 B.-256 C.512 D.-512
3、已知三个数成等比数列,它们的和为14,它们的 积为64,求这三个数。 2,4,8 或8,4,2
4、正项等比数列{an},公比q=2,且a1a2a3…a18=230, 则a3a6a9…a18=__________ 。 216
例题分析
例:(2006全国卷I)已知{an}为等比数 列,公比q>1,a2+a4=10, a1.a5=16 求等 比 数列 {an}的通项公式


Байду номын сангаас
1、已知数列{an}为等比数列,且an>0,a2a4+ 2a3a5+a4a6=25,那么a3+a5的值等于( A ) A.5 B.10 C.15 D.20
log3 (a1a2 a3 a11 )
3
1
3
2
3
3
3
11
11
log a log 3
11 3 6 11 3
∵a1a11 = a62=9且an>0
∴a6=3
形成性训练
1、在等比数列{an}中,已知a2 = 5,a4 = 10,则公比 q的值为________ 2、 2与8的等比中项为G,则G的值为_______ 3、在等比数列{an}中,an>0, a2a4+2a3a5+a4a6=36, 那么a3+a5=_________ 4、在等比数列中a7=6,a10=9,那么a4=_________.
等比数列中有类似性质吗???
想一想
探究一
在等比数列{an}中,a2.a6=a3.a5是否成立?

等比数列是什么

等比数列是什么

等比数列是什么如果一个数列从第二项起,每一项与它的前一项的比都等于一个常数(不为0),那么,这个数列就叫做等比数列。

这个常数叫做等比数列的公比。

如数列:2、4、8、16、······每一项与前一项的比值:4÷2=8÷4=16÷8=2,所以这个数列是等比数列,而它的公比就是2。

等比数列是什么 1q≠1时 Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)q=1时Sn=na1(a1为首项,an为第n项,d为公差,q 为等比)这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。

注:q=1 时,{an}为常数列。

利用等比数列是什么 1可以快速的计算出该数列的和。

等比数列是什么 2(1)若m、n、p、q∈N+,且m+n=p+q,则am×an=ap×aq。

(2)在等比数列中,依次每k项之和仍成等比数列。

(3)若“G是a、b的等比中项”则“G2=ab(G≠0)”。

(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3…{can},c是常数,{an×bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2。

(5)若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数。

(6)等比数列前n项之和在等比数列中,首项A1与公比q都不为零。

注意:上述公式中An表示A的n次方。

(7)由于首项为a1,公比为q的等比数列的通项公式可以写成an=(a1/q)×qn,它的指数函数y=ax有着密切的联系,从而可以利用指数函数的性质来研究等比数列。

等比数列基本的5个公式

等比数列基本的5个公式

等比数列基本的5个公式
等比数列是指数列中,任意两个相邻项的比值相等的数列。

在等比数列中,通常会用到以下五个基本的公式来求解问题:
1.第n项公式:
设等比数列的首项为a₁,公比为q,则第n项的值可表示为:
aₙ=a₁×q^(n-1)
2.前n项和公式:
设等比数列的首项为a₁,公比为q,前n项和的值可表示为:
Sₙ=a₁×(1-q^n)/(1-q)
3.公比与比值的关系:
公比q等于任意两个相邻项的比值:
q=aₙ/aₙ₊₁
4.通项公式的推导:
根据公比和比值的关系,可得到通项公式的推导过程:
aₙ₊₁=aₙ×q
将第n项公式代入可得:
aₙ₊₁=(a₁×q^(n-1))×q
化简得到通项公式:
aₙ₊₁=a₁×q^n
5.等比数列的性质之一:
当公比q在-1到1之间(不包括-1和1)时,等比数列的前n项和存在有限值。

这个有限值可以根据前n项和公式计算得到。

这些公式是解决等比数列问题的基础,在实际运用中常常会结合具体问题进行推导和运用。

需要注意的是,在使用这些公式时,要注意对问题进行分析和理解,确保正确使用公式求解。

等比数列

等比数列

2.若 p+q=r+s(p、q、r、s∈N*), 则 apaq=aras . 特别地, 若 m+n=2p, 则 aman=ap2 . 3.等比中项 如果在两个数 a、b 中间插入一个数 G, 使 a、G、b 成等比 数列, 则 G 叫做 a 与 b 的等比中项.
G= ab . 4.若数列 {an} 是等比数列, m, p, n 成等差数列, 则 am, ap, an 成等比数列. 5.顺次 n 项和性质 若 {an} 是公比为 q 的等比数列, 则 k a , a , a 也成等 =1 k k=n+1 k k=2n+1 k 比数列, 且公比为 qn. an 6.若数列 {an}, {bn} 是等比数列, 则数列 {anbn}, { } 也是等 bn 比数列.
课后练习题
1.四个正数, 前三个数成等差数列, 其和为 48, 后三个数成 等比数列, 其最后一个数是 25, 求此四数. 解: 由已知可设前三个数为 a-d, a, a+d(d 为公差)且 a+d>0. ∵后三数成等比数列, 其最后一个数是 25,
∴a-d+a+a+d=48, 且 (a+d)2=25a.
+2 S (n=1, 2, 7.数列 {an} 的前 n 项和记为 Sn, 已知 a1=1, an+1= nn n S 3,…), 证明: (1)数列 { n } 是等比数列; (2) Sn+1=4an. n Sn n-1 (2)证法2: 由(1)知 n =2 . ∴Sn=n2n-1 . ∴Sn+1=(n+1)2n. ∵an=Sn-Sn-1=n2n-1-(n-1)2n-2=(n+1)2n-2 (n≥2). 而 a1=1 也适合上式,

等比数列概念及性质

等比数列概念及性质

an am q
变通公式
nm
( n, m N )
*
性质1:设an , am为等比数列an 中任意两项, 且公比为q,则an am q
证明
nm
.
设等比数列an 的首项为a1 , 公比为q, 则有an a1q , am a1q
n 1 m 1
an nm nm 从而 q , 即an am q . am
例题3:一个等比数列的第3项和第4 项分别是12和18,求它的第1项和第2 项。
1.在等比数列{an}中,已知
a 3 20, a 6 160
求an.
四. 应用示例
例2.根据右图的框图,写出所打印 数列的前5项,并建立数列的递 推公式.这个数列是等比数列吗?
开始
A=1 n=1 输出A n=n+1 A=1/2A 否

例3.已知等比数列an 的首项为a1 , 公比为q,依次取出数列an 中所有奇数项,组成一个新数列,这个数列还是等比数列吗?
变式1:如果依次取出a1 , a4 , a7 , a10 ,构成一个新数列, 该数列是否还是等比数列?
思考:你能得到更一般的结论吗?
① 1,-1,1,…,(-1)n+1 ;√
②1,2,4,6…;× ③a,a,a,…,a; ×
④已知a1=2,an=3an+1 ; √

m, 2m, 4m ,8m ,... ×
2
3
⑥2a,2a,2a,…,2a. √
2、求出下列等比数列中的未知项: 1 (1)2,a,8;(2)-4,b,c, . 2
思考2:公比q<0时,等比数列呈现怎样的特 点? 正负交替
第二课时
二、新课

等比数列的概念和计算

等比数列的概念和计算

等比数列的概念和计算等比数列是数学中重要的概念之一,它在各种实际问题中都有广泛的应用。

在本文中,我们将介绍等比数列的概念、性质和计算方法,帮助读者更好地理解和运用等比数列。

一、等比数列的概念等比数列是指一系列的数按比例递增或递减的数列。

它的特点是每个数都是前一个数与同一个非零常数的乘积。

设首项为a,公比为r,则等比数列的通项公式为:an = ar^(n-1)其中,an表示第n个数,r表示公比。

二、等比数列的性质等比数列有许多有趣的性质,下面我们来介绍几个常见的性质:1. 公比的性质:对于等比数列,如果公比r>1,那么数列是递增的;如果0<r<1,数列是递减的。

当r=-1时,数列交替增减;当r=1时,数列是等差数列。

2. 等比数列的比与比与项的关系:等比数列中,任意两项的比等于它们的比的m次方,即an/am=a^(n-m)。

3. 等比数列的前n项和:等比数列的前n项和公式为Sn=a(1-r^n)/(1-r),其中S表示前n项和。

这个公式可以通过数列的递推关系和等差数列的求和公式推导得出。

三、等比数列的计算方法计算等比数列的各项值是数列问题中的重要环节,下面我们将介绍两种常见的计算方法。

1. 递推法:通过已知项计算下一项。

首先确定首项a和公比r,然后根据递推关系an = an-1 * r计算每一项的值。

这种方法适用于已知首项和公比的情况。

2. 公式法:利用等比数列的通项公式,直接计算任意项的值。

首先确定首项a和公比r,然后根据通项公式计算特定项的值。

这种方法适用于已知首项和公比,但需要计算某一特定项的情况。

四、应用举例等比数列在实际问题中有广泛的应用。

例如,金融领域中的复利计算就涉及到等比数列。

假设你存入一笔本金,每年的利率固定为r,那么n年后的本金总额可以表示为Sn=a(1-r^n)/(1-r)。

通过等比数列的计算,可以帮助我们了解到本金随时间的变化情况。

另外,等比数列还可以应用于计算机科学中的数据结构和算法设计中。

等比数列公式_公式总结

等比数列公式_公式总结

等比数列公式_公式总结如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。

这个常数叫做等比数列的公比,公比通常用字母q表示。

(1)等比数列的通项公式是:An=A1&times;q^(n-1)若通项公式变形为an=a1/q*q^n(n&isin;N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。

(2) 任意两项am,an的关系为an=am&middot;q^(n-m)(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1&middot;an=a2&middot;an-1=a3&middot;an-2=&hellip;=ak&middot;an-k+1,k&isin;{1,2,&hellip;,n}(4)等比中项:aq&middot;ap=ar^2,ar则为ap,aq等比中项。

(5) 等比求和:Sn=a1+a2+a3+.......+an①当q&ne;1时,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an&times;q)&divide;(1-q)②当q=1时,Sn=n&times;a1(q=1)记&pi;n=a1&middot;a2&hellip;an,则有&pi;2n-1=(an)2n-1,&pi;2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。

在这个意义下,我们说:一个正项等比数列与等差数列是&ldquo;同构&rdquo;的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已知等比数列{an}为递增数列. 若a1> 0, 且2(an+an+2) =5an+1, 则数列{an}的公比q=.
提示:运用通项公式。
已知数列1,a1,a2, 4成等差数列,1,b1,b2,b3, 4成等比数列,则 _______.
2、小题型(求和公式)
在各项都为正数的等比数列 中,首项 ,前三项和为21,则 ( )
证明等比数列
已知数列 的首项 前 项和为 ,且Sn+1=Sn+5n-1,证明数列 是等比数列.
作业:(本小题满分50分)已知等比数列 记其前n项和为
(1)求数列 的通项公式 ;
(2)若
(本小题满分50分)等比数列 的前 项和为 ,已知 成等差数列.
(1)求 的公比 ;
(2)若 ,求 .
等比数列
教学过程
【典型试题】
一、等比数列的计算问题的解题策略
1、小题型(通项公式及性质计算)
如果 成等比数列,那么()
A、 B、 C、 D、
已知各项均为正数的等比数列{an}, a1a2a3=5, a7a8a9=10, 则a4a5a6=( )
已知 等比数列, ,求 的通项公式。
在等比数列 ,已知 , ,则 =
在等比数列 ( )中,若 , ,则该数列的前10项和为( )
ቤተ መጻሕፍቲ ባይዱA. B. C. D.
设等比数列 的前n项和为 ,已 ,求 和
已知等比数列 中, ,公比 . 为 的前n项和,证明:
设 ,则 等于( )
A. B. C. D.
已知等比数列 的首相 ,公比 ,当项数n趋近与无穷大时,其前n项

一个等比数列前 项的和为48,前2 项的和为60,则前3 项的和为( )
相关文档
最新文档