等比数列的性质 (2)ppt课件
合集下载
高中数学人教版必修5课件:2.4.2等比数列的性质(共13张PPT)

等比数列
学习目标
1、进一步巩固等比数列的定义和通项公式。 2、掌握等比数列的性质,会用性质灵活解决
问题。
• 重、难点:等比数列性质的灵活运用。
抛 砖 在等比数列{an}中: 引 玉 an=a1qn-1
猜想an=amq ? ,你能证明这个结论
吗?
1、等比数列性质一:
• 设数列{an}是公比为q的等比数列,则:
2.4.2 等比数列的性质
Yesterday once more
等差数列
等比数列
定义
an+1-an=d
公差(比)
d
q
递推公式
通项公式 等差(比)
中项
an=an-1+d an= a1+(n-1)d
an=an-1 q an=a1qn-1
性质一 性质二
等差数列
an=am+(n-m)d 若 m+n=p+q , 则 am+an=ap+aq 。
2、等比数列性质二:
• 在等比数列{an}中,若m+n=p+q,m、n、p、
q∈N*,则 am·an=ap·aq 。 • 特别地,若m+n=2k,则am·an=_ak_·a_k=_(a_k)2 。
• 由1+5=6,则a1·a5=a6吗?
【注】等式两边相乘的项数必须一样多!
Hale Waihona Puke 追 踪利用等比数列的性质填空:
练 在等比数列{an}中: 习 (1)若a5=2,a10=10,则a15=__,
a6·a9=__。
(2)若a13·a22=14,a10=4 ,则a25=___。
(3)若a2·a4=4,则a3=___。
人教版高中数学必修五课件:第二章 数列2-4-2 等比数列的性质

【所以自主{an解2}答是】首1项.因为为1,an公=2比n-为1,4所的以等a比ann数122 列,22nn=故1 242a,n2=4n-1.
答案:an2=4n-1
2.由a4·a7=-512,得a3·a8=-512.
由
解得a3=-4,a8=128或a3=128,a8=-4(舍).
所以aaq33 =a8a
am·an=ak·al
2.等比数列的单调性
(1)当a1>0,_q_>_1_或a1<0,_0_<_q_<_1_时,{an}为递增数列. (2)当____,0<q<1或a1<0,____时,{an}为递减数列. (3)当_a_1>_0_时,{an}为常数列q.>1
q=1
1.在等比数列{an}中,a6=6,a9=9,则a3=( )
(3)若m+n=p+l(m,n,p,l∈N*),那么aman=apal吗? 提示:相等,aman=2m-1×2n-1=2m+n-2, apal=2p-1×2l-1=2p+l-2,因为m+n=p+l, 所以m+n-2=p+l-2,所以aman=apal.
探究2:对任意的等比数列{an},若有m+n=p+l(m,n,p,l∈N*), 那么aman=apal吗? 提示:相等,设等比数列{an}的公比为q,则am=a1qm-1, an=a1qn-1,ap=a1qp-1,al=a1ql-1,aman= a1qm-1×a1qn-1=a12 qm + n-2, apal= a1qp-1×a1ql-1=a12qp + l-2, 因为m+n=p+l,所以aman=apal.
高中数学选择性必修二(人教版)《4.3.1 等比数列的性质》课件

法三:由等比中项的性质,得 a5·a2n-5=(an)2=22n,注意到 an>0, 所以 an=2n.
于是 log2a1+log2a3+…+log2a2n-1=1+3+…+(2n-1)=n2. 法四:因为 a1·a2n-1=a3·a2n-3=a5·a2n-5=…=(an)2=22n, 所以 log2a1+log2a3+…+log2a2n-1=log2(a1a3…a2n-1)=log2[(a1a2n- 1)(a3a2n-3)…an]=log22n2=n2. [答案] (1)A (2)C
+a110=________. 解析:因为a17+a110=a7a+7a1a010,a18+a19=a8a+8aa9 9,由等比数列的性质知 a7a10=a8a9,所以a17+a18+a19+a110=a7+a8a+8aa99+a10=185÷-98=-53. 答案:-53
题型二 灵活设元求解等比数列问题 [学透用活]
(1)三个数成等比数列设为:aq,a,aq. 推广到一般:奇数个数成等比数列设为: …,qa2,aq,a,aq,aq2,… (2)四个符号相同的数成等比数列设为: qa3,aq,aq,aq3. 推广到一般:偶数个符号相同的数成等比数列设为: …,qa5,qa3,aq,aq,aq3,aq5,… (3)四个数成等比数列,不能确定它们的符号相同时,可设为:a, aq,aq2,aq3.
∴log2a1·log2a3=-3, ∴log2aq2·log2(a2q)=-3, 即(log2a2-log2q)·(log2a2+log2q)=-3, 即(1-log2q)·(1+log2q)=-3,解得 log2q=±2. 当 log2q=2 时,q=4,a1=aq2=12,∴an=12×4n-1=22n-3; 当 log2q=-2 时,q=14,a1=aq2=8,∴an=8×14n-1=25-2n.
高中数学人教A版必修五教学课件:第二章 《数列》 2.4 第2课时 等比数列的性质

-6 解析:a4a7=a1· a10= =-2. 3
答案:B
3. 等比数列{an}中, 若 a9=-2, 则此数列前 17 项之积为____________.
解析:由题意得 a1a2a3…a15a16a17 =(a1a17)· (a2a16)· (a3a15)· …· a9
17 17 =a17 9 =(-2) =-2 .
2 ∴a6 =a2· a10,
1 ∴a10=162 × =13 122. 2
2
法三:由公式 ap· aq=ap+k· aq-k 得
2 a2· a10=a2+4· a10-4=a6 .
1 ∴a10=1622× =13 122. 2
答案:13 122
探究二
an+1=can+d(c≠1,cd≠0)的递推关系
利用等比数列的性质解题 (1)基本思路:充分发挥项的 “下标”的指导作用,分析等比数列项 与项之间的关系,选择恰当的性质解题. (2)优缺点:简便快捷,但是适用面窄,有一定的思维含量.
1.在等比数列中,若 a2=2,a6=162,则 a10=________.
解析:法一:∵a6=a2q4,其中 a2=2,a6=162, ∴q4=81, ∴a10=a6q4=162×81=13 122. 法二:∵2,6,10 三数成等差数列, ∴a2,a6,a10 成等比数列.
-
1n-1 4n-1 n-1 第 n 个图形的周长 3 ×(3×4 )=3×3 .
[感悟提高]
(1)解决此类问题,需要抓住变中的不变量,即数据在改
变,但其变化规律不改变,事实上,给出的图形只是问题的载体,我 们只需从“形”中抽象出“数”,即可将问题归结为等比数列.
a1=1, 1 ∴ 或 1 q = . q=2,
等比数列求和公式及性质课件PPT

的符号相反。
公比为负数的等比数列求和公式: S = a_1 * (1 - q^n) / (1 - q)
公比为负数的等比数列具有特殊 的性质,如对称性、周期性等。
公比为1的性质
当公比q=1时,等比 数列退化为等差数列, 各项相等。
公比为1的等比数列 具有特殊的性质,如 对称性、周期性等。
公比为1的等比数列 求和公式:S = n * a_1
研究电磁波的传播特性
在研究电磁波的传播特性时,常常需要用到等比 数列求和公式来求解与波动相关的数学模型。
在经济中的应用
分析股票价格波动
评估投资回报
在股票市场中,股票价格常常呈现一 定的波动规律,利用等比数列求和公 式可以分析股票价格的波动规律。
在投资领域中,利用等比数列求和公 式可以评估投资回报的长期收益,为 投资者提供参考。
4. 在等比数列中,两个相同项之间的项数可以确定为n, 那么这两项之间的所有项的和可以表示为a_n * (q^n - 1) / (q - 1)。
等比数列的通项公式
总结词
等比数列的通项公式是用来表示等比数列中每一项的数学表达式。
详细描述
等比数列的通项公式为a_n = a_1 * q^(n-1),其中a_1是首项,q是公比,n是 项数。这个公式可以用来计算等比数列中的任何一项,只要知道首项、公比和 项数。
差数列、等比数列的性质、通项公式等。
在物理中的应用
1 2 3
解决与周期性运动相关的问题
等比数列求和公式在物理学中有广泛的应用,如 求解与周期性运动相关的问题,如简谐运动、波 动等。
分析量子力学中的概率幅
在量子力学中,概率幅常常以等比数列的形式出 现,利用等比数列求和公式可以方便地计算出概 率幅之和。
公比为负数的等比数列求和公式: S = a_1 * (1 - q^n) / (1 - q)
公比为负数的等比数列具有特殊 的性质,如对称性、周期性等。
公比为1的性质
当公比q=1时,等比 数列退化为等差数列, 各项相等。
公比为1的等比数列 具有特殊的性质,如 对称性、周期性等。
公比为1的等比数列 求和公式:S = n * a_1
研究电磁波的传播特性
在研究电磁波的传播特性时,常常需要用到等比 数列求和公式来求解与波动相关的数学模型。
在经济中的应用
分析股票价格波动
评估投资回报
在股票市场中,股票价格常常呈现一 定的波动规律,利用等比数列求和公 式可以分析股票价格的波动规律。
在投资领域中,利用等比数列求和公 式可以评估投资回报的长期收益,为 投资者提供参考。
4. 在等比数列中,两个相同项之间的项数可以确定为n, 那么这两项之间的所有项的和可以表示为a_n * (q^n - 1) / (q - 1)。
等比数列的通项公式
总结词
等比数列的通项公式是用来表示等比数列中每一项的数学表达式。
详细描述
等比数列的通项公式为a_n = a_1 * q^(n-1),其中a_1是首项,q是公比,n是 项数。这个公式可以用来计算等比数列中的任何一项,只要知道首项、公比和 项数。
差数列、等比数列的性质、通项公式等。
在物理中的应用
1 2 3
解决与周期性运动相关的问题
等比数列求和公式在物理学中有广泛的应用,如 求解与周期性运动相关的问题,如简谐运动、波 动等。
分析量子力学中的概率幅
在量子力学中,概率幅常常以等比数列的形式出 现,利用等比数列求和公式可以方便地计算出概 率幅之和。
高中数学北师大版必修5第1章3《等比数列》(第2课时 等比数列的性质)ppt同步课件

课堂典例讲练
运用等比数列性质解题
•
求a10.
在等比数列{an}中,若a2=2,a6=162,
• [分析] 解答本题可充分利用等比数列的性质及通项
公式[解,析求] 得解q法,一再:求设a公10比. 为 q,由题意得
a1q=2 a1q5=162
,解得a1=23 q=3
,或a1=-23 q=-3
[解析] 设数列{an}的公比为 q,则 an=a1qn-1, bn=1n[lga1+lg(a1q)+lg(a1q2)+…+lg(ka1qn-1)], 解得 bn=1n[nlga1+12n(n-1)lgq+lgk] =lga1+12(n-1)lgq+1nlgk,
∴bn+1-bn=[lga1+12nlgq+n+1 1lgk]-[lga1+12(n-1)lgq+ 1 nlgk]
∵an=logabn+b 对一切正整数 n 恒成立.
∴54- +lbo-gal6o=ga06=0 ,∴a=5 6,b=1.
易混易错点睛
四个实数成等比数列,且前三项之积为 1,后三 项之和为 134,求这个等比数列的公比.
[误解] 设这四个数为 aq-3,aq-1,aq,aq3,由题意得 a3q-3=1,① aq-1+aq+aq3=134.② 由①得 a=q,把 a=q 代入②并整理, 得 4q4+4q2-3=0,解得 q2=12或 q2=-32(舍去),故所求的公 比为12.
• (8){an}是等差数列,c是正数,则数列{can}是等比
________数列.
• (a9≠)1{)a是n}是__等__比__数__列数,列且.an>0,则{logaan}(a>0,
• 等2.差 等比数列中的设项方法与技巧
• (1)若____或________.
等比数列的性质 课件

典例导悟
类型一 等比数列的性质及应用 [例 1] 在等比数列{an}中,a2=4,a5=-12,求数列 的通项 an.
[分析] 思路 1:设首项为 a1,公比为 q,由题目中两 等式列方程组,解出 a1,q,进一步可求出 an.
思路 2:利用 am=anqm-n,可求 q,再进一步求 an.
[解] 方法 1:设首项为 a1,公比为 q,则 a2=a1q=4, a5=a1q4=-12,
等比数列的性质
1.等比数列的项与序号的关系以及性质
两项关系
多项关系
项的运算性质:若 m+n=
通项公式的推广:an= p+q(m,n,p,q∈N*),则
am·qn-m(m,n∈N*)
am·an= ap·aq
.
2.等比数列的项的对称性 有穷等比数列中,与首末两项“等距离”的两项之积等 于首末两项的积(若有中间项则等于中间项的平方),即 a1·an
=a2· an-1 =ak·an+1-k (= ,n 为正奇数).
3.等比数列的运算性质 (1)若{an}是公比为 q 的等比数列,则 ①{c·an}(c 是非零常数)是公比为 q 的等比数列; ②{|an|}是公比为 |q| 的等比数列; (2)若{an},{bn}分别是公比为 q1,q2 的等比数列,则数 列{an·bn}是公比为 q1·q2 的等比数列.
[解析] (1)∵{an}成等比数列, ∴a2,a6,a10 仍成等比数列. ∴a26=a2a10,∴a10=aa262=1262=128. (2)(a1a2a3)×(a7a8a9)=a65=50,a4a5a6=a35=5 2.
[答案] (1)128 (2)A
类型二 等比中项的设项方法 [例 3] 有四个实数,前三个数依次成等比,它们的积 是-8,后三个数依次成等差,它们的积为-80,求出这四的关系,即找到由周长所 构成的数列的通项公式.
03 教学课件_等比数列的性质(2)

答案 C
2.在等比数列{an}中,已知a3=1,a5=4,a12=8,则a10=________. 解析 由a3a12=a5a10得1×8=4a10,解得a10=2. 答案 2
3.45和80的等比中项为________. 解析 设45和80的等比中项为G,则G2=45×80, ∴G=±60. 答案 -60或60
拓展深化 [微判断] 1.若a,b,c成等比数列,则a,c的等比中项一定是b.( × )
提示 a,c 的等比中项应为± ac,即±b.
2.任何两个数都有等比中项.( × ) 提示 两个同号的实数a,b,才有等比中项.
3.若{an},{bn}都是等比数列,则{an+bn}是等比数列.( × ) 提示 反例:{an}为:1,-1,1,-1,…,{bn}为-1,1,-1,1,…,则 {an+bn}为:0,0,0,0,…,显然不是等比数列.
又 a1+a2+a3=7,可知2q+2+2q=7,
即 2q2-5q+2=0,解得 q=2 或 q=12.
由题意知q>1,所以q=2,所以a1=1.
故数列{an}的通项公式为an=2n-1.
(2)已知bn=ln a3n+1,n=1,2,….
由(1)得a3n+1=23n,所以bn=ln 23n=3nln 2.
角度2 等差、等比数列的综合应用 【例4】 设{an}是公比大于1的等比数列,已知a1+a2+a3=7,且a1+3,3a2,a3+4
构成等差数列. (1)求数列{an}的通项公式; (2)令bn=ln a3n+1,求数列{bn}的前n项和Tn.
a1+a2+a3=7, 解 (1)由已知得(a1+3)+2 (a3+4)=3a2, 解得a2=2.设数列{an}的公比为q. 由 a2=2,可得 a1=2q,a3=2q.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)若{an},{bn}分别是公比为q1,q2的等比数列,则数列 {an·bn}是公比为q1q2的等比数列. (3)数列{an}是各项均为正数的等比数列时,数列{lg an}是 公差为lg q的等差数列.
课前探究学习
课堂讲练互动
题型一 等比数列性质的应用
【例1】 已知数列{an}为等比数列. (1)若an>0,且a2a4+2a3a5+a4a6=36,求a3+a5的值; (2)若a1+a2+a3=7,a1a2a3=8,求数列{an}的通项公式. [思路探索] 应用等比数列的性质:a2a4=a32,a4a6=a52, a1a3=a22,化简已知,可求解. 解 (1)法一 ∵an>0,∴a1>0,q>0. 又∵a2a4+2a3a5+a4a6=36, ∴a1q·a1q3+2a1q2·a1q4+a1q3·a1q5=36, 即a12q4+2a12q6+a12q8=36,
有穷等比数列中,与首末两项“等距离”的两项之积等于首末两 项的积(若有中间项则等于中间项的平方),即 a1·an=a2·_a_n_-_1_
=ak·_a_n-__k_+_1_=
(n 为正奇数).
课前探究学习
课堂讲练互动
3.等比数列的“子数列”的性质
若数列{an}是公比为q的等比数列,则 (1){an}去掉前几项后余下的项仍组成公比为_q_的等比数列; (2)奇数项数列{a2n-1}是公比为_q_2的等比数列; 偶数项数列{a2n}是公比为_q_2的等比数列; (3)在数列{an}中每隔k(k∈N*)取出一项,按原来顺序组成新 数列,则新数列仍为等比数列且公比为qk+1.
(1)若{an}是公比为q的等比数列,则 ①{c·an}(c是非零常数)是公比为q的等比数列; ②{|an|}是公比为|q|的等比数列;
③数列a1n是公比为q1的等比数列;
课前探究学习
课堂讲练互动
④{anm}(m是整数常数)是公比为qm的等比数列. 特别地,若数列{an}是正项等比数列时,数列{anm}(m是实 数常数)是公比为qm的等比数列.
课前探究学习
课堂讲练互动
∴a12q4(1+2q2+q4)=36,即a12q4(1+q2)2=36, ∴a1q2(1+q2)=6, ∴a3+a5=a1q2+a1q4=a1q2(1+q2)=6. 法二 ∵a2a4+2a3a5+a4a6=36, ∴a32+2a3a5+a52=36, ∴(a3+a5)2=36,∴a3+a5=6. (2)∵a22=a1a3代入已知,得a23=8,∴a2=2. 设前三项为2q,2,2q,则有2q+2+2q=7.
第2课时 等比数列的性质及应用
【课标要求】 1.理解等比数列的性质并能应用. 2.了解等比数列同指数函数间的关系. 3.会用等比数列的性质解题. 【核心扫描】 1.等比数列的性质及应用.(重点) 2.等比数列与等差数列的综合应用.(重点) 3.与函数、方程、不等式等结合命题.(难点)
课前探究学习
课堂讲练互动
a3=4, a7=16,
ห้องสมุดไป่ตู้
或aa37==146. ,
∵{an}是递增等比数列,∴a7>a3. ∴取 a3=4,a7=16,∴16=4q4,∴q4=4. ∴a11=a7·q4=16×4=64.
课前探究学习
课堂讲练互动
(2)由 a3a5=a24,得 a3a4a5=a34=8. 解得 a4=2. 又因为 a2a6=a3a5=a24, 所以 a2a3a4a5a6=a54=25=32.
课前探究学习
课堂讲练互动
:如果等比数列{an}中,m+n=2k(m,n,k∈N*), 那么am·an=ak2是否成立?反之呢? 提示:如果等比数列的三项的序号成等差数列,那么对应
的项成等比数列.
事实上,若m+n=2k(m,n,k∈N*), 则am·an=(a1·qm-1)·(a1·qn-1)=a12·qm+n-2=a12(qk-1)2=ak2. 在等比数列{an}中,若am·an=ap·aq=ak2,不一定有m+n =p+q=2k,如非零常数列.
整理,得 2q2-5q+2=0,∴q=2 或 q=21.
∴ aq=1=21,
a1=4, 或q=21.
∴an=2n-1 或 an=23-n
课前探究学习
课堂讲练互动
在等比数列的有关运算中,常常涉及到 次数较高的指数运算.若按常规解法,往往是建 立a1,q的方程组,这样解起来很麻烦,通过本例 可以看出:结合等比数列的性质进行整体变换, 会起到化繁为简的效果.
由条件得a-d+a+a d2=16, a+a+d=12,
自学导引
1.等比数列的项与序号的关系以及性质
设等比数列{an}的公比为q. (1)两项关系:an=_a_m_q_n_-_m_(m,n∈N*). (2)多项关系:若m+n=p+q(m,n,p,q∈N*),则aman=_a_p_a_q. (3)若m,n,p(m,n,p∈N*)成等差数列时,am,an,ap成等比数 列. 2.等比数列的项的对称性
课前探究学习
课堂讲练互动
名师点睛
1.等比数列的单调性
(1)当q>1,a1>0或0<q<1,a1<0时,等比数列{an}是递增数列. (2)当q>1,a1<0或0<q<1,a1>0时,等比数列{an}是递减数列. (3)当q=1时,等比数列{an}是常数列. (4)当q<0时,等比数列{an}是摆动数列. 2.等比数列的运算性质
课前探究学习
课堂讲练互动
题型二 灵活设项求解等比数列
【例2】有四个数,其中前三个数成等差数列,后三个数成等 比数列,并且第一个数与第四个数的和是16,第二个数与 第三个数的和是12,求这四个数. [思路探索] 根据等差数列和等比数列的性质,设出未知 数,结合题中条件求解即可. 解 法一 设四个数依次为 a-d,a,a+d,a+ad2,
课前探究学习
课堂讲练互动
【变式1】 (1)在递增等比数列{an}中,a1a9=64,a3+a7= 20,求a11的值.
(2)已知数列{an}成等比数列.若a3a4a5=8,求a2a3a4a5a6的 值.
解 (1)在等比数列{an}中, ∵a1·a9=a3·a7, ∴由已知可得:a3·a7=64与a3+a7=20联立得:
课前探究学习
课堂讲练互动
题型一 等比数列性质的应用
【例1】 已知数列{an}为等比数列. (1)若an>0,且a2a4+2a3a5+a4a6=36,求a3+a5的值; (2)若a1+a2+a3=7,a1a2a3=8,求数列{an}的通项公式. [思路探索] 应用等比数列的性质:a2a4=a32,a4a6=a52, a1a3=a22,化简已知,可求解. 解 (1)法一 ∵an>0,∴a1>0,q>0. 又∵a2a4+2a3a5+a4a6=36, ∴a1q·a1q3+2a1q2·a1q4+a1q3·a1q5=36, 即a12q4+2a12q6+a12q8=36,
有穷等比数列中,与首末两项“等距离”的两项之积等于首末两 项的积(若有中间项则等于中间项的平方),即 a1·an=a2·_a_n_-_1_
=ak·_a_n-__k_+_1_=
(n 为正奇数).
课前探究学习
课堂讲练互动
3.等比数列的“子数列”的性质
若数列{an}是公比为q的等比数列,则 (1){an}去掉前几项后余下的项仍组成公比为_q_的等比数列; (2)奇数项数列{a2n-1}是公比为_q_2的等比数列; 偶数项数列{a2n}是公比为_q_2的等比数列; (3)在数列{an}中每隔k(k∈N*)取出一项,按原来顺序组成新 数列,则新数列仍为等比数列且公比为qk+1.
(1)若{an}是公比为q的等比数列,则 ①{c·an}(c是非零常数)是公比为q的等比数列; ②{|an|}是公比为|q|的等比数列;
③数列a1n是公比为q1的等比数列;
课前探究学习
课堂讲练互动
④{anm}(m是整数常数)是公比为qm的等比数列. 特别地,若数列{an}是正项等比数列时,数列{anm}(m是实 数常数)是公比为qm的等比数列.
课前探究学习
课堂讲练互动
∴a12q4(1+2q2+q4)=36,即a12q4(1+q2)2=36, ∴a1q2(1+q2)=6, ∴a3+a5=a1q2+a1q4=a1q2(1+q2)=6. 法二 ∵a2a4+2a3a5+a4a6=36, ∴a32+2a3a5+a52=36, ∴(a3+a5)2=36,∴a3+a5=6. (2)∵a22=a1a3代入已知,得a23=8,∴a2=2. 设前三项为2q,2,2q,则有2q+2+2q=7.
第2课时 等比数列的性质及应用
【课标要求】 1.理解等比数列的性质并能应用. 2.了解等比数列同指数函数间的关系. 3.会用等比数列的性质解题. 【核心扫描】 1.等比数列的性质及应用.(重点) 2.等比数列与等差数列的综合应用.(重点) 3.与函数、方程、不等式等结合命题.(难点)
课前探究学习
课堂讲练互动
a3=4, a7=16,
ห้องสมุดไป่ตู้
或aa37==146. ,
∵{an}是递增等比数列,∴a7>a3. ∴取 a3=4,a7=16,∴16=4q4,∴q4=4. ∴a11=a7·q4=16×4=64.
课前探究学习
课堂讲练互动
(2)由 a3a5=a24,得 a3a4a5=a34=8. 解得 a4=2. 又因为 a2a6=a3a5=a24, 所以 a2a3a4a5a6=a54=25=32.
课前探究学习
课堂讲练互动
:如果等比数列{an}中,m+n=2k(m,n,k∈N*), 那么am·an=ak2是否成立?反之呢? 提示:如果等比数列的三项的序号成等差数列,那么对应
的项成等比数列.
事实上,若m+n=2k(m,n,k∈N*), 则am·an=(a1·qm-1)·(a1·qn-1)=a12·qm+n-2=a12(qk-1)2=ak2. 在等比数列{an}中,若am·an=ap·aq=ak2,不一定有m+n =p+q=2k,如非零常数列.
整理,得 2q2-5q+2=0,∴q=2 或 q=21.
∴ aq=1=21,
a1=4, 或q=21.
∴an=2n-1 或 an=23-n
课前探究学习
课堂讲练互动
在等比数列的有关运算中,常常涉及到 次数较高的指数运算.若按常规解法,往往是建 立a1,q的方程组,这样解起来很麻烦,通过本例 可以看出:结合等比数列的性质进行整体变换, 会起到化繁为简的效果.
由条件得a-d+a+a d2=16, a+a+d=12,
自学导引
1.等比数列的项与序号的关系以及性质
设等比数列{an}的公比为q. (1)两项关系:an=_a_m_q_n_-_m_(m,n∈N*). (2)多项关系:若m+n=p+q(m,n,p,q∈N*),则aman=_a_p_a_q. (3)若m,n,p(m,n,p∈N*)成等差数列时,am,an,ap成等比数 列. 2.等比数列的项的对称性
课前探究学习
课堂讲练互动
名师点睛
1.等比数列的单调性
(1)当q>1,a1>0或0<q<1,a1<0时,等比数列{an}是递增数列. (2)当q>1,a1<0或0<q<1,a1>0时,等比数列{an}是递减数列. (3)当q=1时,等比数列{an}是常数列. (4)当q<0时,等比数列{an}是摆动数列. 2.等比数列的运算性质
课前探究学习
课堂讲练互动
题型二 灵活设项求解等比数列
【例2】有四个数,其中前三个数成等差数列,后三个数成等 比数列,并且第一个数与第四个数的和是16,第二个数与 第三个数的和是12,求这四个数. [思路探索] 根据等差数列和等比数列的性质,设出未知 数,结合题中条件求解即可. 解 法一 设四个数依次为 a-d,a,a+d,a+ad2,
课前探究学习
课堂讲练互动
【变式1】 (1)在递增等比数列{an}中,a1a9=64,a3+a7= 20,求a11的值.
(2)已知数列{an}成等比数列.若a3a4a5=8,求a2a3a4a5a6的 值.
解 (1)在等比数列{an}中, ∵a1·a9=a3·a7, ∴由已知可得:a3·a7=64与a3+a7=20联立得: