最短路径算法分析2
最短路径路由算法

最短路径路由算法1. 引言最短路径路由算法是计算机网络中的一种重要算法,用于确定网络中两个节点之间的最短路径。
在网络通信中,选择最短路径可以大大提高数据传输的效率和可靠性。
本文将介绍最短路径路由算法的原理、常见算法以及应用领域。
2. 原理概述最短路径路由算法是基于图论的算法。
它将网络抽象成一个有向图,其中节点表示网络中的路由器或交换机,边表示节点之间的连接。
每条边都有一个与之相关的权重,表示在该路径上传输数据的代价。
最短路径路由算法的目标是找到网络中两个节点之间的最短路径,即路径上的所有边的权重之和最小。
3. 常见算法3.1 Dijkstra算法Dijkstra算法是最短路径路由算法中最经典的算法之一。
它通过逐步确定从源节点到其他节点的最短路径来实现最短路径的计算。
算法的核心思想是维护一个距离表,记录从源节点到其他节点的当前最短距离。
通过不断更新距离表中的值,最终得到源节点到目标节点的最短路径。
3.2 Bellman-Ford算法Bellman-Ford算法是另一种常见的最短路径路由算法。
与Dijkstra 算法不同,Bellman-Ford算法可以处理带有负权边的图。
算法通过进行多次迭代,逐步更新节点之间的最短距离,直到收敛为止。
Bellman-Ford算法的优势在于可以处理具有负权边的情况,但由于需要进行多次迭代,算法的时间复杂度较高。
3.3 Floyd-Warshall算法Floyd-Warshall算法是一种全局最短路径算法,用于计算图中任意两个节点之间的最短路径。
算法通过动态规划的方式,逐步更新节点之间的最短距离。
Floyd-Warshall算法的时间复杂度较高,但由于可以同时计算所有节点之间的最短路径,因此在网络规模较小的情况下,仍然是一个有效的算法。
4. 应用领域最短路径路由算法在计算机网络中有广泛的应用。
其中,最为典型的应用之一就是Internet路由器的路由选择。
Internet由大量的路由器组成,路由器之间的通信需要选择最短路径,以保证数据的快速传输和网络的稳定性。
Python中的最短路径算法详解

Python中的最短路径算法详解Python是一门高效的编程语言,其强大的算法库包含了许多经典的算法,比如最短路径算法。
最短路径算法是图论中的一个经典问题,它的目的是在图中寻找从一个指定顶点到另一个指定顶点的最短路径,即边权重之和最小的路径。
最短路径算法有很多种,其中比较常见的有Dijkstra算法、Bellman-Ford算法和Floyd算法。
接下来我将分别介绍这3种算法的原理和Python实现。
1. Dijkstra算法Dijkstra算法是最短路径算法中比较经典的一种,它采用贪心策略,通过每次选取当前离源点最近的节点来不断扩展路径,直至到达终点。
它的基本思路如下:步骤1:定义源点s到其它节点的距离数组dist[],每当找到一条从源点可以到达的路径,就比较这条路径的长度和已知的最短路径长度,如果路径更短,就替换当前的最短路径长度,并更新终点节点的前一个节点。
步骤2:标记源点s为已经访问过的节点,将该节点入队,并在队列中取出此时距离源点最近的节点v。
步骤3:对所有与节点v相邻的节点w,计算出新的距离dist[s][w],如果dist[s][w]小于已知的最短距离,就更新最短距离,并将节点w加入队列中。
步骤4:重复步骤2和步骤3,直到队列为空。
Dijkstra算法的时间复杂度为O(n^2),其中n为节点数,因此它适用于稠密图。
下面是Python中Dijkstra算法的代码实现:```pythonimport heapqdef dijkstra(graph, start):#初始距离和前驱节点dist = {start: 0}previous = {start: None}#所有未确定最短距离的节点放入堆中heap = [(0, start)]heapq.heapify(heap)while heap:(d, u) = heapq.heappop(heap)#如果已经处理过该节点,则直接跳过if u in dist and d > dist[u]:continuefor v, w in graph[u].items():#计算新的距离newdist = dist[u] + w#如果新距离比原距离更小,则更新距离和前驱节点if v not in dist or newdist < dist[v]:dist[v] = newdistprevious[v] = uheapq.heappush(heap, (newdist, v))return (dist, previous)#测试graph = {'A': {"B": 2, "D": 4},'B': {"C": 3, "D": 1},'C': {"D": 1, "E": 5},'D': {"E": 1},'E': {}}dist, prev = dijkstra(graph, 'A')print(dist) # {'A': 0, 'B': 2, 'D': 3, 'C': 5, 'E': 4}print(prev) # {'A': None, 'B': 'A', 'D': 'B', 'C': 'B', 'E': 'D'}```2. Bellman-Ford算法Bellman-Ford算法是一种适用于有向图的单源最短路径算法,它可以处理有负权边的情况,但是不能处理负环的情况。
最短路径算法(dijkstra)讲解

最短路径算法(dijkstra)讲解最短路径算法是计算机科学中一个非常重要且广泛应用的算法,它用于求解网络中节点到节点的最短路径。
本文将介绍 Dijkstra 最短路径算法的基本原理和步骤,并对其进行拓展。
Dijkstra 算法的基本原理是:从起点开始,依次将每个未连接的节点加入已连接的队列中,直到所有节点都被加入队列,并且队列为空。
然后从最后一个节点开始,依次取出队列中的节点,计算每个节点到起点的最短距离,并将这些距离累加到一个距离数组中。
最后,返回距离数组中的最小距离,即最短路径。
下面是 Dijkstra 算法的基本步骤:1. 初始化:- 将起点标记为已连接节点。
- 将起点到所有其他节点的距离设为无穷大。
- 将起点加入到距离队列中。
2. 处理队列:- 从距离队列中取出一个节点,并将其加入到连接表中。
- 计算该节点到起点的最短距离。
- 如果该距离小于当前最小距离,则更新最小距离。
- 将该节点标记为已连接节点。
3. 处理连接表:- 如果所有节点都被标记为已连接节点,则返回起点。
- 如果某个节点没有被标记为已连接节点,且该节点到其他节点的最短距离小于当前最小距离,则更新最小距离。
- 将该节点加入到距离队列中。
下面是针对 Dijkstra 算法的拓展:1. 时间复杂度分析:- Dijkstra 算法的时间复杂度为 O(nlogn)。
- 在最坏情况下,当所有节点的权重都为0时,Dijkstra 算法的时间复杂度为O(n^2)。
2. 非最坏情况下的改进:- 当节点的权重都较小时,Dijkstra 算法使用的是贪心算法,其性能可能会退化为 O(n^2)。
- 针对这种情况,可以使用启发式算法,如 A* 算法或贪心算法,来改进Dijkstra 算法的性能。
3. 扩展应用场景:- Dijkstra 算法可以用于求解单源最短路径问题、单源最短路径问题和无后效性问题。
- Dijkstra 算法还可以用于求解网络中的最小生成树问题和最小生成树问题。
最短路径的算法

最短路径的算法最短路径的算法小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水,若要使厂部到A,B村的距离相等,则应选择在哪建厂?要回答出这个问题,我们就要了解一下最短路径的相关知识。
以下是店铺与大家分享最短路径的知识。
最短路径最短路径,是指用于计算一个节点到所有节点的最短的线路。
主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。
Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。
最短路径问题是图论研究中的一个经典算法问题,旨在图(由结点和路径组成的)中两结点之间的最短路径。
最短路径问题最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。
算法具体的形式包括:确定起点的最短路径问题- 即已知起始结点,求最短路径的问题。
适合使用Dijkstra算法。
确定终点的最短路径问题- 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。
在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。
确定起点终点的最短路径问题- 即已知起点和终点,求两结点之间的最短路径。
全局最短路径问题- 求图中所有的最短路径。
适合使用Floyd-Warshall算法。
Dijkstra算法1.定义概览Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。
主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。
Dijkstra算法是很有代表性的最短路径算法,在很多课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。
注意该算法要求图中不存在负权边。
问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。
(单源最短路径)2.算法描述1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。
将军行军——最短路径问题的解析方法

将军行军——最短路径问题的解析方法1. 引言最短路径问题是在图论中广泛研究的一个问题,它涉及在给定的图中寻找两个节点之间的最短路径。
在将军行军中,解决最短路径问题对于制定有效的行军策略至关重要。
本文将介绍一种解析最短路径问题的方法。
2. 解析方法解析最短路径问题的方法包括以下步骤:2.1 创建图首先,我们需要根据行军地图创建一个图。
图由节点和边组成,节点代表行军地点,边代表行军路径。
节点之间的距离可以表示为边的权重。
2.2 确定起点和终点在解析最短路径问题之前,需要明确起点和终点。
起点是将军的当前位置,终点是将军需要到达的目的地。
2.3 应用最短路径算法选择适用的最短路径算法,如Dijkstra算法或A*算法。
这些算法可以根据节点之间的距离和权重来计算最短路径。
2.4 寻找最短路径应用最短路径算法后,可以得到从起点到终点的最短路径。
这条路径由一系列节点和边组成,表示将军行军的最佳路径。
3. 实例应用以下是一个将军行军的实例应用:3.1 创建图假设将军需要从A地到达B地,行军地图如下所示:A---5---B/ \3 2\ /C---4---D在这个图中,节点A、B、C和D代表不同的行军地点,边的权重表示行军路径的距离。
3.2 确定起点和终点假设起点为节点A,终点为节点B。
3.3 应用最短路径算法选择Dijkstra算法来解决最短路径问题。
3.4 寻找最短路径应用Dijkstra算法后,得到从节点A到节点B的最短路径为A->C->D->B,总距离为9。
4. 结论通过解析最短路径问题,我们可以为将军行军制定最佳的路径策略。
通过创建图、确定起点和终点、应用最短路径算法和寻找最短路径,我们可以找到将军行军的最短路径,并确保行军效率。
这种解析方法可以在实际的将军行军中得到应用,提高行军的效率和战术优势。
以上是最短路径问题的解析方法及其实例应用。
希望对将军行军策略的制定有所帮助。
参考文献- 张三, 李四. 图论及其应用. XX出版社, 20XX.。
树的最短路径算法

树的最短路径算法树的最短路径算法树是一种重要的数据结构,它在计算机科学中扮演着重要的角色。
在树上进行最短路径算法可以用于许多应用场景,如网络路由、图像处理和人工智能等领域。
本文将介绍树的最短路径算法,并分别介绍深度优先搜索(DFS)和广度优先搜索(BFS)两种常见的树遍历方式。
一、最短路径定义在讨论树的最短路径算法之前,我们需要先了解什么是最短路径。
在图论中,最短路径是指连接两个节点之间权值和最小的路径。
对于无向图和有向图来说,都存在多种不同的最短路径。
而在树上,由于没有回路,因此只存在唯一一条连接两个节点之间的简单路径。
二、深度优先搜索深度优先搜索是一种常见的遍历方式,在树上也可以用来寻找最短路径。
其基本思想是从某个节点出发,沿着其子节点不断向下搜索直到叶子节点为止,然后返回到父节点继续搜索其他子节点。
1. 递归实现深度优先搜索可以通过递归实现。
具体步骤如下:(1)从根节点开始遍历,对于每个节点,先访问它的左子树。
(2)如果左子树为空,则返回到父节点,访问右子树。
(3)如果右子树也为空,则返回到父节点的父节点,继续遍历其他子树。
递归实现深度优先搜索的代码如下:```void dfs(TreeNode* root) {if (root == nullptr) {return;}// 访问当前节点visit(root);// 遍历左子树dfs(root->left);// 遍历右子树dfs(root->right);}```2. 迭代实现深度优先搜索还可以通过迭代实现。
具体步骤如下:(1)将根节点入栈。
(2)当栈不为空时,取出栈顶元素并访问它。
(3)将当前节点的右子节点入栈。
(4)将当前节点的左子节点入栈。
迭代实现深度优先搜索的代码如下:```void dfs(TreeNode* root) {if (root == nullptr) {return;}stack<TreeNode*> s;s.push(root);while (!s.empty()) {TreeNode* cur = s.top();s.pop();// 访问当前节点visit(cur);// 将右子节点入栈if (cur->right != nullptr) {s.push(cur->right);}// 将左子节点入栈if (cur->left != nullptr) {s.push(cur->left);}}}```三、广度优先搜索广度优先搜索是另一种常见的遍历方式,在树上也可以用来寻找最短路径。
最短路径算法的原理和方法

最短路径算法的原理和方法最短路径算法是一类解决图中节点最短路径问题的算法,例如在网络中找到从一个节点到另一个节点的最短路径,或者在地图中找到从一个地点到另一个地点的最短路线。
最短路径问题可以用图论来描述,即在有向或无向的图中,根据边的权重找到连接两个顶点的最短路径。
最短路径算法可以分为以下几种:1. Dijkstra 算法Dijkstra 算法是最常用的找到单源最短路径的算法,它适用于没有负权边的有向无环图或仅含正权边的图。
算法步骤:(1)初始化,将起点到所有其他顶点的距离初始化为正无穷,将起点到自己的距离初始化为0。
(2)选择一个起点,将其距离设为0。
(3)将起点加入已知最短路径集合。
(4)遍历与起点相邻的所有顶点,将它们到起点的距离更新为起点到它们的距离。
(5)从未加入已知最短路径集合中的顶点中选择最小距离的顶点,将它加入已知最短路径集合中。
(6)重复步骤4和步骤5直到所有顶点都被加入已知最短路径集合中。
2. Bellman-Ford 算法Bellman-Ford 算法是一种解决有负权边的单源最短路径问题的算法。
算法步骤:(1)初始化,将起点到所有其他顶点的距离初始化为正无穷,将起点到自己的距离初始化为0。
(2)遍历每条边,将该边起点的距离加上该边的权重,如果得到的距离比该边终点的距离小,则更新该终点的距离为该距离。
(3)重复步骤2 V-1 次,其中V 是图中的顶点数。
(4)检查是否存在负环,即在V-1 次迭代后,仍然可以更新顶点的距离。
如果存在负环,算法无法执行。
3. Floyd-Warshall 算法Floyd-Warshall 算法是一种解决所有顶点对之间的最短路径问题的算法。
算法步骤:(1)初始化,将每个顶点到其他顶点的距离初始化为边权,如果两个顶点之间没有边相连,则初始化为正无穷。
(2)依次加入每个顶点,如果通过加入该顶点可以得到更短的路径,则更新路径。
(3)输出结果,即每个顶点对之间的最短路径。
自动驾驶车辆中的路径规划算法分析

自动驾驶车辆中的路径规划算法分析随着科技的不断发展,自动驾驶车辆正逐渐成为现实。
自动驾驶车辆的关键技术之一是路径规划算法,它决定了车辆如何选择最佳路径以达到目的地。
本文将分析自动驾驶车辆中常用的路径规划算法及其特点,进一步探讨它们在实际应用中的优势和挑战。
一、最短路径算法最短路径算法是自动驾驶车辆中最常用的路径规划算法之一。
它的思想是通过计算车辆到达目的地的最短路径,以实现高效的导航。
最短路径算法可以使用著名的迪杰斯特拉算法或A*算法来实现。
迪杰斯特拉算法是一种广泛使用的图搜索算法,可以计算出从起点到其他各个节点的最短路径。
它以起点为中心,逐渐扩展搜索范围,直到找到目的地。
迪杰斯特拉算法的时间复杂度较低,适用于大规模的地图数据。
然而,在实际应用中,道路的交通情况和实时路况信息对于路径规划起到至关重要的作用。
因此,最短路径算法需要结合实时数据进行路径计算。
A*算法是一种启发式搜索算法,更加灵活和高效。
它综合考虑了路径代价和启发函数(估计从当前节点到目标节点的代价)来优化路径选择。
A*算法在计算效率和路径质量上有着较好的平衡,适用于实时路径规划。
二、局部路径规划算法除了全局路径规划算法外,自动驾驶车辆还需要一种能够在短时间内做出决策的局部路径规划算法。
局部路径规划算法主要关注与当前环境中车辆与障碍物的交互,以及如何避免碰撞和保持道路安全。
局部路径规划算法中最常见的方法是基于速度和角度进行控制。
车辆通过实时感知周围环境,利用障碍物的位置、速度和方向等信息来预测可能的碰撞,并做出相应的避让动作。
常用的局部路径规划算法包括蔟化和动态窗口方法。
蔟化方法通过将障碍物聚类为蔟,根据车辆与蔟的关系进行路径规划。
这种方法可以快速计算出避让路径,并通过调整车辆速度和转向角度,使得车辆安全地避开障碍物。
然而,蔟化方法在处理复杂交通情况和高速行驶时可能面临一些挑战。
动态窗口方法则更加灵活和精准。
它通过定义车辆的速度和转向角度的范围限制,根据障碍物的位置和速度等条件选择最佳的行驶方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随着计算机和地理信息科学的发展,地理信息系统因其强大的功能得到日益广泛和深入的应用。网络分析作为GIS最主要的功能之一,在电子导航、交通旅游、城市规划以及电力、通讯等各种管网、管线的布局设计中发挥了重要的作用,通用的网络分析功能包括路径分析、资源分配、连通分析、流分析等。网络分析中最基本和最关键的问题是最短路径问题,它作为许多领域中选择最优问题的基础,在交通网络分析系统中占有重要地位。
从道路网络模型的角度看,最短路径分析就是在指定道路网络的两节点间找出一条阻碍强度最小的路径。根据阻碍强度的不同定义,最短路径不仅仅指一般地理意义上的距离最短,还可以引申到其它的度量,如时间、费用、线路容量等。相应地,最短路径问题就成为最快路径问题、最低费用问题等。因此,城市道路网作为一种大型网络设施有其本身的特征。它一方面包含网络本身的拓扑特征;另一方面还包含了大量反应地理位置特征的几何数据。本文根据道路网的特点,运用GIS网络分析功能对道路网络模型、道路的权重选择以及快速寻求路网中两节点间的最短路径算法分别进行了研究。
1 道路网模型及权重设置 1.1 道路网模型建立 城市道路网主要由众多道路相交、相连构成。在纵横交织、错综复杂的道路网络中,道路间的地理位置关系相当复杂,一条道路可能与若干条道路相交相连,且其相交相连的模式复杂。为了避免过多地考虑道路间的拓扑关系,抽取道路网中道路交叉路口作为分析对象,并对道路以交叉路口为结点进行分割,成为路段。这样,整个网络图将由交叉路口点和路段组成,并定义交叉路口点为网络的结点,路段为网络的弧。从而建立基于路段连接的网络模型,其模型形式表述为:
式中,RW代表道路网络;N代表结点集;R代表路段集合,其元素为有序对,表示由结点x到结点y存在一条有向通路;LR代表路段长度集合,其元素表示有向路段的加权长度。其中,路段的加权长度是指根据目标函数要求,综合各种动态实时信息和静态属性信息后所得的路段参数,而并非真实意义下的长度。
1.2 道路网权重选择 在交通路网中,两点间最优路径算法的优劣主要受到2个因素的影响,即所使用的最短路径算法和所选择的道路权重。最短路径算法是路径选择的搜索工具,决定了如何在庞大的路网数据库中找到最佳的可行路径。道路权重则是路径选择的搜索指标,是最短路径算法的依据。因此,道路权重的选择直接影响到最优路径算法的合理性。 一个城市的道路网络由不同等级的道路组成,不同等级的道路的通行能力和功能要求均不相同。只有整个城市的交通负载根据出行者目的的不同,均衡分布在不同等级的道路上,城市的路网才能得到最有效的利用。因此单纯的选择距离、时间或道路的通行能力作为道路权重都不太客观,需要选择一种比较综合的指标作为道路权重。可达性是Hansen于1959年首次提出的概念,用于定义交通网络中各结点间相互作用机会的大小。其表述的是路网中任意点之间通达的可能性及难易程度,数学上指单位时间内可实现通达的直线距离[1],即
为可达能力(km/m),是可达性的量度。 可达性同时考虑了时间和距离的因素,把道路交通的固定设施和移动工具有机结合起来,而且避免了以道路通行能力作为权重可能造成的城市路网全局负载问题。因此以可达性为道路权重是一个比较综合的指标,具有更大的合理性。
2 最短路径算法 最短路径问题的算法有很多种,包括基于限制条件的深度优先搜索算法、Dijkstra算法、Floyd算法、A*算法等,各种算法在空间复杂度、时间复杂度、易实现性等方面各具特色。其中,采用启发式策略的Dijkstra算法是目前公认的求解最短路问题的经典算法。但Dijkstra算法在基于网络的权矩阵求解最短路问题的计算机算法和程序中,运用了关联矩阵、邻接矩阵和距离矩阵的概念。在存储图形数据和运算时,需要定义N×N的数组(其中N为网络的结点数),当网络的结点数较大时,将占有大量的计算机内存。如果不对Dijkstra算法进行优化,该算法很难在实际中得到应用。
在原始的Dijkstra算法中,每次在临时标记点中搜索路径最短的结点时都要遍历所有的临时标记结点。解决办法就是将临时标记结点按照最短路径排序,每个搜索过程不必全部遍历或者较少地遍历临时标记点。或者尽量减少最短路径分析过程中搜索的临时结点数量。基于此思想,提出了以下优化算法。
2.1 算法原理 利用两点之间直线最短的原理,在道路网中,如果两结点间存在一条边,则该边为两结点间的最短路径。若不存在一条边,则连接起、止点的直线段代表了一个路线的趋势,顺着连线方向的某条边是最短路径的可能性最大。依据此思想,可以构造2个矢量,矢量一以当前结点为起点,目标点为终点;矢量二以当前结点为起点,当前结点的邻接点为终点。将矢量二的方向值与矢量一的方向值相减得到两矢量间的夹角。由夹角最小的边组成的路径最接近于最短路径。
由于只依据矢量夹角作为求解最短路径中路段集合的要素,可能造成求得的路径因左右方向的震荡而增加路径的总长度,使求得的解大于实际最短路经长,所以在每次搜索最短路径顶点时,将当前结点的邻接点按照矢量夹角大于零和小于零分为两组,分别在两组中选取矢量夹角绝对值的最小值对应的结点。算法采用双向搜索,从起点S开始进行正向搜索,同时从终点T进行逆向搜索。两个方向每一步都要搜索与指定直线段左右两侧各一条夹角最小的边,直到二者会合或直到目标点,最后取两个方向搜索到的距离最短的路径为所求解。
2.2 算法具体步骤 假设需要求解最短路径的两个结点分别为S点和T点,其中起点为S、终点为T。定义ds(i)表示源结点S到结点i的加权距离;dt(j)表示目标点T到结点j的加权距离; ps(m)、pt(m)表示结点m的状态,分为未标记结点(0)和标记结点(1)两种,其中ps表示正向搜索(从S出发)过程中的状态,pt表示逆向搜索(从T出发)过程中的状态。
第一步:初始化:对所有结点i,若i=S,则ds(i)=0, ps(i)=1;若i=T,则dt(i)=0, pt(i)=1;否则ds(i)→∞, dt(i)→∞,ps(i)=0, pt(i)=0。并定义一个数变量k作为循环变量,初始化为k=0。
第二步:判断S与T之间是否邻接,若邻接,则连接两端点的边即为所求最短路径。否则,转第三步。
第三步:令S、T分别为两棵二叉树的根节点,分别从S、T出发,在直线段ST、TS左右两侧各寻找一条与、夹角最小的边,把搜索到的边加入对应的二叉树。设从S点出发搜寻到的两条边的另一端点分别为A1、A1',计算SA1、SA1'的加权距离,分别记为ds(A1)、ds(A1');从T点出发搜寻到的两条边的另一端点分别为B1、B1',记TB1、TB1'的加权距离分别为dt(B1)、dt(B1')。
第四步:将ds(A1)、ds(A1')作为当前点A1、A1'的标记值,d t(B1)、dt(B1') 作为当前点B1、B1'的标记值。也就是将起点或终点至该临时标记点子路径上所有边的权值之和作为当前点的标记值。同时ps(A1)、ps(A1')、 pt(B1)、pt(B1')均变为1。
第五步:用A1、A1'分别代替S,B1、B1'分别代替T,然后变量k自增k=k 1,重复第二、三、四步,但第三步中是从A1(A1')、B1(B1')出发,在直线段A1T(A1'T)、TB1(TB1')左右两侧各寻找一条与夹角绝对值最小的边。把搜索到的边加入对应的二叉树,对二叉树的当前点分别计算标记值并作标记。以此类推,直至An,Bn会合于一点,即正向和逆向搜索都对同一点进行了标记,则点列S,A1,…,An(Bn),…,B1,T组成可能最短路径,路径长度为ds(An) dt(Bn)。若二者没有会合,也即双向搜索都未对同一点进行标记,则正向搜索到终点T,逆向搜索到起点S,生成两棵特殊的二叉树。相应方向已标记过的点不在搜索范围之内。
第六步:搜索结束后,若会合于一点,则取会合点处的标记值之和ds(An) dt(Bn)作为可能最短路径长度;若没有会合,则取终点T(正向搜索)或起点S(逆向搜索)处的标记值ds(T)、dt(S)作为可能最短路径长度。取其中最小值min{ ds(An) dt(Bn), ds(T), dt(S)}即为所求最短路径长度。
如果所求最短路径中包含会合点,则最短路径由会合点开始沿与之相关联的两条边依次寻找求解的最短路径的标记结点,加入路径队列,直至S、T。若没有会合点,则从起点S或终点T开始,在二叉树中顺次寻找所求最短路径的相关结点,直至达到T或S,便得到最短路径序列。搜索流程如图1。
3 结论 本文根据城市交通道路网的特点,建立了道路网数据模型,并在综合考虑人们出行时的时间消耗和能量消耗的情况下,选择可达性作为道路权重,以此为搜索指标进行最短路径分析。本文所用最短路径算法对经典的Dijkstra算法进行了改进,在每次搜索过程中,不必遍历图中所有未标记的结点,只搜索当前结点的邻接结点。对于实际的道路网,每个结点的邻接点个数一般为2—5个,较之Dijkstra算法大大减少了搜索范围。而且求解的只是源点到终点间的最短路径,搜索的速度快,也增加了适用性。
参考文献 [1]白尘.交通路网中最优路径算法的道路权重选择.中国管理信息化,2009,12(15):54-56. [2]鲍培明.距离寻优中Dijkstra算法的优化.计算机研究与发展,2001,38(3):307-311. [3]王行风,贾凌.GIS支持下的城市交通网络最短路径研究. 计算机与现代化,2005,115(3):9-12.
[4]刘云翔,陈荦,李军,陈宏盛.基于城市道路网的最短路径分析解决方案.小型微型计算机系统,2003,24(7):1390-1393.
[5]赵春燕,王国华,周军.支持城市多种交通方式的最佳路径分析.测绘信息与工程,2009,34(4):8-10.