浅论电动汽车再生制动系统及其运用

合集下载

电动汽车再生制动系统介绍ppt课件

电动汽车再生制动系统介绍ppt课件

2020/5/11
.
14
一汽奔腾B50电动试验车结构:
2020/5/11
.
15
四、制动意图识别
制动意图识别主要是能够正确的识别电动汽车 中驾驶员的制动意图,是驾驶意图的一部分, 是驾驶员对车辆进行减速操作的一种意图。便 于可以准确的控制电机制动和液压制动进入和 退出的时间,从而一方面有利于提高汽车制动 能量回收率,另一方面也可以提高汽车制动的 安全性。识别出的不同制动意图要求的不同的 制动性能,不同的制动性能则要求合理的对前 后轴制动力进行分配,作为制动力分配的依据。 在制动强度较大时保证车辆的制动安全性,在 制动强度较小时保证较高的制动能量回收率。
2020/5/11
.
25
2020/5/11
.
26
2、驱动与制动协调控制策略:
2020/5/11
.
27
3、再生制动与ABS协调控制策略:
2020/5/11
.
28
4、多能源系统模糊分配策略:
2020/5/11
.
29
4、多能源系统模糊分配策略:
2020/5/11
.
30
六、制动能量回收评价指标
制动能量回馈率:制动能量回馈过程中电
4、本田汽车公司紧随其后,于 1999 年开发了混合动力 汽车 Insight,提出了采用双制动力分配系数控制再生制 动系统,试验结果表明,该车实现了高效的制动能量回收。 5、美国福特汽车公司也推出了混合动力汽车 Escape,该 车型采用了线控再生制动系统,线控系统取代了传统的机 械液压制动系统,把驾驶员的制动踏板信号操作转变为电 信号,通过驱动电机实现所需的操作,实验证明该车制动 能量回收率及制动时方向稳定性均有较大的提高。 6、国内的再生制动技术起步比较晚。国内研究机构和高 校都对再生制动系统进行了相关的研究,并取得了一定的 进展,但尚未达到十分成熟的阶段。但是近些年新出的电 动汽车大部分都采用了再生制动能量回收系统。

说明电动汽车再生制动的基本原理

说明电动汽车再生制动的基本原理

说明电动汽车再生制动的基本原理
电动汽车再生制动是一种高效、可行的能源回收方式。

该方式可以将车辆制动时释放的能量转换成电能,并储存在电池中,从而达到减少汽车耗能和减少空气污染的效果。

电动汽车再生制动的基本原理是:车辆在制动时,能量被转换成电能,然后被储存在电池中并可以提供给车辆的动力。

其优势在于,电动汽车再生制动技术可以有效削减汽车耗能,减少空气污染。

因为制动时车辆产生的能量可以得以重新利用,从而节省燃料,节省维修保养成本。

另外,此类技术还可以带动电池系统的发展,从而为车辆提供更多更先进的动力源。

电动汽车再生制动的基本原理需要使用某些电气元件及特定的技术,以实现也称为制动能量回收的功能。

常用的电气元件有整流桥、继电器、可控硅等。

此外,电动汽车再生制动的基本原理还要求汽车的数据采集系统能够对车辆的运动状态进行实时采集,这样才能精准掌控车辆的制动能量回收和加速能量消耗;并且汽车上要安装更多传感器和过程控制器,以监视电动机和驱动系统的工作状态,实现对各种制动系统的脉冲控制,从而提升电动汽车的制动和性能。

电动汽车再生制动技术在当今各种节能节约技术中有着越来越重要的地位,也被越来越多的车企所采用。

它不仅提高了汽车的整体性能,还能将能源消耗降低到最低,尽可能减少对环境的污染。

电动汽车能量回收技术原理

电动汽车能量回收技术原理

电动汽车能量回收技术原理随着环保意识的提高和汽车行业的发展,电动汽车作为一种低碳环保的交通工具逐渐受到人们的关注和青睐。

而电动汽车能量回收技术作为其重要的特性之一,也成为了人们研究和关注的焦点之一。

本文将介绍电动汽车能量回收技术的原理及其应用。

电动汽车能量回收技术,又称为再生制动技术,是指在行驶过程中通过制动装置将车辆的动能转化为电能,并存储在电池中,以供后续使用。

其原理主要基于电力机械能的相互转换。

电动汽车能量回收技术的基础是电动机的工作原理。

电动汽车使用的是电动机来驱动车辆行驶,电动机可以将电能转换为机械能。

当电动汽车行驶时,电动机通过电池提供的电能驱动车辆,产生机械能来推动汽车前进。

电动汽车能量回收技术的关键是再生制动系统。

再生制动系统是一种特殊的制动系统,它可以将车辆制动时产生的能量转换成电能,并将其存储在电池中。

当电动汽车减速或制动时,再生制动系统可以通过改变电动机的工作模式,使其从动力机械转换为发电机,将车辆在减速过程中产生的动能转化为电能,然后将电能存储在电池中。

再生制动系统的具体实现方式有多种,其中较常见的是动力电池通过逆变器将电能转化为直流电,然后再储存在电池中。

在制动过程中,逆变器可以改变电动机的工作模式,使其从驱动状态切换到发电状态,将制动过程中产生的动能转化为电能,并通过逆变器将电能转化为直流电,最后存储在电池中。

电动汽车能量回收技术不仅可以提高电动汽车的能量利用效率,减少能源的消耗,还可以延长电动汽车的续航里程。

再生制动系统的引入,使得电动汽车在行驶过程中能够更加高效地利用能量,提高整车的能量利用率。

同时,再生制动系统还可以减少电动汽车在制动过程中产生的热量和噪音,提高行驶的安全性和舒适性。

除了在制动过程中回收能量,电动汽车能量回收技术还可以应用于其他场景。

例如,当电动汽车处于行驶状态时,再生制动系统可以利用电动机的发电模式将车辆的动能转化为电能,然后存储在电池中。

这样,在电动汽车行驶过程中也可以回收部分能量,提高能量的利用效率。

电动汽车的再生制动策略

电动汽车的再生制动策略

电动汽车的再生制动策略动力制动是指通过将电动机切换为发电机的模式,将车辆的动能转化为电能。

当驾驶员松开油门踏板时,电动汽车的电动机会进入发电模式,利用车辆的动能驱动电动机产生电能,并通过逆变器将电能送回蓄电池进行储存。

这种制动方式有助于减少摩擦制动带来的能量损耗,同时还能将动能的一部分转化为电能,提高电池的充电效率。

制动力调节则是通过调节电动机的工作状态,使车辆达到理想的制动效果。

一般来说,电动汽车会根据驾驶员的制动需求以及车辆当前的速度和负载情况,通过电控系统对电动机的工作状态进行控制和调节,以实现理想的制动效果。

当需要较大制动力时,电池的电流会被增大,电动机会承担更大的发电负载,产生更大的制动力。

反之,当需求较小制动力时,电动机的发电负载和制动力也相应减小。

除了动力制动和制动力调节外,电动汽车的再生制动策略还可以通过一系列智能控制策略提高制动的效果。

例如,电动汽车可以通过借助车辆的惯性和路况信息,采用预测性制动策略。

通过提前预判路况和车辆的变速需求,智能控制系统可以提前对电动机的工作状态进行调节,实现较为平稳的制动过程,提高驾驶的舒适感和制动的效果。

此外,电动汽车的再生制动策略还可以与摩擦制动相结合,以充分发挥再生制动的效果。

在高速行驶时,由于电动汽车的再生制动效果有限,摩擦制动可以提供更大的制动力,保证制动的安全性和稳定性。

而在低速行驶时,再生制动则可以更好地满足制动的需求,减少对摩擦制动的依赖。

总而言之,电动汽车的再生制动策略通过将车辆的动能转化为电能,提高能源利用率。

在动力制动和制动力调节的基础上,还可以借助智能控制策略和与摩擦制动相结合,以提高制动效果和驾驶的舒适感。

随着电动汽车技术的不断发展,再生制动策略将会进一步完善,并对电动汽车的性能和能源利用率产生更加重要的影响。

电动汽车再生制动系统的设计方案

电动汽车再生制动系统的设计方案

电动汽车再生制动系统的设计方案引言随着全球对环境保护的关注日益提高,电动汽车作为一种低碳、环保的交通工具逐渐受到人们的青睐。

而电动汽车再生制动系统作为其中重要的一环,可以将制动能量转化为电能并回馈给电池,提高能源利用效率,减少能源浪费。

本文将介绍电动汽车再生制动系统的设计方案,并探讨其优势和实施难点。

一、再生制动系统的原理电动汽车再生制动系统利用电动汽车的电动机具有可逆特性的原理,将车辆制动时产生的动能转化为电能。

当车辆刹车时,电动机将由电力驱动转变为发电机,通过回馈控制器将电能存储到电池中。

这种能量回收的过程类似于传统汽车的发电机充电电池的原理,但在电动汽车中更加高效。

二、再生制动系统的优势1. 能源回收再生制动系统可以将制动能量回收转化为电能,存储到电池中,供电动机使用。

相比传统汽车制动时产生的热能浪费,再生制动系统能够高效地利用能源,提高能源利用效率。

2. 增加续航里程通过再生制动系统的能量回收,电动汽车的续航里程可以增加。

制动时产生的能量可以延长电动汽车的行驶里程,减少对电池的依赖,提高电动汽车的可靠性。

3. 车辆稳定性再生制动系统可以实现车辆制动时的电动机电磁制动,提高了整车的稳定性。

通过电动机的制动力矩控制,可以更精确地控制车辆的制动力度,增加制动的平稳性和安全性。

4. 节约制动磨损再生制动系统可以减少传统刹车器的使用频次,降低刹车器的磨损。

传统刹车器在制动时摩擦产生热能,会导致刹车器磨损,而再生制动系统的使用可以减少刹车器的使用次数,延长其寿命。

三、再生制动系统的设计方案1. 能量回收系统再生制动系统的核心是能量回收系统,包括电动机、回馈控制器和电池。

电动机在制动时由驱动电机转变为发电机,将产生的电能通过回馈控制器存储到电池中。

电池作为能量的储存器,可以在需要时供电给电动机使用。

2. 制动力矩控制再生制动系统需要实现对车辆制动力矩的精确控制。

可以采用电机控制器对电动机进行控制,通过调整电流大小来控制制动力矩。

电动汽车再生制动能量回收的方法

电动汽车再生制动能量回收的方法

电动汽车再生制动能量回收的方法随着全球对环境保护意识的提高和汽车行业的技术发展,电动汽车越来越受到人们的青睐。

电动汽车不仅能够减少对环境的污染,而且还能够在行驶过程中采用再生制动能量回收技术,将制动能量转化成电能进行存储,从而提高车辆的能效。

再生制动能量回收技术是电动汽车的一个重要特征,也是其能源效率和续航里程的一个关键之处。

在本文中,将探讨电动汽车再生制动技术的原理、方法和应用。

1. 再生制动能量回收技术的原理再生制动能量回收技术是利用电动汽车行驶过程中制动时产生的能量,通过逆变器和电池储存系统将这些能量转化为电能进行储存,并在需要时再用于车辆的加速。

具体来说,当驾驶员踩下制动踏板时,车辆的动能会逐渐转化为热能,同时,制动系统会通过发电机将这些热能转化为电能进行储存。

这样一来,不仅可以提高电动汽车的能源利用率,还可以减少制动时的能量浪费,从而延长车辆的续航里程。

再生制动能量回收技术的原理是基于电机发电原理和能量转化原理的。

当电动汽车行驶时,电机会不断地将电能转化为动能,推动车辆行驶,当驾驶员踩下制动踏板时,电机会逆转工作,将动能转化为电能,存储到电池中。

当需要加速时,车辆就可以利用存储的电能,再次将电能转化为动能,推动车辆行驶。

这种能量的循环利用,有效地提高了电动汽车的能源利用率。

2. 再生制动能量回收技术的方案再生制动能量回收技术的方案包括传统的直流制动能量回收、交流制动能量回收和混合式制动能量回收等。

在直流制动能量回收中,汽车的电动机通过转换器将制动能量转化为直流电能,再存储到电池中;在交流制动能量回收中,汽车的电动机通过逆变器将制动能量转化为交流电能,再存储到电池中;在混合式制动能量回收中,汽车的电动机同时可以通过转换器和逆变器将制动能量转化为直流和交流电能,再存储到电池中。

这些方案各有优劣,可以根据汽车的具体应用场景和性能要求进行选择。

3. 再生制动能量回收技术的应用再生制动能量回收技术已经在众多电动汽车中得到了广泛的应用。

新能源汽车制动能量回收系统的研究与应用

新能源汽车制动能量回收系统的研究与应用

新能源汽车制动能量回收系统的研究与应用
新能源汽车在当今社会正变得越来越受欢迎,而制动能量回收技术作为其重要的创新之一,大大提升了新能源汽车的能效。

让我们一起深入探讨新能源汽车制动能量回收系统的研究与应用。

制动能量回收系统是什么?
所谓制动能量回收系统,简单来说就是利用汽车制动时释放的能量,通过特定的装置将其转换为电能进行存储和再利用。

传统汽车在制动时,制动过程中产生的动能会转化为热能散失到空气中,而新能源汽车制动能量回收系统则将这部分能量收集起来,重新利用。

工作原理及关键技术
制动能量回收系统的工作原理主要是通过电动机将制动时产生的动能转换为电能储存到电池中,待需要时再释放给电动机来辅助汽车运行。

关键技术包括制动能量的捕捉、电能的存储和管理、以及能量再利用的控制系统等。

应用现状与优势
目前,越来越多的新能源汽车品牌开始广泛应用制动能量回收系统,例如特斯拉、日产等知名品牌。

制动能量回收系统的应用为新能源汽车带来了诸多优势,包括提升了能源利用率、降低了能耗排放、延长了电池寿命等。

未来发展趋势
随着新能源汽车市场的持续增长,制动能量回收技术也将不断完善与发展。

未来,该技术有望在更多汽车型号上得到应用,进一步提升新能源汽车的性能和竞争力。

新能源汽车制动能量回收系统的研究与应用,不仅提升了汽车的能效和环保性能,也为汽车行业的创新发展带来了新的机遇和挑战。

随着技术的不断进步,相信制动能量回收系统将在未来发挥更加重要的作用,助力新能源汽车行业迈向更加绿色、可持续的未来。

电动汽车再生制动系统的设计

电动汽车再生制动系统的设计

电动汽车再生制动系统的设计随着环保意识的增强和可再生能源的广泛应用,电动汽车作为一种清洁能源交通工具正逐渐成为主流。

电动汽车再生制动系统的设计是电动汽车技术领域中的一个重要问题,它可以有效地提高能源利用效率,并且对车辆的行驶安全也有着重要的意义。

一、再生制动原理电动汽车再生制动系统是通过将车辆制动能量转化为电能并进行回馈,以减少能量的损失和浪费。

当车辆制动时,再生制动系统会通过电机将运动的车辆能量转化为电能,并将其发送到电池储能系统中,以实现能量的回收和再利用。

这种技术可以最大限度地减少制动时产生的热量,并且在制动过程中增加电池的充电效率。

二、再生制动系统的主要组成1. 制动能量回收装置:包括电机、逆变器和能量管理系统。

电机负责将制动时产生的机械能转化为电能,而逆变器则负责将电能转化为可储存的电源,并通过能量管理系统进行控制和分配。

2. 储能系统:主要由电池组成,负责接收、储存和释放能量。

电池的种类多样,如锂离子电池、镍氢电池等,选择适合的电池类型和规格是实现有效能量回收的关键。

3. 控制系统:包括制动力控制器和能量管理系统。

制动力控制器根据车速、制动力需求等信息对电机进行控制,确保制动性能的稳定和安全;能量管理系统则负责监控和控制电池的充电和放电过程,以保障电池的寿命和性能。

三、再生制动系统设计要点1. 制动力的精确控制:制动力的控制是电动汽车再生制动系统中至关重要的一环。

通过准确计算电机的参数和电气控制策略,实现制动力的精确控制,可以避免制动力过大或过小带来的安全隐患。

同时,还需要考虑车辆质量、速度等因素的综合影响,对制动力进行校准和优化。

2. 能量回收的效率提升:为了提高再生制动系统的效率,需要选用高效的电机和逆变器,并通过电路拓扑结构的优化,减小转换过程中的能量损失。

此外,还可以采用多级回馈和并联回馈的方式来提高能量回收的效率,尽量减少能量转化过程中的浪费。

3. 电池的合理管理:电池是能量储存和释放的核心部件,对电动汽车再生制动系统的性能和寿命有着重要影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

■他山之石浅论电动汽车再生制动系统及其运用陆刚邓桂芳由于环境污染和能源短缺问题备受关注,电动汽车已成为全世界汽车工业领域研究的热点。

再生制动引入到传统液压制动系统中会改变原有车辆制动性能,需使再生制动与液压制动之间协调一致,确保车辆制动稳定性及驾驶平顺性,并最大化提高能量回收效率,延长电动汽车的续驶里程,值得业内人士的关注。

■制动能量回收对于提高电动汽车的能量利用率具有重要意义当今,汽车已经和我们的工作、生活密切相关,但传统汽车所带来的环保问题令人烦恼,再加上能源问题,使得人们不得不开始探索它的替代品。

电动汽车以其独有的特点受到人们的关注,从环保的角度来看,电动汽车是零排放的市区交通工具,即使加上发电厂增加的排气,总量上看,它也将使空气污染大大减少。

从能源角度来看,电动汽车将使能源的利用多元化(例如可使用各种再生能源)和高效化,达到能源的可靠、均衡和无污染利用的目的。

在改善交通安全和道路使用方面,电动汽车更容易实现智能化。

众所周知,汽车排放造成的大气污染和地球的温室效应,成为全人类的公害。

随着世界汽车产业的发展,人类社会日益增多的石油能源的消耗,将加快从能源短缺到能源枯竭的步伐。

人类社会和汽车产业的可持续发展受到极大的威胁,发展汽车新能源、开发汽车新动力,成为世界汽车产业面临的十分紧迫的任务。

当代融合多种高新技术而兴起的纯电动汽车、混合电动汽车、燃料电池汽车,尤其是立足于氢能基础上的燃料电池汽车正在引发世界汽车工业的一场革命,展现了汽车工业新能源、新动力发展的光明前景。

电动汽车的关键部件之一是蓄电池,蓄电池储存能量的多少是决定电动汽车续驶里程的重要因素。

但是目前蓄电池技术仍然是发展电动汽车产业的瓶颈,未能取得突破性进展,电动汽车的续驶里程还不能满足用户的需求。

如果将车辆减速时的动能转化为电能,回收入蓄电池,而不是摩擦浪费掉,这无疑相当于增加了蓄电池的容量。

在现有的技术条件下,这样做对于提高电动汽车的续驶里程性能具有重要的意义。

一般来讲,在电池充电效率为100%,电机效率、制动回馈效率为50%,车辆总消耗能量的50%用于获得车辆动能的设定条件下,基于能量守恒而解析计算得到:采用再生制动回馈能量,可提高车辆续驶里程33%。

电动汽车采用电制动时,驱动电机运行在发电状态,将汽车的部分动能回馈给蓄电池以对其充电,对延长电动汽车的行驶距离至关重要。

国外有关研究表明,在存在较频繁的制动与起动的城市工况运行条件下,有效地回收制动能量,可使电动汽车的行驶距离延长10%~30%。

目前国内关于制动能量回收的研究还处在初级阶段,制动能量回收要综合考虑汽车动力学特性、电机发电特性、电池安全保证与充电特性等多方面的问题。

制动能量回收问题对于提高纯电动汽车的能量利用率具有重要意义。

■电动汽车再生制动技术存在的主要问题及研究内容电动汽车的再生制动就是利用电机的电气制动产生反向力矩使车辆减速或停车。

从电机再生出来的能量储积在变频器的滤波电容器中,由于电容器的容量和耐压的关系,通用变频器的再生制动力约为额定转矩的10%~20%。

如采用选用件制动单元,可以达到50%~100%。

再生制动是目前电动汽车回收制动能的普遍技术。

对于再生制动系统是由常规摩擦制动系统与电制动复合而成的电动汽车。

电动汽车再生制动技术存在以下三个主要问题。

1.制动的稳定性问题由于电制动力矩(即再生制动力矩)随车速变化大,它的制动过程与传统燃油车只具有摩擦制动系统的制动过程有所不同,对于后驱型电动汽车,由于电制动力矩是加在后轴上,当电制动力矩过大时会使后轴提前抱死,从而使汽车出现后轴侧滑丧失稳定性。

对于前驱型电动汽车,电制动力矩位于前轴上,过大的电制动力矩会使前轴过早于后轴抱死,不但使前轮丧失转向能力,还会使附着利用率降低。

2.制动能回收的充分性问题在保证电动汽车制动稳定性前提下,尽可能多的回收制动能。

电动汽车的充电能力受动力电池SOC、电机工作特性、充电的快慢等因素的影响。

由于再生制动时常存在过充电及急速充电等问题,使得电机和蓄电池工作条件变得复杂,因此提高短时间内充电系统的充电效率是保证制动能回收充分性的关键。

3.制动过程的平顺性电动汽车制动时,电制动力矩作为辅助制动力矩将影响制动踏板与驾驶平顺性。

需要对电制动力矩的大小进行优化控制以使电动汽车的制动与常规汽车制动系统的制动感觉一样。

电动汽车再生制动技术的研究内容主要集中在以下几个方面:①在回收制动能的必要性方面:以城市典型工况为例,通过对比传统车与HEV的燃油成本,定量分析了HEV再生制动系统对整车动力性、燃油经济性影响,得出运行城市典型工况的HEV燃油经济性有显著提高;②在回收制动能的效率方面:由于短时间内充电系统的充电效率是保证制动能回收充分性的关键。

不同能量储存器在短时间内的充电能力有较大差别,研究表明以超级电容器为辅、蓄电池为主的储存系统接受再生制动能的能力是目前情况下最好的车载能量储存器。

对于电动汽车驱动电机来说,恒功率工作区域越宽,电机工作效率越高;③在驱动电机与功率转换器的控制技术方面:采用永磁无刷直流电机与逆变器方案作为电动汽车驱动系统可实现电机的四象限运行,且电制动时逆变器的主回路结构及控制电路不需作任何硬件变动。

对于电池供电的永磁电机系统来说,再生制动时,最大回馈效率制动方式回馈能量最多,最大回馈功率制动下回馈能量最少。

■电动汽车再生制动的模式要求及基本原理电动汽车的再生制动利用电机的电气制动产生反向力矩使车辆减速或停车,对于感应电机来说,电气制动有反接制动、直流制动和再生制动等。

其中,能实现将刹车过程中能量回收的只有再生制动,其本质是电机转子的转动频率超过电机的电源频率,电机工作于发电状态,将机械能转化为电能通过逆变器的反向续流二极管给电池充电。

汽车行驶时能在短距离内停车且维持行驶方向稳定性和长下坡时能够维持一定车速的能力,称为汽车制动性。

制动性能是汽车的重要性能指标之一,直接关系到交通安全,再生能量回馈和利用的前提是保证安全性。

再生制动能量回收的优点除了可提高能量利用率外,还有减小机械、液压等制动方式的机械磨损,可实现更加精确的制动控制,以及降低传统汽车制动过程中因温度升高而产生的制动热衰退现象等。

电动汽车制动可分为以下三种模式,不同模式应辅以不同的控制策略。

紧急制动:对应于制动减速度大于2m/s2的过程,出于安全性方面的考虑应以机械摩擦制动为主,电气制动仅起辅助作用。

在急刹车时,可根据初始速度的不同,由车上ABS控制提供相应的机械摩擦制动力。

中轻度制动:对应于汽车在正常工况下的制动过程,如遇红灯或者靠站停车等,可分为减速过程与停止过程。

电气制动负责减速过程,停止过程由机械摩擦制动完成。

汽车长下坡时的制动:电动汽车长下坡一般发生在盘山公路下缓坡时,在制动力要求不大时,可完全工作于纯再生制动模式。

由以上三种制动模式可知,除了紧急制动外,其他两种模式都可以应用再生制动,将刹车产生的能量回馈到直流母线,给电池充电。

在制动过程中,除去空气阻力和行驶阻力消耗掉的能量,一般希望能最大限度地回收所有能量。

然而,并不是所有的制动能量都可以回收。

在电动汽车上,只有驱动轮的制动能量可以沿着与之相连接的驱动轴传送到能量存储系统,另一部分的制动能量将由车轮上的摩擦制动以热的形式散失掉。

同时,在制动能量回收过程中,能量传递环节和能量存储系统的各部件也将会造成能量损失。

另外一个影响制动能量回收的因素是:在再生制动时,制动能量通过电动机转化为电能,而电动机吸收制动能量的能力依赖于电动机的速度,在其额定转速范围内制动时,可再生的能量与车速基本上成正比。

当所需要的制动能量超出能量回收系统的范围时,电动机可吸收的能量保持不变,超出的部分能量就要被摩擦制动系统所吸收。

从另一个角度还表明,在驱动电机额定转速内再生制动可以提供较大的制动转矩,而当转速进一步上升,则电动汽车再生制动所能提供的制动力则受电机弱磁恒功率工作区特点限制而减小。

随着能源和环保问题日益突出,电动汽车以其清洁无污染、能量效率高及能量来源多样化、结构简单和维修方便等优点成为汽车发展的新热点,但是续驶里程和售价昂贵这两个问题严重地阻碍了电动汽车商品化。

由于再生制动利用了原本被消耗于摩擦制动的能量,可降低电动汽车的能耗,改善汽车的经济性能。

因此,在目前的HEV 技术研究中,再生制动已成为一种降低能耗、提高续驶里程的重要技术手段。

■电动汽车再生制动系统的要求及控制策略再生制动亦称反馈制动,是一种使用在电动车辆上的制动技术。

在制动时把车辆的动能转化及储存起来,而不是变成无用的热。

再生制动是电动汽车进行制动时把一部分动能通过电机转换为电能储存起来回收利用,增加行驶里程。

再生制动一般是和传统液压制动协调配合提供制动力,再生制动力是为了回收能量,再生制动力越大,回收的能量越多,具体再生制动力大小受车速、电池容量、电机等因素约束。

电动机在运转中如果降低指令频率,则电动机变为异步发电机状态运行,作为制动器工作,这就叫作再生(电气)制动。

典型控制策略有:并行制动系统控制策略、最佳制动能量回收控制策略以及理想制动力分配控制策略。

其中并行制动系统控制策略是在传统汽车制动系统的基础上加入电机制动,其驱动轴在制动时采用机械制动系统与再生制动系统联合制动;最佳制动能量回收控制策略是在保证制动要求的前提下最大限度地回收制动能量;理想制动力分配控制策略是在保证最佳制动性能的前提下尽量回收制动能量。

上述典型控制策略中,并行制动系统控制策略较简单,另两种比较复杂,而且要求精确的计算和控制。

电动汽车(EV)和混合动力电动汽车(HEV)最重要特性之一是其回收制动能量的能力。

在电动汽车、混合动力电动汽车和燃料电池车(FCV)中的电动机可被控制作为发电机运行,从而将车辆的动能或位能变换为电能,并储存在能量储存装置之中再次利用。

电机驱动控制系统的好坏关系着电动汽车能否安全可靠地运行。

电机驱动系统主要由电机、电力电子变流器、数字控制器和传感器等部分组成。

目前电动汽车电机驱动系统中,主要采用感应电机、永磁同步电机和开关磁阻电机。

电机驱动控制系统由电力电子逆变器向IGBT集成模块发展,传感器向集成智能传感器发展,在电机的控制方法方面,传统的控制方法是直流电机的励磁控制法与电枢电压控制法;开关磁阻电动机的角度位置控制、电流斩波控制以及电压控制;感应电机主要有V/F控制、转差频率控制、矢量控制和直接转矩控制等。

近几年来出现了许多先进的控制方法包括自适应控制、变结构控制、模糊控制和神经网络控制、闭环控制、鲁棒控制、滑模控制、专家系统、模型参考自适应控制、非耦合控制、交叉耦合控制以及协调控制等也都适用于电机驱动。

■电动汽车再生制动能量回收控制系统现代电动汽车经过数十年的发展,其各项标准已经基本达到了人们用车的需求,但是却迟迟不能占据市场,最主要的原因就是现在的电动汽车的续驶里程不能满足人们的需求。

相关文档
最新文档