Baclawski Formal Verification of UML Diagrams A First Step Towards Code Generation, OOPSLA
人工智能英文参考文献(最新120个)

人工智能是一门新兴的具有挑战力的学科。
自人工智能诞生以来,发展迅速,产生了许多分支。
诸如强化学习、模拟环境、智能硬件、机器学习等。
但是,在当前人工智能技术迅猛发展,为人们的生活带来许多便利。
下面是搜索整理的人工智能英文参考文献的分享,供大家借鉴参考。
人工智能英文参考文献一:[1]Lars Egevad,Peter Str?m,Kimmo Kartasalo,Henrik Olsson,Hemamali Samaratunga,Brett Delahunt,Martin Eklund. The utility of artificial intelligence in the assessment of prostate pathology[J]. Histopathology,2020,76(6).[2]Rudy van Belkom. The Impact of Artificial Intelligence on the Activities ofa Futurist[J]. World Futures Review,2020,12(2).[3]Reza Hafezi. How Artificial Intelligence Can Improve Understanding in Challenging Chaotic Environments[J]. World Futures Review,2020,12(2).[4]Alejandro Díaz-Domínguez. How Futures Studies and Foresight Could Address Ethical Dilemmas of Machine Learning and Artificial Intelligence[J]. World Futures Review,2020,12(2).[5]Russell T. Warne,Jared Z. Burton. Beliefs About Human Intelligence in a Sample of Teachers and Nonteachers[J]. Journal for the Education of the Gifted,2020,43(2).[6]Russell Belk,Mariam Humayun,Ahir Gopaldas. Artificial Life[J]. Journal of Macromarketing,2020,40(2).[7]Walter Kehl,Mike Jackson,Alessandro Fergnani. Natural Language Processing and Futures Studies[J]. World Futures Review,2020,12(2).[8]Anne Boysen. Mine the Gap: Augmenting Foresight Methodologies with Data Analytics[J]. World Futures Review,2020,12(2).[9]Marco Bevolo,Filiberto Amati. The Potential Role of AI in Anticipating Futures from a Design Process Perspective: From the Reflexive Description of “Design” to a Discussion of Influences by the Inclusion of AI in the Futures Research Process[J]. World Futures Review,2020,12(2).[10]Lan Xu,Paul Tu,Qian Tang,Dan Seli?teanu. Contract Design for Cloud Logistics (CL) Based on Blockchain Technology (BT)[J]. Complexity,2020,2020.[11]L. Grant,X. Xue,Z. Vajihi,A. Azuelos,S. Rosenthal,D. Hopkins,R. Aroutiunian,B. Unger,A. Guttman,M. Afilalo. LO32: Artificial intelligence to predict disposition to improve flow in the emergency department[J]. CJEM,2020,22(S1).[12]A. Kirubarajan,A. Taher,S. Khan,S. Masood. P071: Artificial intelligence in emergency medicine: A scoping review[J]. CJEM,2020,22(S1).[13]L. Grant,P. Joo,B. Eng,A. Carrington,M. Nemnom,V. Thiruganasambandamoorthy. LO22: Risk-stratification of emergency department syncope by artificial intelligence using machine learning: human, statistics or machine[J]. CJEM,2020,22(S1).[14]Riva Giuseppe,Riva Eleonora. OS for Ind Robots: Manufacturing Robots Get Smarter Thanks to Artificial Intelligence.[J]. Cyberpsychology, behavior and social networking,2020,23(5).[15]Markus M. Obmann,Aurelio Cosentino,Joshy Cyriac,Verena Hofmann,Bram Stieltjes,Daniel T. Boll,Benjamin M. Yeh,Matthias R. Benz. Quantitative enhancement thresholds and machine learning algorithms for the evaluation of renal lesions using single-phase split-filter dual-energy CT[J]. Abdominal Radiology,2020,45(1).[16]Haytham H. Elmousalami,Mahmoud Elaskary. Drilling stuck pipe classification and mitigation in the Gulf of Suez oil fields using artificial intelligence[J]. Journal of Petroleum Exploration and Production Technology,2020,10(10).[17]Rüdiger Schulz-Wendtland,Karin Bock. Bildgebung in der Mammadiagnostik –Ein Ausblick <trans-title xml:lang="en">Imaging in breast diagnostics—an outlook [J]. Der Gyn?kologe,2020,53(6).</trans-title>[18]Nowakowski Piotr,Szwarc Krzysztof,Boryczka Urszula. Combining an artificial intelligence algorithm and a novel vehicle for sustainable e-waste collection[J]. Science of the Total Environment,2020,730.[19]Wang Huaizhi,Liu Yangyang,Zhou Bin,Li Canbing,Cao Guangzhong,Voropai Nikolai,Barakhtenko Evgeny. Taxonomy research of artificial intelligence for deterministic solar power forecasting[J]. Energy Conversion and Management,2020,214.[20]Kagemoto Hiroshi. Forecasting a water-surface wave train with artificial intelligence- A case study[J]. Ocean Engineering,2020,207.[21]Tomonori Aoki,Atsuo Yamada,Kazuharu Aoyama,Hiroaki Saito,Gota Fujisawa,Nariaki Odawara,Ryo Kondo,Akiyoshi Tsuboi,Rei Ishibashi,Ayako Nakada,Ryota Niikura,Mitsuhiro Fujishiro,Shiro Oka,Soichiro Ishihara,Tomoki Matsuda,Masato Nakahori,Shinji Tanaka,Kazuhiko Koike,Tomohiro Tada. Clinical usefulness of a deep learning‐based system as the first screening on small‐bowel capsule endoscopy reading[J]. Digestive Endoscopy,2020,32(4).[22]Masashi Fujii,Hajime Isomoto. Next generation of endoscopy: Harmony with artificial intelligence and robotic‐assisted devices[J]. Digestive Endoscopy,2020,32(4).[23]Roberto Verganti,Luca Vendraminelli,Marco Iansiti. Innovation and Design in the Age of Artificial Intelligence[J]. Journal of Product Innovation Management,2020,37(3).[24]Yuval Elbaz,David Furman,Maytal Caspary Toroker. Modeling Diffusion in Functional Materials: From Density Functional Theory to Artificial Intelligence[J]. Advanced Functional Materials,2020,30(18).[25]Dinesh Visva Gunasekeran,Tien Yin Wong. Artificial Intelligence in Ophthalmology in 2020: A Technology on the Cusp for Translation and Implementation[J]. Asia-Pacific Journal of Ophthalmology,2020,9(2).[26]Fu-Neng Jiang,Li-Jun Dai,Yong-Ding Wu,Sheng-Bang Yang,Yu-Xiang Liang,Xin Zhang,Cui-Yun Zou,Ren-Qiang He,Xiao-Ming Xu,Wei-De Zhong. The study of multiple diagnosis models of human prostate cancer based on Taylor database by artificial neural networks[J]. Journal of the Chinese Medical Association,2020,83(5).[27]Matheus Calil Faleiros,Marcello Henrique Nogueira-Barbosa,Vitor Faeda Dalto,JoséRaniery Ferreira Júnior,Ariane Priscilla Magalh?es Tenório,Rodrigo Luppino-Assad,Paulo Louzada-Junior,Rangaraj Mandayam Rangayyan,Paulo Mazzoncini de Azevedo-Marques. Machine learning techniques for computer-aided classification of active inflammatory sacroiliitis in magnetic resonance imaging[J]. Advances in Rheumatology,2020,60(1078).[28]Balamurugan Balakreshnan,Grant Richards,Gaurav Nanda,Huachao Mao,Ragu Athinarayanan,Joseph Zaccaria. PPE Compliance Detection using Artificial Intelligence in Learning Factories[J]. Procedia Manufacturing,2020,45.[29]M. Stévenin,V. Avisse,N. Ducarme,A. de Broca. Qui est responsable si un robot autonome vient à entra?ner un dommage ?[J]. Ethique et Santé,2020.[30]Fatemeh Barzegari Banadkooki,Mohammad Ehteram,Fatemeh Panahi,Saad Sh. Sammen,Faridah Binti Othman,Ahmed EL-Shafie. Estimation of Total Dissolved Solids (TDS) using New Hybrid Machine Learning Models[J]. Journal of Hydrology,2020.[31]Adam J. Schwartz,Henry D. Clarke,Mark J. Spangehl,Joshua S. Bingham,DavidA. Etzioni,Matthew R. Neville. Can a Convolutional Neural Network Classify Knee Osteoarthritis on Plain Radiographs as Accurately as Fellowship-Trained Knee Arthroplasty Surgeons?[J]. The Journal of Arthroplasty,2020.[32]Ivana Nizetic Kosovic,Toni Mastelic,Damir Ivankovic. Using Artificial Intelligence on environmental data from Internet of Things for estimating solar radiation: Comprehensive analysis[J]. Journal of Cleaner Production,2020.[33]Lauren Fried,Andrea Tan,Shirin Bajaj,Tracey N. Liebman,David Polsky,Jennifer A. Stein. Technological advances for the detection of melanoma: Part I. Advances in diagnostic techniques[J]. Journal of the American Academy of Dermatology,2020.[34]Mohammed Amoon,Torki Altameem,Ayman Altameem. Internet of things Sensor Assisted Security and Quality Analysis for Health Care Data Sets Using Artificial Intelligent Based Heuristic Health Management System[J]. Measurement,2020.[35]E. Lotan,C. Tschider,D.K. Sodickson,A. Caplan,M. Bruno,B. Zhang,Yvonne W. Lui. Medical Imaging and Privacy in the Era of Artificial Intelligence: Myth, Fallacy, and the Future[J]. Journal of the American College of Radiology,2020.[36]Fabien Lareyre,Cédric Adam,Marion Carrier,Juliette Raffort. Artificial Intelligence in Vascular Surgery: moving from Big Data to Smart Data[J]. Annals of Vascular Surgery,2020.[37]Ilesanmi Daniyan,Khumbulani Mpofu,Moses Oyesola,Boitumelo Ramatsetse,Adefemi Adeodu. Artificial intelligence for predictive maintenance in the railcar learning factories[J]. Procedia Manufacturing,2020,45.[38]Janet L. McCauley,Anthony E. Swartz. Reframing Telehealth[J]. Obstetrics and Gynecology Clinics of North America,2020.[39]Jean-Emmanuel Bibault,Lei Xing. Screening for chronic obstructive pulmonary disease with artificial intelligence[J]. The Lancet Digital Health,2020,2(5).[40]Andrea Laghi. Cautions about radiologic diagnosis of COVID-19 infection driven by artificial intelligence[J]. The Lancet Digital Health,2020,2(5).人工智能英文参考文献二:[41]K. Orhan,I. S. Bayrakdar,M. Ezhov,A. Kravtsov,T. ?zyürek. Evaluation of artificial intelligence for detecting periapical pathosis on cone‐beam computed tomography scans[J]. International Endodontic Journal,2020,53(5).[42]Avila A M,Mezi? I. Data-driven analysis and forecasting of highway traffic dynamics.[J]. Nature communications,2020,11(1).[43]Neri Emanuele,Miele Vittorio,Coppola Francesca,Grassi Roberto. Use of CT andartificial intelligence in suspected or COVID-19 positive patients: statement of the Italian Society of Medical and Interventional Radiology.[J]. La Radiologia medica,2020.[44]Tau Noam,Stundzia Audrius,Yasufuku Kazuhiro,Hussey Douglas,Metser Ur. Convolutional Neural Networks in Predicting Nodal and Distant Metastatic Potential of Newly Diagnosed Non-Small Cell Lung Cancer on FDG PET Images.[J]. AJR. American journal of roentgenology,2020.[45]Coppola Francesca,Faggioni Lorenzo,Regge Daniele,Giovagnoni Andrea,Golfieri Rita,Bibbolino Corrado,Miele Vittorio,Neri Emanuele,Grassi Roberto. Artificial intelligence: radiologists' expectations and opinions gleaned from a nationwide online survey.[J]. La Radiologia medica,2020.[46]?. ? ? ? ? [J]. ,2020,25(4).[47]Savage Rock H,van Assen Marly,Martin Simon S,Sahbaee Pooyan,Griffith Lewis P,Giovagnoli Dante,Sperl Jonathan I,Hopfgartner Christian,K?rgel Rainer,Schoepf U Joseph. Utilizing Artificial Intelligence to Determine Bone Mineral Density Via Chest Computed Tomography.[J]. Journal of thoracic imaging,2020,35 Suppl 1.[48]Brzezicki Maksymilian A,Bridger Nicholas E,Kobeti? Matthew D,Ostrowski Maciej,Grabowski Waldemar,Gill Simran S,Neumann Sandra. Artificial intelligence outperforms human students in conducting neurosurgical audits.[J]. Clinical neurology and neurosurgery,2020,192.[49]Lockhart Mark E,Smith Andrew D. Fatty Liver Disease: Artificial Intelligence Takes on the Challenge.[J]. Radiology,2020,295(2).[50]Wood Edward H,Korot Edward,Storey Philip P,Muscat Stephanie,Williams George A,Drenser Kimberly A. The retina revolution: signaling pathway therapies, genetic therapies, mitochondrial therapies, artificial intelligence.[J]. Current opinion in ophthalmology,2020,31(3).[51]Ho Dean,Quake Stephen R,McCabe Edward R B,Chng Wee Joo,Chow Edward K,Ding Xianting,Gelb Bruce D,Ginsburg Geoffrey S,Hassenstab Jason,Ho Chih-Ming,Mobley William C,Nolan Garry P,Rosen Steven T,Tan Patrick,Yen Yun,Zarrinpar Ali. Enabling Technologies for Personalized and Precision Medicine.[J]. Trends in biotechnology,2020,38(5).[52]Fischer Andreas M,Varga-Szemes Akos,van Assen Marly,Griffith L Parkwood,Sahbaee Pooyan,Sperl Jonathan I,Nance John W,Schoepf U Joseph. Comparison of Artificial Intelligence-Based Fully Automatic Chest CT Emphysema Quantification to Pulmonary Function Testing.[J]. AJR. American journal ofroentgenology,2020,214(5).[53]Moore William,Ko Jane,Gozansky Elliott. Artificial Intelligence Pertaining to Cardiothoracic Imaging and Patient Care: Beyond Image Interpretation.[J]. Journal of thoracic imaging,2020,35(3).[54]Hwang Eui Jin,Park Chang Min. Clinical Implementation of Deep Learning in Thoracic Radiology: Potential Applications and Challenges.[J]. Korean journal of radiology,2020,21(5).[55]Mateen Bilal A,David Anna L,Denaxas Spiros. Electronic Health Records to Predict Gestational Diabetes Risk.[J]. Trends in pharmacological sciences,2020,41(5).[56]Yao Xiang,Mao Ling,Lv Shunli,Ren Zhenghong,Li Wentao,Ren Ke. CT radiomics features as a diagnostic tool for classifying basal ganglia infarction onset time.[J]. Journal of the neurological sciences,2020,412.[57]van Assen Marly,Banerjee Imon,De Cecco Carlo N. Beyond the Artificial Intelligence Hype: What Lies Behind the Algorithms and What We Can Achieve.[J]. Journal of thoracic imaging,2020,35 Suppl 1.[58]Guzik Tomasz J,Fuster Valentin. Leaders in Cardiovascular Research: Valentin Fuster.[J]. Cardiovascular research,2020,116(6).[59]Fischer Andreas M,Eid Marwen,De Cecco Carlo N,Gulsun Mehmet A,van Assen Marly,Nance John W,Sahbaee Pooyan,De Santis Domenico,Bauer Maximilian J,Jacobs Brian E,Varga-Szemes Akos,Kabakus Ismail M,Sharma Puneet,Jackson Logan J,Schoepf U Joseph. Accuracy of an Artificial Intelligence Deep Learning Algorithm Implementing a Recurrent Neural Network With Long Short-term Memory for the Automated Detection of Calcified Plaques From Coronary Computed Tomography Angiography.[J]. Journal of thoracic imaging,2020,35 Suppl 1.[60]Ghosh Adarsh,Kandasamy Devasenathipathy. Interpretable Artificial Intelligence: Why and When.[J]. AJR. American journal of roentgenology,2020,214(5).[61]M.Rosario González-Rodríguez,M.Carmen Díaz-Fernández,Carmen Pacheco Gómez. Facial-expression recognition: An emergent approach to the measurement of tourist satisfaction through emotions[J]. Telematics and Informatics,2020,51.[62]Ru-Xi Ding,Iván Palomares,Xueqing Wang,Guo-Rui Yang,Bingsheng Liu,Yucheng Dong,Enrique Herrera-Viedma,Francisco Herrera. Large-Scale decision-making: Characterization, taxonomy, challenges and future directions from an Artificial Intelligence and applications perspective[J]. Information Fusion,2020,59.[63]Abdulrhman H. Al-Jebrni,Brendan Chwyl,Xiao Yu Wang,Alexander Wong,Bechara J. Saab. AI-enabled remote and objective quantification of stress at scale[J]. Biomedical Signal Processing and Control,2020,59.[64]Gillian Thomas,Elizabeth Eisenhauer,Robert G. Bristow,Cai Grau,Coen Hurkmans,Piet Ost,Matthias Guckenberger,Eric Deutsch,Denis Lacombe,Damien C. Weber. The European Organisation for Research and Treatment of Cancer, State of Science in radiation oncology and priorities for clinical trials meeting report[J]. European Journal of Cancer,2020,131.[65]Muhammad Asif. Are QM models aligned with Industry 4.0? A perspective on current practices[J]. Journal of Cleaner Production,2020,258.[66]Siva Teja Kakileti,Himanshu J. Madhu,Geetha Manjunath,Leonard Wee,Andre Dekker,Sudhakar Sampangi. Personalized risk prediction for breast cancer pre-screening using artificial intelligence and thermal radiomics[J]. Artificial Intelligence In Medicine,2020,105.[67]. Evaluation of Payer Budget Impact Associated with the Use of Artificial Intelligence in Vitro Diagnostic, Kidneyintelx, to Modify DKD Progression:[J]. American Journal of Kidney Diseases,2020,75(5).[68]Rohit Nishant,Mike Kennedy,Jacqueline Corbett. Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda[J]. International Journal of Information Management,2020,53.[69]Hoang Nguyen,Xuan-Nam Bui. Soft computing models for predicting blast-induced air over-pressure: A novel artificial intelligence approach[J]. Applied Soft Computing Journal,2020,92.[70]Benjamin S. Hopkins,Aditya Mazmudar,Conor Driscoll,Mark Svet,Jack Goergen,Max Kelsten,Nathan A. Shlobin,Kartik Kesavabhotla,Zachary A Smith,Nader S Dahdaleh. Using artificial intelligence (AI) to predict postoperative surgical site infection: A retrospective cohort of 4046 posterior spinal fusions[J]. Clinical Neurology and Neurosurgery,2020,192.[71]Mei Yang,Runze Zhou,Xiangjun Qiu,Xiangfei Feng,Jian Sun,Qunshan Wang,Qiufen Lu,Pengpai Zhang,Bo Liu,Wei Li,Mu Chen,Yan Zhao,Binfeng Mo,Xin Zhou,Xi Zhang,Yingxue Hua,Jin Guo,Fangfang Bi,Yajun Cao,Feng Ling,Shengming Shi,Yi-Gang Li. Artificial intelligence-assisted analysis on the association between exposure to ambient fine particulate matter and incidence of arrhythmias in outpatients of Shanghai community hospitals[J]. Environment International,2020,139.[72]Fatemehalsadat Madaeni,Rachid Lhissou,Karem Chokmani,Sebastien Raymond,Yves Gauthier. Ice jam formation, breakup and prediction methods based on hydroclimatic data using artificial intelligence: A review[J]. Cold Regions Science and Technology,2020,174.[73]Steve Chukwuebuka Arum,David Grace,Paul Daniel Mitchell. A review of wireless communication using high-altitude platforms for extended coverage and capacity[J]. Computer Communications,2020,157.[74]Yong-Hong Kuo,Nicholas B. Chan,Janny M.Y. Leung,Helen Meng,Anthony Man-Cho So,Kelvin K.F. Tsoi,Colin A. Graham. An Integrated Approach of Machine Learning and Systems Thinking for Waiting Time Prediction in an Emergency Department[J]. International Journal of Medical Informatics,2020,139.[75]Matteo Terzi,Gian Antonio Susto,Pratik Chaudhari. Directional adversarial training for cost sensitive deep learning classification applications[J]. Engineering Applications of Artificial Intelligence,2020,91.[76]Arman Kilic. Artificial Intelligence and Machine Learning in Cardiovascular Health Care[J]. The Annals of Thoracic Surgery,2020,109(5).[77]Hossein Azarmdel,Ahmad Jahanbakhshi,Seyed Saeid Mohtasebi,Alfredo Rosado Mu?oz. Evaluation of image processing technique as an expert system in mulberry fruit grading based on ripeness level using artificial neural networks (ANNs) and support vector machine (SVM)[J]. Postharvest Biology and Technology,2020,166.[78]Wafaa Wardah,Abdollah Dehzangi,Ghazaleh Taherzadeh,Mahmood A. Rashid,M.G.M. Khan,Tatsuhiko Tsunoda,Alok Sharma. Predicting protein-peptide binding sites with a deep convolutional neural network[J]. Journal of Theoretical Biology,2020,496.[79]Francisco F.X. Vasconcelos,Róger M. Sarmento,Pedro P. Rebou?as Filho,Victor Hugo C. de Albuquerque. Artificial intelligence techniques empowered edge-cloud architecture for brain CT image analysis[J]. Engineering Applications of Artificial Intelligence,2020,91.[80]Masaaki Konishi. Bioethanol production estimated from volatile compositions in hydrolysates of lignocellulosic biomass by deep learning[J]. Journal of Bioscience and Bioengineering,2020,129(6).人工智能英文参考文献三:[81]J. Kwon,K. Kim. Artificial Intelligence for Early Prediction of Pulmonary Hypertension Using Electrocardiography[J]. Journal of Heart and Lung Transplantation,2020,39(4).[82]C. Maathuis,W. Pieters,J. van den Berg. Decision support model for effects estimation and proportionality assessment for targeting in cyber operations[J]. Defence Technology,2020.[83]Samer Ellahham. Artificial Intelligence in Diabetes Care[J]. The American Journal of Medicine,2020.[84]Yi-Ting Hsieh,Lee-Ming Chuang,Yi-Der Jiang,Tien-Jyun Chang,Chung-May Yang,Chang-Hao Yang,Li-Wei Chan,Tzu-Yun Kao,Ta-Ching Chen,Hsuan-Chieh Lin,Chin-Han Tsai,Mingke Chen. Application of deep learning image assessment software VeriSee? for diabetic retinopathy screening[J]. Journal of the Formosan Medical Association,2020.[85]Emre ARTUN,Burak KULGA. Selection of candidate wells for re-fracturing in tight gas sand reservoirs using fuzzy inference[J]. Petroleum Exploration and Development Online,2020,47(2).[86]Alberto Arenal,Cristina Armu?a,Claudio Feijoo,Sergio Ramos,Zimu Xu,Ana Moreno. Innovation ecosystems theory revisited: The case of artificial intelligence in China[J]. Telecommunications Policy,2020.[87]T. Som,M. Dwivedi,C. Dubey,A. Sharma. Parametric Studies on Artificial Intelligence Techniques for Battery SOC Management and Optimization of Renewable Power[J]. Procedia Computer Science,2020,167.[88]Bushra Kidwai,Nadesh RK. Design and Development of Diagnostic Chabot for supporting Primary Health Care Systems[J]. Procedia Computer Science,2020,167.[89]Asl? Bozda?,Ye?im Dokuz,?znur Begüm G?k?ek. Spatial prediction of PM 10 concentration using machine learning algorithms in Ankara, Turkey[J]. Environmental Pollution,2020.[90]K.P. Smith,J.E. Kirby. Image analysis and artificial intelligence in infectious disease diagnostics[J]. Clinical Microbiology and Infection,2020.[91]Alklih Mohamad YOUSEF,Ghahfarokhi Payam KAVOUSI,Marwan ALNUAIMI,Yara ALATRACH. Predictive data analytics application for enhanced oil recovery in a mature field in the Middle East[J]. Petroleum Exploration and Development Online,2020,47(2).[92]Omer F. Ahmad,Danail Stoyanov,Laurence B. Lovat. Barriers and pitfalls for artificial intelligence in gastroenterology: Ethical and regulatory issues[J]. Techniques and Innovations in Gastrointestinal Endoscopy,2020,22(2).[93]Sanne A. Hoogenboom,Ulas Bagci,Michael B. Wallace. Artificial intelligence in gastroenterology. The current state of play and the potential. How will it affect our practice and when?[J]. Techniques and Innovations in Gastrointestinal Endoscopy,2020,22(2).[94]Douglas K. Rex. Can we do resect and discard with artificial intelligence-assisted colon polyp “optical biopsy?”[J]. Techniques and Innovations in Gastrointestinal Endoscopy,2020,22(2).[95]Neal Shahidi,Michael J. Bourke. Can artificial intelligence accurately diagnose endoscopically curable gastrointestinal cancers?[J]. Techniques and Innovations in Gastrointestinal Endoscopy,2020,22(2).[96]Michael Byrne. Artificial intelligence in gastroenterology[J]. Techniques and Innovations in Gastrointestinal Endoscopy,2020,22(2).[97]Piet C. de Groen. Using artificial intelligence to improve adequacy of inspection in gastrointestinal endoscopy[J]. Techniques and Innovations in Gastrointestinal Endoscopy,2020,22(2).[98]Robin Zachariah,Andrew Ninh,William Karnes. Artificial intelligence for colon polyp detection: Why should we embrace this?[J]. Techniques and Innovations in Gastrointestinal Endoscopy,2020,22(2).[99]Alexandra T. Greenhill,Bethany R. Edmunds. A primer of artificial intelligence in medicine[J]. Techniques and Innovations in Gastrointestinal Endoscopy,2020,22(2).[100]Tomohiro Tada,Toshiaki Hirasawa,Toshiyuki Yoshio. The role for artificial intelligence in evaluation of upper GI cancer[J]. Techniques and Innovations in Gastrointestinal Endoscopy,2020,22(2).[101]Yahui Jiang,Meng Yang,Shuhao Wang,Xiangchun Li,Yan Sun. Emerging role of deep learning‐based artificial intelligence in tumor pathology[J]. Cancer Communications,2020,40(4).[102]Kristopher D. Knott,Andreas Seraphim,Joao B. Augusto,Hui Xue,Liza Chacko,Nay Aung,Steffen E. Petersen,Jackie A. Cooper,Charlotte Manisty,Anish N. Bhuva,Tushar Kotecha,Christos V. Bourantas,Rhodri H. Davies,Louise A.E. Brown,Sven Plein,Marianna Fontana,Peter Kellman,James C. Moon. The Prognostic Significance of Quantitative Myocardial Perfusion: An Artificial Intelligence–Based Approach Using Perfusion Mapping[J]. Circulation,2020,141(16).[103]Muhammad Asad,Ahmed Moustafa,Takayuki Ito. FedOpt: Towards Communication Efficiency and Privacy Preservation in Federated Learning[J]. Applied Sciences,2020,10(8).[104]Wu Wenzhi,Zhang Yan,Wang Pu,Zhang Li,Wang Guixiang,Lei Guanghui,Xiao Qiang,Cao Xiaochen,Bian Yueran,Xie Simiao,Huang Fei,Luo Na,Zhang Jingyuan,Luo Mingyan. Psychological stress of medical staffs during outbreak of COVID-19 and adjustment strategy.[J]. Journal of medical virology,2020.[105]. Eyenuk Fulfills Contract for Artificial Intelligence Grading of Retinal Images[J]. Telecomworldwire,2020.[106]Kim Tae Woo,Duhachek Adam. Artificial Intelligence and Persuasion: A Construal-Level Account.[J]. Psychological science,2020,31(4).[107]McCall Becky. COVID-19 and artificial intelligence: protecting health-care workers and curbing the spread.[J]. The Lancet. Digital health,2020,2(4).[108]Alca?iz Mariano,Chicchi Giglioli Irene A,Sirera Marian,Minissi Eleonora,Abad Luis. [Autism spectrum disorder biomarkers based on biosignals, virtual reality and artificial intelligence].[J]. Medicina,2020,80 Suppl 2.[109]Cong Lei,Feng Wanbing,Yao Zhigang,Zhou Xiaoming,Xiao Wei. Deep Learning Model as a New Trend in Computer-aided Diagnosis of Tumor Pathology for Lung Cancer.[J]. Journal of Cancer,2020,11(12).[110]Wang Fengdan,Gu Xiao,Chen Shi,Liu Yongliang,Shen Qing,Pan Hui,Shi Lei,Jin Zhengyu. Artificial intelligence system can achieve comparable results to experts for bone age assessment of Chinese children with abnormal growth and development.[J]. PeerJ,2020,8.[111]Hu Wenmo,Yang Huayu,Xu Haifeng,Mao Yilei. Radiomics based on artificial intelligence in liver diseases: where we are?[J]. Gastroenterology report,2020,8(2).[112]Batayneh Wafa,Abdulhay Enas,Alothman Mohammad. Prediction of the performance of artificial neural networks in mapping sEMG to finger joint angles via signal pre-investigation techniques.[J]. Heliyon,2020,6(4).[113]Aydin Emrah,Türkmen ?nan Utku,Namli G?zde,?ztürk ?i?dem,Esen Ay?e B,Eray Y Nur,Ero?lu Egemen,Akova Fatih. A novel and simple machine learning algorithm for preoperative diagnosis of acute appendicitis in children.[J]. Pediatric surgery international,2020.[114]Ellahham Samer. Artificial Intelligence in Diabetes Care.[J]. The Americanjournal of medicine,2020.[115]David J. Winkel,Thomas J. Weikert,Hanns-Christian Breit,Guillaume Chabin,Eli Gibson,Tobias J. Heye,Dorin Comaniciu,Daniel T. Boll. Validation of a fully automated liver segmentation algorithm using multi-scale deep reinforcement learning and comparison versus manual segmentation[J]. European Journal of Radiology,2020,126.[116]Binjie Fu,Guoshu Wang,Mingyue Wu,Wangjia Li,Yineng Zheng,Zhigang Chu,Fajin Lv. Influence of CT effective dose and convolution kernel on the detection of pulmonary nodules in different artificial intelligence software systems: A phantom study[J]. European Journal of Radiology,2020,126.[117]Georgios N. Kouziokas. A new W-SVM kernel combining PSO-neural network transformed vector and Bayesian optimized SVM in GDP forecasting[J]. Engineering Applications of Artificial Intelligence,2020,92.[118]Qingsong Ruan,Zilin Wang,Yaping Zhou,Dayong Lv. A new investor sentiment indicator ( ISI ) based on artificial intelligence: A powerful return predictor in China[J]. Economic Modelling,2020,88.[119]Mohamed Abdel-Basset,Weiping Ding,Laila Abdel-Fatah. The fusion of Internet of Intelligent Things (IoIT) in remote diagnosis of obstructive Sleep Apnea: A survey and a new model[J]. Information Fusion,2020,61.[120]Federico Caobelli. Artificial intelligence in medical imaging: Game over for radiologists?[J]. European Journal of Radiology,2020,126.以上就是关于人工智能参考文献的分享,希望对你有所帮助。
基于描述逻辑ALCUQI的UML类图元模型形式化方法

基于描述逻辑ALCUQI的UML类图元模型形式化方法杨小钢【摘要】UML是一种半形式化的语言,它缺乏精确的形式化语义,难易保证UML 模型的一致性.描述逻辑是一种知识表示的形式化语言,具有强大的知识表示和推理能力.针对UML模型的形式化问题,提出基于描述逻辑的形式化方法,分析类图元模型元元素与描述逻辑ALCUQI的对应关系,提出基于描述逻辑ALCUQI的类图元模型形式化方法,给出类图元模型转化为ALCUQI知识库的正确性证明.【期刊名称】《现代计算机(专业版)》【年(卷),期】2018(000)025【总页数】7页(P41-46,51)【关键词】形式化;描述逻辑;类图;元模型【作者】杨小钢【作者单位】重庆邮电大学软件工程学院,重庆 400065【正文语种】中文0 引言UML类图是一种图形化的建模语言,虽然其表示直观,但它却是一种半形式化的语言,缺乏精确的形式化语义表示,难易保证建立模型语义的一致性。
而且对于模型语义一致性的检测往往是靠人工检测,实现模型一致性的自动检测是一件十分有价值的事。
描述逻辑能对领域知识进行形式化的表示,同时描述逻辑还提供有相应的推理服务。
本文采用基于描述逻辑的方法,研究类图的元模型中元元素与描述逻辑间的对应关系,实现类图元模型的形式化转化。
1 描述逻辑ALCUQI描述逻辑是一种对领域知识表示的形式化语言,适合表示关于概念与概念层次结构的知识[1]。
描述逻辑语言的名称与描述逻辑中包含的构造算子有关。
AL是描述逻辑中最为基本的描述逻辑语言,任何其他的描述语言都是在AL的基础之上扩展得到的。
在AL语言当中,否定是只能被用于原子概念中,而且在角色存在变量范围的情况下是只允许使用全局变量的[2]。
描述逻辑ALCUQI的语法和语义:描述逻辑ALCUQI是在AL的基础扩展到角色逆算子和有限制的数量约束算子得来的。
定义令A为原子概念,⊺为全概念,⊥为空概念,C为复合概念,NC是概念名集合,NR为角色集合,NO为个体名集合则ALCUQI的概念集合是满足下列条件的最小集合:1.任意概念C∈NC是ALCUQI概念。
中科院软件开发学教程 Lecture8

Software Development MethodologySoftware ArchitectureLecture 8Lecturer:罗铁坚Email:tjluo@Phone:88256308-----------------------------------------------------------------Class Time:Mon / Wed10:00am–11:40amOffice Hour:Friday Morning 10:00 –12:00Office Place:玉泉路教学园区科研楼东5层511Today’ Topics1.Motivation and Problems2.Software Architecture Foundations3.Architecture Frameworks, Styles ,Patterns4.Architecture PracticeReference1. D. Perry and Wolf, “ Foundations for the study of software architecture”,ACM SIGSOFT Software Engineering Notes, 17:4 (October 1992)2.R. Allen and D. Garlan, “ Formalizing Architecture Connection.”, Proc.Int’l conf. Software Eng. IEEE CS Press. 19943.Philippe B. Krunchten, “ The 4+1 View Model of Architecture”, IEEESoftware, Nov./Dec 19954.David Garlan, etc ,” Architectural Mismatch: Why Reuse is So Hard”, IEEESoftware, Nov./Dec 19955.Jeff Tryee, etc., “Architecture Decisions: Demystifying Architecture”,Mar./Apr. 20056./~perry/work/swa/The Roman Coliseum is NOT Architecture. The Roman Coliseum is the RESULT of Architecture Architecture is the set of descriptive representations that are required in order to create an object.Descriptive representations for describing products•Bills of Material–What the object is made of.•Functional Specs–How the object works.•Drawings–Where the components exist relative to one another.•Operating Instructions–Who is responsible for operation.•Timing Diagrams–When do things occur.•Design Objectives–Why does it work the way it does.Abstraction for the productAbstraction for the peopleArchitecture in software system •Architecture design is concerned with describing its decomposition into computational elements and their interactions.•Model of Software Architecture–Software Architecture ={ Elements, Form, Rationale }Design Tasks at Architecture Level anizing the system as a composition ofcomponents;2.Developing global control structures;3.Selecting protocols for communication,synchronization, and data access;4.Assigning functionality to design elements;5.Physically distributing the components;6.Scaling the system and estimating performance;7.Defining the expected evolutionary paths;8.Selecting among design alternatives.Motivations •An architectural description makes a complex system intellectually tractable by characterizing it at a high level of abstraction.•Exploit recurring organizational patterns( or styles) for reuseHot research areas1.Architecture description2.Formal underpinnings3.Design guidance4.Domain-specific architecture5.Architecture in context6.Role of tools and environmentsExamples •Two compiler architectures of the multi-phase style:–organized sequentially; and–organized as a set of parallel processesconnected by means of a shared internalrepresentation.Architectural elements•processing elements:–lexer, parser, semantor, optimizer, and codegenerator.•data elements:–characters, tokens, phrases,correlatedphrases,annotated phrases, and object code.Data Element RelationshipsOrganized sequentially •ProcessingView ofSequentialCompilerArchitectureOrganized sequentially •Data View ofSequentialCompilerArchitecture.Organized as a set of parallel processes •Partial ProcessView of ParallelProcess, SharedData StructureCompilerArchitectureSome possible views1.Functional/logic view2.Code/module view3.Development/structural view4.Concurrency/process/runtime/thread view5.Physical/deployment/install viewer action/feedback view7.Data view/data modelArchitecture frameworks•4+1•RM-ODP (Reference Model of Open Distributed Processing)•SOMF(Service-Oriented Modeling Framework)•Enterprise architecture–Zachman Framework–DODAF–TOGAF4+1 ViewRM-ODP ViewSOMF ViewZachman Framework ViewDODAF View Department of Defense Architecture FrameworkTOGAF View The Open Group Architecture FrameworkArchitectural styles and patterns1.Blackboard2.Client–server model (2-tier, n-tier, Peer-to-peer, cloudcomputing all use this model)3.Database-centric architecture4.Distributed computing5.Event-driven architecture6.Front end and back end7.Implicit invocation8.Monolithic application9.Peer-to-peer10.Pipes and filtersArchitectural styles and patterns11.Plug-in (computing)12.Representational State Transfer13.Rule evaluation14.Search-oriented architecture15.Service-oriented architecture16.Shared nothing architecture17.Software componentry18.Space based architecture19.Structured20.Three-tier modelA short history of Web Services Web Sites (1992)Comparing REST vs. SOAP/WS-* RESTful Web Services (2006)Is REST being used?WS-* vs. RESTApplication Integration StylesArchitectural PrinciplesRESTful Web Service ExampleWeb Service ExampleProtocol LayeringDealing with HeterogeneityThe distinction from functional design •Architectural Design–the process of defining a collection of hardware and software components and their interfaces to establish the framework for the development of acomputer system.•Detailed Design–the process of refining and expanding the preliminary design of a system or component to the extent that the design is sufficiently complete to beginimplementation.•Functional Design–the process of defining the working relationships among the components of a system.•Preliminary Design–the process of analyzing design alternatives and defining the architecture, components, interfaces, and timing/sizing estimates for a system orcomponents.About the real-world performance•An software depends on only two things:–The algorithms chosen and–The suitability and efficiency of the various layers ofimplementation.Architecture Practice1.The role of Use Cases in the process2.The principles of separation of concerns anddependency management3.How to analyze and design application concerns4.How to analyze and design platform specific concerns5.How to build and manage models6.The iterative nature of building an architecture7.How to describe the architectureArchitecture:Challenges and foundations 1.What role does architecture play in thesoftware development process?2.What are some common problems withconventional approaches to architecture?3.What are some of the key characteristicsof a good architecture?Design The Use Case•Each use case is realized by a collaboration -a set of classes • A class plays different roles in different use case realizations•the total responsibility of a class is the composition of these rolesUse caseSpecification Use case design Component design & implementationReserve Room Check-in Customer Check-Out Customer CustomerScreenReserve RoomRoomReservationStaffScreenCheck inRoomReservationStaff Screen Check Out RoomCustomerScreenReserve RoomReservationRoomCheck OutCheck inStaffScreenTest the use caseReserve Room Check InCheck OutCustomerCounter StaffPayment GatewayTest CasesUse Case ScenariosOk Ok OkReserveAvailable Room ReserveUnavailable Room Etc.Many Test Cases for every Use Case•Use Case Modeling Done!•Design Done!•Basis for the Test SpecificationPlan Testing & Define Test CasesGenerate Test Cases•From Sequence diagrams and •State-Chart diagramsUse Case Driven Development•Use case driven development defines a set of models that allow you to gradually refine requirements until you reach executable code.Design and implementSpecify Use CaseUse case modelupdatesAnalyze Use Caseanalysis modelupdatesUse caseDesign modelupdatesImplementation modelUse Case Driven DevelopmentUseCase ModelAnalysis ModelPlatform •Use case model-External perspective •Analysis model-Internal perspective-Platform independent •Design model-Internal perspective《trace》IndependentStructureDesign ModelMinimal Design Structure Extension DesignStructure-platform specific-extension design kept separate fromminimal design《trace》The “Level Of Detail” Challenge •Many practitioners are concerned about how detailed requirements should be, how detailed design should be•This question arise largely because of waterfall mindset.•Never detailed enough until you produce the system.Solution •The solution is apply iterative development and iterative define the architecture and implement and test the architecture,•Proceed until you get the desired systemAgenda •The “level of detail” challenge •Architecture first approach •Describing and evaluating architecture •Summary and review。
潘加宇-软件方法

自序
光阴匆匆似流水,它一去不再回。 《浪子归》 ;词:黄小茂,曲:崔健,唱:崔健;1986 1999 年还是一名程序员时,我创建了 UMLChina,从那时开始关注软件工程各方面的进展。2001 年 12 月,阿里 巴巴的吴泳铭来 email 询问是否有 UML 方面的训练,我开始准备训练材料。2002 年 3 月,我去杭州给阿里巴巴做了这 个训练。虽然与后来我给阿里集团各公司做的许多次训练相比,这第一次讲课从内容和形式都算是糟透了,但是我现 在还记得当时的心情――迈出自己事业第一步的心情。 目前(2011 年 6 月)为止,我已经上门为已经超过 150 家的软件组织提供需求和设计技能的训练和咨询服务。训 练结束后,学员们常会问: “潘老师,上完课后我们应该看什么书?”我总是回答: “先不用看杂七杂八的书,还是要 复习我们留下的资料,那些幻灯片、练习题、模型就已经是最好的书了,按照改进指南先用一点点在具体项目上,带 着出现的具体困惑来和我讨论。 ”虽然一再这样强调了,有的学员还是经常情不自禁地拿着一本《***UML***》之类的 书来问我问题,不管书上说得对不对。看来写在正式出版物上的效果就是不一样啊。 其实现在出书也不难,UMLChina 一直在和出版社合作推介国外优秀的软件工程书籍,目前已经有三十多本软件工 程书籍上有 UMLChina 的标记了。不过我一直没有自己写一本书,主要原因还是觉得自己的积累不够,思考的深度也不 够,对软件开发的认识还在不断变化。如果没有自己成型的东西,不能站在别人的肩膀上看得更远,只是摘抄别人的 观点,这样的书有什么意义呢? 另外一个原因是,UMLChina 后来开始采取了“隐形、关门”的策略,秉持“内外有别”的原则。我关闭了已经有 4 万多人的 Smiling 电子小组(也是为了降低某些风险) ,网站不再有公开的社区,在网站上也找不到“客户名单” ,所 有更细致的服务以非公开的方式对会员提供。在这种情况下,出一本书也不是那么迫切。 现在距离第一次提供服务已经将近十年,也有了一些积累,所以硬着头皮也要开始写书了。在这些年的服务过程 中,和开发团队谈到改进时,我发现一个有趣的现象:很多开发团队(不是每个团队)或多或少都会有人(不是每个 人)或明或暗地表达出这样的观点――自己团队的难处与众不同,奇特的困难降临在他们身上,偏偏别人得以幸免。 尽管 UMLChina 一直强调自己的服务是“聚焦最后一公里” ,坚信每一个开发团队都会在细节上和其他团队有所不 同,而且也应该有所不同。但很多时候,我还是感觉到,开发团队还是高估了自己的“个性” ,低估了“共性” 。本书 就是归纳这样一些“共性” ,作为我的一家之言,供大家参考。感谢曾经选择过我的服务的伙伴们。他们一次次地给我 机会来实践、发展和锤炼技艺,才有了这本书。 目前还没有和任何出版社商议出纸书事宜。本书先以电子版方式公布,不定期更新版本,您可以到
图灵奖——精选推荐

图灵奖(数据库方向)DBTG的系统结构DBTG的系统结构主要包括模式(schema)、子模式(subschema)、物理模式(physicalschema)、数据操纵和数据库管理系统(DBMS,DataBaseManagementSystem)等几个部分。
模式是对数据库整体数据逻辑结构的描述,它对应数据库的概念层,由数据库管理员借助模式数据描述语言DDL(DataDescriptionLanguage)建立。
子模式是某一用户对他所关心的那部分数据的数据结构的描述,对应于数据库的外层或用户视图(userview),是由该用户自己或委托数据库管理员借助子模式数据描述语言加以定义的。
物理模式或叫存储模式(storageschema)是对数据库的数据的存储组织方式的描述,对应于数据库的物理层,由数据库管理员通过数据存储描述语言DSDL(DataStorageDescriptionLanguage)加以定义(DSDL是DBTG报告的1978年版本提出的,之前的报告用的名称叫数据介质控制语言DMCLDataMediaControlLanguage)。
数据库可由多个用户、多个应用共享,数据库应用程序利用数据操纵语言DML(DataManupilationLanguage)实现对数据库数据的操纵,但一个应用程序必须援引某一模式的某一子模式(也就是说它操作的数据限于某一用户视图中的数据)。
DML语句可以嵌在宿主语言(如COBOL,Fortran等)中,在数据库管理系统的控制下访问数据库中的数据,并通过一个称为用户工作区UW A(UserWorkArea)的缓冲区与数据库通信,完成对数据库的操作。
数据库管理系统的其他功能包括维护数据库中数据的一致性(consistency)、完整性(integrity)、安全性(security)和一旦出现故障情况下的恢复(recovery),以及在多个应用程序同时存取同一数据单元时处理并发性(concurrency),以避免出现“脏数据”(d irtydata)或“丢失更新”(10seupdate)等不正常现象。
UML软件建模教程课后习题及答案

UML软件建模教程课后习题习题 1一、简答题1. 简述模型的作用。
答:现实系统的复杂性和隐性,使得人们难于直接认识和把握,为了使得人们能够直观和明了地认识和把握现实系统,就需要借助于模型。
2. 软件模型有什么特征?答:建模对象特殊,复杂性,多样性3. 软件建模技术有哪些因素?答:软件建模方法,软件建模过程,软件建模语言,软件建模工具4. 软件模型包括哪些方面的容?答:从模型所反映的侧面看:功能模型,非功能模型,数据模型,对象模型,过程模型,状态模型,交互模型,架构模型,界面模型等;从软件开发工作看:业务模型,需求模型,分析模型,设计模型,测试模型等。
5. 软件建模工具应该具有哪些基本功能?答:软件模型的生成和编辑,软件模型的质量保障,软件模型管理等二、填空题1、模型是对现实的(抽象)和模拟,是对现实系统(本质)特征的一种抽象、简化和直观的描述。
2、模型具有(反映性)、直观性、(简化性)和抽象性等特征。
3、从抽象程度,可以把模型分为(概念模型)、逻辑模型和(物理模型)三种类型。
4、较之于其他模型,软件模型具有(建模对象特殊)、复杂性和(多样性)等特征。
5、软件模型是软件开发人员交流的(媒介),是软件升级和维护的(依据)。
6、软件建模技术的要素包括软件建模方法、(软件建模过程)、软件建模语言和(软件建模工具)。
7、从开发阶段看,软件建模有业务模型、(需求模型)、分析模型、(设计模型)和测试模型。
8、软件语言有软件需求定义语言、(软件设计语言)、软件建模语言、(软件结构描述语言)、软件程序设计语言等。
9、根据软件建模工具的独立性,把软件建模工具分为(独立软件)建模工具和(插件式软件)建模工具。
10、OMG在( 1997 )年把UML作为软件建模的标准,UML2.0版本是( 2005 )年颁布的。
三、选择题1、对软件模型而言,下面说法错误的是( D )。
A.是人员交流的媒介B.是软件的中间形态C.是软件升级和维护的依据D.是软件的标准文档2、下面说法错误的是( B )。
四大安全会议论文题目

2009and2010Papers:Big-4Security ConferencespvoOctober13,2010NDSS20091.Document Structure Integrity:A Robust Basis for Cross-site Scripting Defense.Y.Nadji,P.Saxena,D.Song2.An Efficient Black-box Technique for Defeating Web Application Attacks.R.Sekar3.Noncespaces:Using Randomization to Enforce Information Flow Tracking and Thwart Cross-Site Scripting Attacks.M.Van Gundy,H.Chen4.The Blind Stone Tablet:Outsourcing Durability to Untrusted Parties.P.Williams,R.Sion,D.Shasha5.Two-Party Computation Model for Privacy-Preserving Queries over Distributed Databases.S.S.M.Chow,J.-H.Lee,L.Subramanian6.SybilInfer:Detecting Sybil Nodes using Social Networks.G.Danezis,P.Mittal7.Spectrogram:A Mixture-of-Markov-Chains Model for Anomaly Detection in Web Traffic.Yingbo Song,Angelos D.Keromytis,Salvatore J.Stolfo8.Detecting Forged TCP Reset Packets.Nicholas Weaver,Robin Sommer,Vern Paxson9.Coordinated Scan Detection.Carrie Gates10.RB-Seeker:Auto-detection of Redirection Botnets.Xin Hu,Matthew Knysz,Kang G.Shin11.Scalable,Behavior-Based Malware Clustering.Ulrich Bayer,Paolo Milani Comparetti,Clemens Hlauschek,Christopher Kruegel,Engin Kirda12.K-Tracer:A System for Extracting Kernel Malware Behavior.Andrea Lanzi,Monirul I.Sharif,Wenke Lee13.RAINBOW:A Robust And Invisible Non-Blind Watermark for Network Flows.Amir Houmansadr,Negar Kiyavash,Nikita Borisov14.Traffic Morphing:An Efficient Defense Against Statistical Traffic Analysis.Charles V.Wright,Scott E.Coull,Fabian Monrose15.Recursive DNS Architectures and Vulnerability Implications.David Dagon,Manos Antonakakis,Kevin Day,Xiapu Luo,Christopher P.Lee,Wenke Lee16.Analyzing and Comparing the Protection Quality of Security Enhanced Operating Systems.Hong Chen,Ninghui Li,Ziqing Mao17.IntScope:Automatically Detecting Integer Overflow Vulnerability in X86Binary Using Symbolic Execution.Tielei Wang,Tao Wei,Zhiqiang Lin,Wei Zou18.Safe Passage for Passwords and Other Sensitive Data.Jonathan M.McCune,Adrian Perrig,Michael K.Reiter19.Conditioned-safe Ceremonies and a User Study of an Application to Web Authentication.Chris Karlof,J.Doug Tygar,David Wagner20.CSAR:A Practical and Provable Technique to Make Randomized Systems Accountable.Michael Backes,Peter Druschel,Andreas Haeberlen,Dominique UnruhOakland20091.Wirelessly Pickpocketing a Mifare Classic Card.(Best Practical Paper Award)Flavio D.Garcia,Peter van Rossum,Roel Verdult,Ronny Wichers Schreur2.Plaintext Recovery Attacks Against SSH.Martin R.Albrecht,Kenneth G.Paterson,Gaven J.Watson3.Exploiting Unix File-System Races via Algorithmic Complexity Attacks.Xiang Cai,Yuwei Gui,Rob Johnson4.Practical Mitigations for Timing-Based Side-Channel Attacks on Modern x86Processors.Bart Coppens,Ingrid Verbauwhede,Bjorn De Sutter,Koen De Bosschere5.Non-Interference for a Practical DIFC-Based Operating System.Maxwell Krohn,Eran Tromer6.Native Client:A Sandbox for Portable,Untrusted x86Native Code.(Best Paper Award)B.Yee,D.Sehr,G.Dardyk,B.Chen,R.Muth,T.Ormandy,S.Okasaka,N.Narula,N.Fullagar7.Automatic Reverse Engineering of Malware Emulators.(Best Student Paper Award)Monirul Sharif,Andrea Lanzi,Jonathon Giffin,Wenke Lee8.Prospex:Protocol Specification Extraction.Paolo Milani Comparetti,Gilbert Wondracek,Christopher Kruegel,Engin Kirda9.Quantifying Information Leaks in Outbound Web Traffic.Kevin Borders,Atul Prakash10.Automatic Discovery and Quantification of Information Leaks.Michael Backes,Boris Kopf,Andrey Rybalchenko11.CLAMP:Practical Prevention of Large-Scale Data Leaks.Bryan Parno,Jonathan M.McCune,Dan Wendlandt,David G.Andersen,Adrian Perrig12.De-anonymizing Social Networks.Arvind Narayanan,Vitaly Shmatikov13.Privacy Weaknesses in Biometric Sketches.Koen Simoens,Pim Tuyls,Bart Preneel14.The Mastermind Attack on Genomic Data.Michael T.Goodrich15.A Logic of Secure Systems and its Application to Trusted Computing.Anupam Datta,Jason Franklin,Deepak Garg,Dilsun Kaynar16.Formally Certifying the Security of Digital Signature Schemes.Santiago Zanella-Beguelin,Gilles Barthe,Benjamin Gregoire,Federico Olmedo17.An Epistemic Approach to Coercion-Resistance for Electronic Voting Protocols.Ralf Kuesters,Tomasz Truderung18.Sphinx:A Compact and Provably Secure Mix Format.George Danezis,Ian Goldberg19.DSybil:Optimal Sybil-Resistance for Recommendation Systems.Haifeng Yu,Chenwei Shi,Michael Kaminsky,Phillip B.Gibbons,Feng Xiao20.Fingerprinting Blank Paper Using Commodity Scanners.William Clarkson,Tim Weyrich,Adam Finkelstein,Nadia Heninger,Alex Halderman,Ed Felten 21.Tempest in a Teapot:Compromising Reflections Revisited.Michael Backes,Tongbo Chen,Markus Duermuth,Hendrik P.A.Lensch,Martin Welk22.Blueprint:Robust Prevention of Cross-site Scripting Attacks for Existing Browsers.Mike Ter Louw,V.N.Venkatakrishnan23.Pretty-Bad-Proxy:An Overlooked Adversary in Browsers’HTTPS Deployments.Shuo Chen,Ziqing Mao,Yi-Min Wang,Ming Zhang24.Secure Content Sniffing for Web Browsers,or How to Stop Papers from Reviewing Themselves.Adam Barth,Juan Caballero,Dawn Song25.It’s No Secret:Measuring the Security and Reliability of Authentication via’Secret’Questions.Stuart Schechter,A.J.Bernheim Brush,Serge Egelman26.Password Cracking Using Probabilistic Context-Free Grammars.Matt Weir,Sudhir Aggarwal,Bill Glodek,Breno de MedeirosUSENIX Security2009promising Electromagnetic Emanations of Wired and Wireless Keyboards.(Outstanding Student Paper)Martin Vuagnoux,Sylvain Pasini2.Peeping Tom in the Neighborhood:Keystroke Eavesdropping on Multi-User Systems.Kehuan Zhang,XiaoFeng Wang3.A Practical Congestion Attack on Tor Using Long Paths,Nathan S.Evans,Roger Dingledine,Christian Grothoff4.Baggy Bounds Checking:An Efficient and Backwards-Compatible Defense against Out-of-Bounds Errors.Periklis Akritidis,Manuel Costa,Miguel Castro,Steven Hand5.Dynamic Test Generation to Find Integer Bugs in x86Binary Linux Programs.David Molnar,Xue Cong Li,David A.Wagner6.NOZZLE:A Defense Against Heap-spraying Code Injection Attacks.Paruj Ratanaworabhan,Benjamin Livshits,Benjamin Zorn7.Detecting Spammers with SNARE:Spatio-temporal Network-level Automatic Reputation Engine.Shuang Hao,Nadeem Ahmed Syed,Nick Feamster,Alexander G.Gray,Sven Krasser8.Improving Tor using a TCP-over-DTLS Tunnel.Joel Reardon,Ian Goldberg9.Locating Prefix Hijackers using LOCK.Tongqing Qiu,Lusheng Ji,Dan Pei,Jia Wang,Jun(Jim)Xu,Hitesh Ballani10.GATEKEEPER:Mostly Static Enforcement of Security and Reliability Policies for JavaScript Code.Salvatore Guarnieri,Benjamin Livshits11.Cross-Origin JavaScript Capability Leaks:Detection,Exploitation,and Defense.Adam Barth,Joel Weinberger,Dawn Song12.Memory Safety for Low-Level Software/Hardware Interactions.John Criswell,Nicolas Geoffray,Vikram Adve13.Physical-layer Identification of RFID Devices.Boris Danev,Thomas S.Heydt-Benjamin,Srdjan CapkunCP:Secure Remote Storage for Computational RFIDs.Mastooreh Salajegheh,Shane Clark,Benjamin Ransford,Kevin Fu,Ari Juels15.Jamming-resistant Broadcast Communication without Shared Keys.Christina Popper,Mario Strasser,Srdjan Capkun16.xBook:Redesigning Privacy Control in Social Networking Platforms.Kapil Singh,Sumeer Bhola,Wenke Lee17.Nemesis:Preventing Authentication and Access Control Vulnerabilities in Web Applications.Michael Dalton,Christos Kozyrakis,Nickolai Zeldovich18.Static Enforcement of Web Application Integrity Through Strong Typing.William Robertson,Giovanni Vigna19.Vanish:Increasing Data Privacy with Self-Destructing Data.(Outstanding Student Paper)Roxana Geambasu,Tadayoshi Kohno,Amit A.Levy,Henry M.Levy20.Efficient Data Structures for Tamper-Evident Logging.Scott A.Crosby,Dan S.Wallach21.VPriv:Protecting Privacy in Location-Based Vehicular Services.Raluca Ada Popa,Hari Balakrishnan,Andrew J.Blumberg22.Effective and Efficient Malware Detection at the End Host.Clemens Kolbitsch,Paolo Milani Comparetti,Christopher Kruegel,Engin Kirda,Xiaoyong Zhou,XiaoFeng Wang 23.Protecting Confidential Data on Personal Computers with Storage Capsules.Kevin Borders,Eric Vander Weele,Billy Lau,Atul Prakash24.Return-Oriented Rootkits:Bypassing Kernel Code Integrity Protection Mechanisms.Ralf Hund,Thorsten Holz,Felix C.Freiling25.Crying Wolf:An Empirical Study of SSL Warning Effectiveness.Joshua Sunshine,Serge Egelman,Hazim Almuhimedi,Neha Atri,Lorrie Faith Cranor26.The Multi-Principal OS Construction of the Gazelle Web Browser.Helen J.Wang,Chris Grier,Alex Moshchuk,Samuel T.King,Piali Choudhury,Herman VenterACM CCS20091.Attacking cryptographic schemes based on”perturbation polynomials”.Martin Albrecht,Craig Gentry,Shai Halevi,Jonathan Katz2.Filter-resistant code injection on ARM.Yves Younan,Pieter Philippaerts,Frank Piessens,Wouter Joosen,Sven Lachmund,Thomas Walter3.False data injection attacks against state estimation in electric power grids.Yao Liu,Michael K.Reiter,Peng Ning4.EPC RFID tag security weaknesses and defenses:passport cards,enhanced drivers licenses,and beyond.Karl Koscher,Ari Juels,Vjekoslav Brajkovic,Tadayoshi Kohno5.An efficient forward private RFID protocol.Come Berbain,Olivier Billet,Jonathan Etrog,Henri Gilbert6.RFID privacy:relation between two notions,minimal condition,and efficient construction.Changshe Ma,Yingjiu Li,Robert H.Deng,Tieyan Li7.CoSP:a general framework for computational soundness proofs.Michael Backes,Dennis Hofheinz,Dominique Unruh8.Reactive noninterference.Aaron Bohannon,Benjamin C.Pierce,Vilhelm Sjoberg,Stephanie Weirich,Steve Zdancewicputational soundness for key exchange protocols with symmetric encryption.Ralf Kusters,Max Tuengerthal10.A probabilistic approach to hybrid role mining.Mario Frank,Andreas P.Streich,David A.Basin,Joachim M.Buhmann11.Efficient pseudorandom functions from the decisional linear assumption and weaker variants.Allison B.Lewko,Brent Waters12.Improving privacy and security in multi-authority attribute-based encryption.Melissa Chase,Sherman S.M.Chow13.Oblivious transfer with access control.Jan Camenisch,Maria Dubovitskaya,Gregory Neven14.NISAN:network information service for anonymization networks.Andriy Panchenko,Stefan Richter,Arne Rache15.Certificateless onion routing.Dario Catalano,Dario Fiore,Rosario Gennaro16.ShadowWalker:peer-to-peer anonymous communication using redundant structured topologies.Prateek Mittal,Nikita Borisov17.Ripley:automatically securing web2.0applications through replicated execution.K.Vikram,Abhishek Prateek,V.Benjamin Livshits18.HAIL:a high-availability and integrity layer for cloud storage.Kevin D.Bowers,Ari Juels,Alina Oprea19.Hey,you,get offof my cloud:exploring information leakage in third-party compute clouds.Thomas Ristenpart,Eran Tromer,Hovav Shacham,Stefan Savage20.Dynamic provable data possession.C.Christopher Erway,Alptekin Kupcu,Charalampos Papamanthou,Roberto Tamassia21.On cellular botnets:measuring the impact of malicious devices on a cellular network core.Patrick Traynor,Michael Lin,Machigar Ongtang,Vikhyath Rao,Trent Jaeger,Patrick Drew McDaniel,Thomas Porta 22.On lightweight mobile phone application certification.William Enck,Machigar Ongtang,Patrick Drew McDaniel23.SMILE:encounter-based trust for mobile social services.Justin Manweiler,Ryan Scudellari,Landon P.Cox24.Battle of Botcraft:fighting bots in online games with human observational proofs.Steven Gianvecchio,Zhenyu Wu,Mengjun Xie,Haining Wang25.Fides:remote anomaly-based cheat detection using client emulation.Edward C.Kaiser,Wu-chang Feng,Travis Schluessler26.Behavior based software theft detection.Xinran Wang,Yoon-chan Jhi,Sencun Zhu,Peng Liu27.The fable of the bees:incentivizing robust revocation decision making in ad hoc networks.Steffen Reidt,Mudhakar Srivatsa,Shane Balfe28.Effective implementation of the cell broadband engineTM isolation loader.Masana Murase,Kanna Shimizu,Wilfred Plouffe,Masaharu Sakamoto29.On achieving good operating points on an ROC plane using stochastic anomaly score prediction.Muhammad Qasim Ali,Hassan Khan,Ali Sajjad,Syed Ali Khayam30.On non-cooperative location privacy:a game-theoretic analysis.Julien Freudiger,Mohammad Hossein Manshaei,Jean-Pierre Hubaux,David C.Parkes31.Privacy-preserving genomic computation through program specialization.Rui Wang,XiaoFeng Wang,Zhou Li,Haixu Tang,Michael K.Reiter,Zheng Dong32.Feeling-based location privacy protection for location-based services.Toby Xu,Ying Cai33.Multi-party off-the-record messaging.Ian Goldberg,Berkant Ustaoglu,Matthew Van Gundy,Hao Chen34.The bayesian traffic analysis of mix networks.Carmela Troncoso,George Danezis35.As-awareness in Tor path selection.Matthew Edman,Paul F.Syverson36.Membership-concealing overlay networks.Eugene Y.Vasserman,Rob Jansen,James Tyra,Nicholas Hopper,Yongdae Kim37.On the difficulty of software-based attestation of embedded devices.Claude Castelluccia,Aurelien Francillon,Daniele Perito,Claudio Soriente38.Proximity-based access control for implantable medical devices.Kasper Bonne Rasmussen,Claude Castelluccia,Thomas S.Heydt-Benjamin,Srdjan Capkun39.XCS:cross channel scripting and its impact on web applications.Hristo Bojinov,Elie Bursztein,Dan Boneh40.A security-preserving compiler for distributed programs:from information-flow policies to cryptographic mechanisms.Cedric Fournet,Gurvan Le Guernic,Tamara Rezk41.Finding bugs in exceptional situations of JNI programs.Siliang Li,Gang Tan42.Secure open source collaboration:an empirical study of Linus’law.Andrew Meneely,Laurie A.Williams43.On voting machine design for verification and testability.Cynthia Sturton,Susmit Jha,Sanjit A.Seshia,David Wagner44.Secure in-VM monitoring using hardware virtualization.Monirul I.Sharif,Wenke Lee,Weidong Cui,Andrea Lanzi45.A metadata calculus for secure information sharing.Mudhakar Srivatsa,Dakshi Agrawal,Steffen Reidt46.Multiple password interference in text passwords and click-based graphical passwords.Sonia Chiasson,Alain Forget,Elizabeth Stobert,Paul C.van Oorschot,Robert Biddle47.Can they hear me now?:a security analysis of law enforcement wiretaps.Micah Sherr,Gaurav Shah,Eric Cronin,Sandy Clark,Matt Blaze48.English shellcode.Joshua Mason,Sam Small,Fabian Monrose,Greg MacManus49.Learning your identity and disease from research papers:information leaks in genome wide association study.Rui Wang,Yong Fuga Li,XiaoFeng Wang,Haixu Tang,Xiao-yong Zhou50.Countering kernel rootkits with lightweight hook protection.Zhi Wang,Xuxian Jiang,Weidong Cui,Peng Ning51.Mapping kernel objects to enable systematic integrity checking.Martim Carbone,Weidong Cui,Long Lu,Wenke Lee,Marcus Peinado,Xuxian Jiang52.Robust signatures for kernel data structures.Brendan Dolan-Gavitt,Abhinav Srivastava,Patrick Traynor,Jonathon T.Giffin53.A new cell counter based attack against tor.Zhen Ling,Junzhou Luo,Wei Yu,Xinwen Fu,Dong Xuan,Weijia Jia54.Scalable onion routing with torsk.Jon McLachlan,Andrew Tran,Nicholas Hopper,Yongdae Kim55.Anonymous credentials on a standard java card.Patrik Bichsel,Jan Camenisch,Thomas Gros,Victor Shouprge-scale malware indexing using function-call graphs.Xin Hu,Tzi-cker Chiueh,Kang G.Shin57.Dispatcher:enabling active botnet infiltration using automatic protocol reverse-engineering.Juan Caballero,Pongsin Poosankam,Christian Kreibich,Dawn Xiaodong Song58.Your botnet is my botnet:analysis of a botnet takeover.Brett Stone-Gross,Marco Cova,Lorenzo Cavallaro,Bob Gilbert,MartinSzydlowski,Richard A.Kemmerer,Christopher Kruegel,Giovanni VignaNDSS20101.Server-side Verification of Client Behavior in Online Games.Darrell Bethea,Robert Cochran and Michael Reiter2.Defeating Vanish with Low-Cost Sybil Attacks Against Large DHTs.S.Wolchok,O.S.Hofmann,N.Heninger,E.W.Felten,J.A.Halderman,C.J.Rossbach,B.Waters,E.Witchel3.Stealth DoS Attacks on Secure Channels.Amir Herzberg and Haya Shulman4.Protecting Browsers from Extension Vulnerabilities.Adam Barth,Adrienne Porter Felt,Prateek Saxena,and Aaron Boodman5.Adnostic:Privacy Preserving Targeted Advertising.Vincent Toubiana,Arvind Narayanan,Dan Boneh,Helen Nissenbaum and Solon Barocas6.FLAX:Systematic Discovery of Client-side Validation Vulnerabilities in Rich Web Applications.Prateek Saxena,Steve Hanna,Pongsin Poosankam and Dawn Song7.Effective Anomaly Detection with Scarce Training Data.William Robertson,Federico Maggi,Christopher Kruegel and Giovanni Vignarge-Scale Automatic Classification of Phishing Pages.Colin Whittaker,Brian Ryner and Marria Nazif9.A Systematic Characterization of IM Threats using Honeypots.Iasonas Polakis,Thanasis Petsas,Evangelos P.Markatos and Spiros Antonatos10.On Network-level Clusters for Spam Detection.Zhiyun Qian,Zhuoqing Mao,Yinglian Xie and Fang Yu11.Improving Spam Blacklisting Through Dynamic Thresholding and Speculative Aggregation.Sushant Sinha,Michael Bailey and Farnam Jahanian12.Botnet Judo:Fighting Spam with Itself.A.Pitsillidis,K.Levchenko,C.Kreibich,C.Kanich,G.M.Voelker,V.Paxson,N.Weaver,S.Savage13.Contractual Anonymity.Edward J.Schwartz,David Brumley and Jonathan M.McCune14.A3:An Extensible Platform for Application-Aware Anonymity.Micah Sherr,Andrew Mao,William R.Marczak,Wenchao Zhou,Boon Thau Loo,and Matt Blaze15.When Good Randomness Goes Bad:Virtual Machine Reset Vulnerabilities and Hedging Deployed Cryptography.Thomas Ristenpart and Scott Yilek16.InvisiType:Object-Oriented Security Policies.Jiwon Seo and Monica m17.A Security Evaluation of DNSSEC with NSEC3.Jason Bau and John Mitchell18.On the Safety of Enterprise Policy Deployment.Yudong Gao,Ni Pan,Xu Chen and Z.Morley Mao19.Where Do You Want to Go Today?Escalating Privileges by Pathname Manipulation.Suresh Chari,Shai Halevi and Wietse Venema20.Joe-E:A Security-Oriented Subset of Java.Adrian Mettler,David Wagner and Tyler Close21.Preventing Capability Leaks in Secure JavaScript Subsets.Matthew Finifter,Joel Weinberger and Adam Barth22.Binary Code Extraction and Interface Identification for Security Applications.Juan Caballero,Noah M.Johnson,Stephen McCamant,and Dawn Song23.Automatic Reverse Engineering of Data Structures from Binary Execution.Zhiqiang Lin,Xiangyu Zhang and Dongyan Xu24.Efficient Detection of Split Personalities in Malware.Davide Balzarotti,Marco Cova,Christoph Karlberger,Engin Kirda,Christopher Kruegel and Giovanni VignaOakland20101.Inspector Gadget:Automated Extraction of Proprietary Gadgets from Malware Binaries.Clemens Kolbitsch Thorsten Holz,Christopher Kruegel,Engin Kirda2.Synthesizing Near-Optimal Malware Specifications from Suspicious Behaviors.Matt Fredrikson,Mihai Christodorescu,Somesh Jha,Reiner Sailer,Xifeng Yan3.Identifying Dormant Functionality in Malware Programs.Paolo Milani Comparetti,Guido Salvaneschi,Clemens Kolbitsch,Engin Kirda,Christopher Kruegel,Stefano Zanero4.Reconciling Belief and Vulnerability in Information Flow.Sardaouna Hamadou,Vladimiro Sassone,Palamidessi5.Towards Static Flow-Based Declassification for Legacy and Untrusted Programs.Bruno P.S.Rocha,Sruthi Bandhakavi,Jerry I.den Hartog,William H.Winsborough,Sandro Etalle6.Non-Interference Through Secure Multi-Execution.Dominique Devriese,Frank Piessens7.Object Capabilities and Isolation of Untrusted Web Applications.Sergio Maffeis,John C.Mitchell,Ankur Taly8.TrustVisor:Efficient TCB Reduction and Attestation.Jonathan McCune,Yanlin Li,Ning Qu,Zongwei Zhou,Anupam Datta,Virgil Gligor,Adrian Perrig9.Overcoming an Untrusted Computing Base:Detecting and Removing Malicious Hardware Automatically.Matthew Hicks,Murph Finnicum,Samuel T.King,Milo M.K.Martin,Jonathan M.Smith10.Tamper Evident Microprocessors.Adam Waksman,Simha Sethumadhavan11.Side-Channel Leaks in Web Applications:a Reality Today,a Challenge Tomorrow.Shuo Chen,Rui Wang,XiaoFeng Wang Kehuan Zhang12.Investigation of Triangular Spamming:a Stealthy and Efficient Spamming Technique.Zhiyun Qian,Z.Morley Mao,Yinglian Xie,Fang Yu13.A Practical Attack to De-Anonymize Social Network Users.Gilbert Wondracek,Thorsten Holz,Engin Kirda,Christopher Kruegel14.SCiFI-A System for Secure Face Identification.(Best Paper)Margarita Osadchy,Benny Pinkas,Ayman Jarrous,Boaz Moskovich15.Round-Efficient Broadcast Authentication Protocols for Fixed Topology Classes.Haowen Chan,Adrian Perrig16.Revocation Systems with Very Small Private Keys.Allison Lewko,Amit Sahai,Brent Waters17.Authenticating Primary Users’Signals in Cognitive Radio Networks via Integrated Cryptographic and Wireless Link Signatures.Yao Liu,Peng Ning,Huaiyu Dai18.Outside the Closed World:On Using Machine Learning For Network Intrusion Detection.Robin Sommer,Vern Paxson19.All You Ever Wanted to Know about Dynamic Taint Analysis and Forward Symbolic Execution(but might have been afraid to ask).Thanassis Avgerinos,Edward Schwartz,David Brumley20.State of the Art:Automated Black-Box Web Application Vulnerability Testing.Jason Bau,Elie Bursztein,Divij Gupta,John Mitchell21.A Proof-Carrying File System.Deepak Garg,Frank Pfenning22.Scalable Parametric Verification of Secure Systems:How to Verify Ref.Monitors without Worrying about Data Structure Size.Jason Franklin,Sagar Chaki,Anupam Datta,Arvind Seshadri23.HyperSafe:A Lightweight Approach to Provide Lifetime Hypervisor Control-Flow Integrity.Zhi Wang,Xuxian Jiang24.How Good are Humans at Solving CAPTCHAs?A Large Scale Evaluation.Elie Bursztein,Steven Bethard,John C.Mitchell,Dan Jurafsky,Celine Fabry25.Bootstrapping Trust in Commodity Computers.Bryan Parno,Jonathan M.McCune,Adrian Perrig26.Chip and PIN is Broken.(Best Practical Paper)Steven J.Murdoch,Saar Drimer,Ross Anderson,Mike Bond27.Experimental Security Analysis of a Modern Automobile.K.Koscher,A.Czeskis,F.Roesner,S.Patel,T.Kohno,S.Checkoway,D.McCoy,B.Kantor,D.Anderson,H.Shacham,S.Savage 28.On the Incoherencies in Web Browser Access Control Policies.Kapil Singh,Alexander Moshchuk,Helen J.Wang,Wenke Lee29.ConScript:Specifying and Enforcing Fine-Grained Security Policies for JavaScript in the Browser.Leo Meyerovich,Benjamin Livshits30.TaintScope:A Checksum-Aware Directed Fuzzing Tool for Automatic Software Vulnerability Detection.(Best Student Paper)Tielei Wang,Tao Wei,Guofei Gu,Wei Zou31.A Symbolic Execution Framework for JavaScript.Prateek Saxena,Devdatta Akhawe,Steve Hanna,Stephen McCamant,Dawn Song,Feng MaoUSENIX Security20101.Adapting Software Fault Isolation to Contemporary CPU Architectures.David Sehr,Robert Muth,CliffBiffle,Victor Khimenko,Egor Pasko,Karl Schimpf,Bennet Yee,Brad Chen2.Making Linux Protection Mechanisms Egalitarian with UserFS.Taesoo Kim and Nickolai Zeldovich3.Capsicum:Practical Capabilities for UNIX.(Best Student Paper)Robert N.M.Watson,Jonathan Anderson,Ben Laurie,Kris Kennaway4.Structuring Protocol Implementations to Protect Sensitive Data.Petr Marchenko,Brad Karp5.PrETP:Privacy-Preserving Electronic Toll Pricing.Josep Balasch,Alfredo Rial,Carmela Troncoso,Bart Preneel,Ingrid Verbauwhede,Christophe Geuens6.An Analysis of Private Browsing Modes in Modern Browsers.Gaurav Aggarwal,Elie Bursztein,Collin Jackson,Dan Boneh7.BotGrep:Finding P2P Bots with Structured Graph Analysis.Shishir Nagaraja,Prateek Mittal,Chi-Yao Hong,Matthew Caesar,Nikita Borisov8.Fast Regular Expression Matching Using Small TCAMs for Network Intrusion Detection and Prevention Systems.Chad R.Meiners,Jignesh Patel,Eric Norige,Eric Torng,Alex X.Liu9.Searching the Searchers with SearchAudit.John P.John,Fang Yu,Yinglian Xie,Martin Abadi,Arvind Krishnamurthy10.Toward Automated Detection of Logic Vulnerabilities in Web Applications.Viktoria Felmetsger,Ludovico Cavedon,Christopher Kruegel,Giovanni Vigna11.Baaz:A System for Detecting Access Control Misconfigurations.Tathagata Das,Ranjita Bhagwan,Prasad Naldurg12.Cling:A Memory Allocator to Mitigate Dangling Pointers.Periklis Akritidis13.ZKPDL:A Language-Based System for Efficient Zero-Knowledge Proofs and Electronic Cash.Sarah Meiklejohn,C.Chris Erway,Alptekin Kupcu,Theodora Hinkle,Anna Lysyanskaya14.P4P:Practical Large-Scale Privacy-Preserving Distributed Computation Robust against Malicious Users.Yitao Duan,John Canny,Justin Zhan,15.SEPIA:Privacy-Preserving Aggregation of Multi-Domain Network Events and Statistics.Martin Burkhart,Mario Strasser,Dilip Many,Xenofontas Dimitropoulos16.Dude,Where’s That IP?Circumventing Measurement-based IP Geolocation.Phillipa Gill,Yashar Ganjali,Bernard Wong,David Lie17.Idle Port Scanning and Non-interference Analysis of Network Protocol Stacks Using Model Checking.Roya Ensafi,Jong Chun Park,Deepak Kapur,Jedidiah R.Crandall18.Building a Dynamic Reputation System for DNS.Manos Antonakakis,Roberto Perdisci,David Dagon,Wenke Lee,Nick Feamster19.Scantegrity II Municipal Election at Takoma Park:The First E2E Binding Governmental Election with Ballot Privacy.R.Carback,D.Chaum,J.Clark,J.Conway,A.Essex,P.S.Herrnson,T.Mayberry,S.Popoveniuc,R.L.Rivest,E.Shen,A.T.Sherman,P.L.Vora20.Acoustic Side-Channel Attacks on Printers.Michael Backes,Markus Durmuth,Sebastian Gerling,Manfred Pinkal,Caroline Sporleder21.Security and Privacy Vulnerabilities of In-Car Wireless Networks:A Tire Pressure Monitoring System Case Study.Ishtiaq Rouf,Rob Miller,Hossen Mustafa,Travis Taylor,Sangho Oh,Wenyuan Xu,Marco Gruteser,Wade Trappe,Ivan Seskar 22.VEX:Vetting Browser Extensions for Security Vulnerabilities.(Best Paper)Sruthi Bandhakavi,Samuel T.King,P.Madhusudan,Marianne Winslett23.Securing Script-Based Extensibility in Web Browsers.Vladan Djeric,Ashvin Goel24.AdJail:Practical Enforcement of Confidentiality and Integrity Policies on Web Advertisements.Mike Ter Louw,Karthik Thotta Ganesh,V.N.Venkatakrishnan25.Realization of RF Distance Bounding.Kasper Bonne Rasmussen,Srdjan Capkun26.The Case for Ubiquitous Transport-Level Encryption.Andrea Bittau,Michael Hamburg,Mark Handley,David Mazieres,Dan Boneh27.Automatic Generation of Remediation Procedures for Malware Infections.Roberto Paleari,Lorenzo Martignoni,Emanuele Passerini,Drew Davidson,Matt Fredrikson,Jon Giffin,Somesh Jha28.Re:CAPTCHAs-Understanding CAPTCHA-Solving Services in an Economic Context.Marti Motoyama,Kirill Levchenko,Chris Kanich,Damon McCoy,Geoffrey M.Voelker,Stefan Savage29.Chipping Away at Censorship Firewalls with User-Generated Content.Sam Burnett,Nick Feamster,Santosh Vempala30.Fighting Coercion Attacks in Key Generation using Skin Conductance.Payas Gupta,Debin GaoACM CCS20101.Security Analysis of India’s Electronic Voting Machines.Scott Wolchok,Erik Wustrow,J.Alex Halderman,Hari Prasad,Rop Gonggrijp2.Dissecting One Click Frauds.Nicolas Christin,Sally S.Yanagihara,Keisuke Kamataki3.@spam:The Underground on140Characters or Less.Chris Grier,Kurt Thomas,Vern Paxson,Michael Zhang4.HyperSentry:Enabling Stealthy In-context Measurement of Hypervisor Integrity.Ahmed M.Azab,Peng Ning,Zhi Wang,Xuxian Jiang,Xiaolan Zhang,Nathan C.Skalsky5.Trail of Bytes:Efficient Support for Forensic Analysis.Srinivas Krishnan,Kevin Z.Snow,Fabian Monrose6.Survivable Key Compromise in Software Update Systems.Justin Samuel,Nick Mathewson,Justin Cappos,Roger Dingledine7.A Methodology for Empirical Analysis of the Permission-Based Security Models and its Application to Android.David Barrera,H.Gunes Kayacik,Paul C.van Oorschot,Anil Somayaji8.Mobile Location Tracking in Metropolitan Areas:malnets and others.Nathanial Husted,Steve Myers9.On Pairing Constrained Wireless Devices Based on Secrecy of Auxiliary Channels:The Case of Acoustic Eavesdropping.Tzipora Halevi,Nitesh Saxena10.PinDr0p:Using Single-Ended Audio Features to Determine Call Provenance.Vijay A.Balasubramaniyan,Aamir Poonawalla,Mustaque Ahamad,Michael T.Hunter,Patrick Traynor11.Building Efficient Fully Collusion-Resilient Traitor Tracing and Revocation Schemes.Sanjam Garg,Abishek Kumarasubramanian,Amit Sahai,Brent Waters12.Algebraic Pseudorandom Functions with Improved Efficiency from the Augmented Cascade.Dan Boneh,Hart Montgomery,Ananth Raghunathan13.Practical Leakage-Resilient Pseudorandom Generators.Yu Yu,Francois-Xavier Standaert,Olivier Pereira,Moti Yung14.Practical Leakage-Resilient Identity-Based Encryption from Simple Assumptions.Sherman S.M.Chow,Yevgeniy Dodis,Yannis Rouselakis,Brent Waters15.Testing Metrics for Password Creation Policies by Attacking Large Sets of Revealed Passwords.Matt Weir,Sudhir Aggarwal,Michael Collins,Henry Stern16.The Security of Modern Password Expiration:An Algorithmic Framework and Empirical Analysis.Yinqian Zhang,Fabian Monrose,Michael K.Reiter17.Attacks and Design of Image Recognition CAPTCHAs.Bin Zhu,JeffYan,Chao Yang,Qiujie Li,Jiu Liu,Ning Xu,Meng Yi18.Robusta:Taming the Native Beast of the JVM.Joseph Siefers,Gang Tan,Greg Morrisett19.Retaining Sandbox Containment Despite Bugs in Privileged Memory-Safe Code.Justin Cappos,Armon Dadgar,JeffRasley,Justin Samuel,Ivan Beschastnikh,Cosmin Barsan,Arvind Krishnamurthy,Thomas Anderson20.A Control Point for Reducing Root Abuse of File-System Privileges.Glenn Wurster,Paul C.van Oorschot21.Modeling Attacks on Physical Unclonable Functions.Ulrich Ruehrmair,Frank Sehnke,Jan Soelter,Gideon Dror,Srinivas Devadas,Juergen Schmidhuber22.Dismantling SecureMemory,CryptoMemory and CryptoRF.Flavio D.Garcia,Peter van Rossum,Roel Verdult,Ronny Wichers Schreur23.Attacking and Fixing PKCS#11Security Tokens.Matteo Bortolozzo,Matteo Centenaro,Riccardo Focardi,Graham Steel24.An Empirical Study of Privacy-Violating Information Flows in JavaScript Web Applications.Dongseok Jang,Ranjit Jhala,Sorin Lerner,Hovav Shacham25.DIFC Programs by Automatic Instrumentation.William Harris,Somesh Jha,Thomas Reps26.Predictive Black-box Mitigation of Timing Channels.Aslan Askarov,Danfeng Zhang,Andrew Myers27.In Search of an Anonymous and Secure Lookup:Attacks on Structured Peer-to-peer Anonymous Communication Systems.Qiyan Wang,Prateek Mittal,Nikita Borisov28.Recruiting New Tor Relays with BRAIDS.Rob Jansen,Nicholas Hopper,Yongdae Kim29.An Improved Algorithm for Tor Circuit Scheduling.Can Tang,Ian Goldberg30.Dissent:Accountable Anonymous Group Messaging.Henry Corrigan-Gibbs,Bryan Ford31.Abstraction by Set-Membership—Verifying Security Protocols and Web Services with Databases.Sebastian Moedersheim。
《人工智能》课程习题

《人工智能》课程习题第一章绪论1-1. 什么是人工智能?试从学科和能力两方面加以说明。
1-2. 在人工智能的发展过程中,有哪些思想和思潮起了重要作用?1-3. 为什么能够用机器(计算机)模仿人的智能?1-4. 现在人工智能有哪些学派?它们的认知观是什么?1-5. 你认为应从哪些层次对认知行为进行研究?1-6. 人工智能的主要研究和应用领域是什么?其中,哪些是新的研究热点?第二章知识表示方法2-1状态空间法、问题归约法、谓词逻辑法和语义网络法的要点是什么?它们有何本质上的联系及异同点?2-2设有3个传教士和3个野人来到河边,打算乘一只船从右岸渡到左岸去。
该船的负载能力为两人。
在任何时候,如果野人人数超过传教士人数,那么野人就会把传教士吃掉。
他们怎样才能用这条船安全地把所有人都渡过河去?再定义描述过河方案的谓词:L-R(x, x1, y, y1,S):x1个修道士和y1个野人渡船从河的左岸到河的右岸条件:Safety(L,x-x1,y-y1,S’)∧Safety(R,3-x+x1,3-y+y1,S’)∧Boat(L,S)动作:Safety(L,x-x1,y-y1,S’)∧Safety(R,3-x+x1,3-y+y1,S’)∧Boat(R,S’)R-L (x, x1, y, y1,S):x2个修道士和y2个野人渡船从河的左岸到河的右岸条件:Safety(R,3-x-x2,3-y-y2,S’)∧Safety(L,x+x2,y+y2,S’)∧Boat(R,S)动作:Safety(R,3-x-x2,3-y-y2,S’)∧Safety(L,x+x2,y+y2,S’)∧Boat(L,S’)(2) 过河方案Safety(L,3,3,S0)∧Safety(R,0,0,S0)∧Boat(L,S0)L-R(3, 1, 3, 1,S0) L-R(3, 0, 3, 2,S0)Safety(L,2,2,S1)∧Safety(R,1,1,S1)∧Boat(R,S1)Safety(L,3,1,S1’)∧Safety(R,0,2,S1’)∧Boat(R,S1’)R-L (2, 1, 2, 0,S1) R-L (3,0, 1, 1,S1’)Safety(L,3,2,S2)∧Safety(R,0,1,S2)∧Boat(L,S2)L-R(3, 0, 2, 2,S2)Safety(L,3,0,S3)∧Safety(R,0,3,S3)∧Boat(R,S3)R-L (3, 0, 0, 1,S3)Safety(L,3,1,S4)∧Safety(R,0,2,S1)∧Boat(L,S4)L-R(3, 2, 1, 0,S4)Safety(L,1,1,S5)∧Safety(R,2,2,S5)∧Boat(R,S5)R-L (1, 1, 1, 1,S5)Safety(L,2,2,S6)∧Safety(R,1,1,S6)∧Boat(L,S6)L-R(2, 2, 2, 0,S6)Safety(L,0,2,S7)∧Safety(R,3,1,S7)∧Boat(R,S7)R-L (0, 0, 2, 1,S7)Safety(L,0,3,S8)∧Safety(R,3,0,S8)∧Boat(L,S8)L-R(0, 0, 3, 2,S8)Safety(L,0,1,S9)∧Safety(R,3,2,S9)∧Boat(R,S9)R-L (0, 1, 1, 0,S9)Safety(L,1,1,S10)∧Safety(R,2,2,S10)∧Boat(L,S10)2-3利用图2.3,用状态空间法规划一个最短的旅行路程:此旅程从城市A开始,访问其他城市不多于一次,并返回A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FormalVerificationofUMLDiagrams:AFirstStepTowardsCodeGeneration
JeffreySmith1,MieczyslawKokar2andKennethBaclawski21MercuryComputerSystems,Inc.
2NortheasternUniversity
Abstract.UMLdiagramscanbeusedforcodegeneration.Suchcodeshouldcarrythemeaningembeddedinadiagram.Thegoalofthispaperistoshowaprocessinwhichsuchtranslationcanbeformallyverified.Toachievethisgoal,thewholecheckingprocesshastobeformalized.Inthispaperweshowsuchaverificationprocessandexample.
Keywords-UMLspecification,formalizationandtranslation,formalmethods.
1IntroductionUMLdiagramsaretranslatedintocodebyvariousCASEtools.However,(1)theverificationofthetranslationcorrectnessislefttoeitherthetooldevelopersortheprogrammers,(2)CASEtoolsdon’tenforceacompletesetofUMLsyntax,letalonesemanticsand(3)CASEtoolsareonlycapa-bleoftranslatingheaderfilesandconstructors/destructorstoaprogram-minglanguage.WeareinterestedintranslatorsthatareprovablycorrectwithrespecttotheintendedmeaningoftheUMLlanguage,i.e.,suchthatpreservetheintendedmeaningembeddedinUMLdiagramsrepresentingvariousprogramspecifications.TranslationofUMLdiagramsintocodemaybeamulti-stepprocess[1,2].Inordertomakesurethatthewholetranslationpreservesthemeaning,eachofthesinglestepsmustobeysuchaconstraint.Ifaspecificationisexpressedinaformalspecificationlanguage,formalmethodscanbeusedtocheckthecorrectnessofsuchtranslation.However,inspiteofgreatstridesthattheUMLspecificationcontributorshavemadeindefiningsemi-formalsemantics,withacombinationofmeta-language,constraintspecificationandtext,intheUMLSemanticsGuide,theUMLisstillnotaformallanguage.Improvementsinthesesemi-formalUMLdescriptionsareneededtoconveyarigoroussemanticsandtoprovidetoolsupporttoverifyUMLdiagramsagainstanunambiguousspecificationofUMLsemantics.Moreover,sincetheUMLSemanticsGuideusesUMLtodefineameta-modeloftheUML,aformalverificationprocessneedstobeestablished.InSection2,weoutlineaprocessforformallycheckingthecorrect-nessofaUMLdiagramtranslator.Wethengiveaspecificexampleforeachstepoftheverificationprocess.WefocusontheformalizationoftheUML’sassociationandaggregation.InSection3,weshowpartialformal-izationoftheseconceptsintheSlangformalmethodlanguage.Then,inSection4,weshowanexampleofaUMLdiagramthatusesassociationsandaggregationsaswellastheresultofatranslationofthediagramintoSlang.Finally,inSection5,weshowhowtoverifythatanautomaticallygeneratedSlangformofthisUMLdiagramisconsistentwithourformal-izationofUMLSemantics.RelatedUMLformalizationresearchisreferredtoinSection6.InSection7,wesummarizeourconclusionsandpointtodirectionsforfutureinvestigationsoftheUMLtranslationverificationproblem.
2UMLTranslationVerificationProcessOurUMLtranslationverificationprocessisshowninFigure1.AlthoughtheSlangformalmethodslanguage[14]isusedtogiveformalspecificationlanguageexamplesandreferences,theconceptsdescribedinthispapercanbeattributedtoanyalgebraic/categorytheorybasedformallanguage.SinceUMLisdescribedinUML,Transition1,GT(MME),describestheformalizationoftheUMLmeta-modelinSlang.Itconsistsoftwoparts.First,weshowsomeoftherulesthatweusedintheformalizationandthenapartialformalizationofthemeta-modelispresented.Theserulessignificantlydependonthestructureoftheselectedspecificationlanguage(Slang).Transition2,TR(ME),showsthetoolsupportneededtoauto-maticallytranslateUMLapplications(describedastheUMLGraphicalDomain)toSlang.Transition3representstheverificationofthecorrect-nessofthetranslation.HerewecheckthatinstancesoftheSlangformoftheUMLGraphicalDomaintranslationpreservetheUMLsemanticscapturedinTransition1.Toexplainthisstep,wefirstviewboththespecificationoftheUMLmeta-modelandofanyUMLdiagramasapre-sentationofatheory(inSlang).Ourgoalistoensurethattheclassofmodelsofthetheory,obtainedasatranslationofanyUMLdiagram,isasubclassofmodelsofthetheoryoftheUMLmeta-model(cf.[9]).Inordertoshowthis,weneedtoshowthatforeachsuchtranslationthereexistsamorphismfromtheUMLmeta-modeltheorytothetheoryrepresentingagivenUMLdiagram.Transition4,markedinFigure1asGen(ME),isamappingofallpossibleUMLdiagramsthatcanbeproducedwithinaUMLCASEtoolintotheUMLmeta-model.GenmapseachUMLmodelelementthatappearsinaparticulardiagramtoitscounterpartintheUMLmeta-model.Wedonotdiscussthistransitioninthispaper.
Fig.1.TranslationVerificationProcess