2020高考数学(理)三轮复习每日一卷试题+参考答案+评分标准 (23)

合集下载

2020年高考新课标Ⅲ理科数学试卷及答案

2020年高考新课标Ⅲ理科数学试卷及答案
则直线 的方程为 ,即 .
故选:D.
【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.
11.设双曲线C: (a>0,b>0)的左、右焦点分别为F1,F2,离心率为 .P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a=()
A. 1B. 2C. 4D. 8
【答案】A
由 ,得 ,由 ,得 , ,可得 .
综上所述, .
故选:A.
【点睛】本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.
所以满足 的有 ,
故 中元素的个数为4.
故选:C.
【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.
2.复数 的虚部是()
A. B. C. D.
【答案】D
利用复数的除法运算求出z即可.
【详解】因为 ,
所以复数 的虚部为 .
故选:D.
【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题.
A.y=2x+1B.y=2x+ C.y= x+1D.y= x+
【答案】D
根据导数的几何意义设出直线 的方程,再由直线与圆相切的性质,即可得出答案.
【详解】设直线 在曲线 上的切点为 ,则 ,
函数 的导数为 ,则直线 的斜率 ,
设直线 的方程为 ,即 ,
由于直线 与圆 相切,则 ,
两边平方并整理得 ,解得 , (舍),
2020年高考新课标Ⅲ理科数学试卷及答案
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的

2020年全国高考三轮复习信息卷 理科数学(附答案+全解全析)01

2020年全国高考三轮复习信息卷 理科数学(附答案+全解全析)01

2020年全国高考三轮复习信息卷数 学(理)(本试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

第Ⅰ卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若集合A ={x ∈N||x −1|≤1 }, B ={x|y =√1−x 2},则A ∩B 的真子集的个数为( ) A .3 B .4 C .7 D .82.若复数22252x 2i 2x x x x -++---()为纯虚数,则x 的值为( ) A .2. B .-1. C .12-. D .12. 3.若347log log log 2x y z ==<-,则( )A .347x y z <<B .743z y x <<C .437y x z <<D .734z x y <<4.“上医医国”出自《国语・晋语八》,比喻高贤能治理好国家.现把这四个字分别写在四张卡片上,其中“上”字已经排好,某幼童把剩余的三张卡片进行排列,则该幼童能将这句话排列正确的概率是( )A .13B .16C .14D .1125.埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇迹之一,其中较为著名的是胡夫金字塔.令人吃惊的并不仅仅是胡夫金字塔的雄壮身姿,还有发生在胡夫金字塔上的数字“巧合”.如胡夫金字塔的底部周长如果除以其高度的两倍,得到的商为3.14159,这就是圆周率较为精确的近似值.金字塔底部形为正方形,整个塔形为正四棱锥,经古代能工巧匠建设完成后,底座边长大约230米.因年久风化,顶端剥落10米,则胡夫金字塔现高大约为( )A .128.5米B .132.5米C .136.5米D .110.5米 6.函数1()log 1a x f x x x +=+(01a <<)的图象的大致形状是( ) A . B .C .D .7.记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12B .-10C .10D .128.在平行四边形ABCD 中,3AB =,2AD =,13AP AB =u u u r u u u r ,12AQ AD =u u u r u u u r ,若12CP CQ ⋅=u u u r u u u r ,则BAD ∠=( )A .4πB .3πC .2πD .23π 9.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十“的推论.主要用于解释中国传统文化中的太极衍生原理数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和是中华传统文化中隐藏着的世界数学史上第一道数列题其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个判断框中,可以先后填入( )A .n 是偶数?,100n ≥?B .n 是奇数?,100n ≥?C .n 是偶数?, 100n >?D .n 是奇数?,100n >?10.中国古代数学家名著《九章算术》中记载了一种名为“堑堵”的几何体,其三视图如图所示,则其外接球的表面积为( )A .43πB .4πC .8πD .64π11.已知F 是椭圆22221(0)x y a b a b+=>>的右焦点,A 是椭圆短轴的一个端点,若F 为过AF 的椭圆的弦的三等分点,则椭圆的离心率为( )A .13B .3C .12D .212.已知f(x)={e x ,x ≤01−x,0<x <1√x −1,x ≥1 ,若a <b <c,f(a)=f(b)=f(c),则实数a +3b +c 的取值范围是。

2020高考数学(理)三轮复习每日一卷试题+参考答案+评分标准 (20)

2020高考数学(理)三轮复习每日一卷试题+参考答案+评分标准 (20)

2020高考数学三轮每日一卷满分150分 时间120分钟一、选择题(本大题共12题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知复数2zi =+,则1zi+在复平面上对应的点所在象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限2.已知集合1{|0}xA x x-=≥, {|lg(21)}B x y x ==-,则=B A I ( ) A .),(210 B . ),(121 C .]121,( D .]121[, 3.若4log 3a=,0.33b =,3log cos19π20c =,则a ,b ,c 的大小关系为( )A .a c b <<B .c b a <<C .b c a <<D .c a b <<4.dx x x ))1(1(212---⎰的值是()A.314-πB.14-πC.312-πD.12-π5.已知5sin 26cos()0,(0,),2παπαα+-=∈则2cos ()24απ+=( )A.45B.15-C. 35D.156.给出下列四个命题: ①命题“若π4α=,则tan 1α=”的逆否命题为假命题; ②命题:p x ∀∈R ,sin 1x ≤.则0:p x ⌝∃∈R ,使0sin 1x >;③在ABC △中,若A B >,则sin sin A B >;④命题:“0x ∃∈R ,使003sin cos 2x x +=”.其中正确的个数是( )A .1B .2C .3D .47.在中,,,,为边上一点,且,则()A.B.C.D.8.函数f (x )=21x x 的图象大致是( )A .B .C .D .9.已知:1p a =±,:q 函数22()()f x ln x a x =+为奇函数,则p 是q 成立的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件10.使函数)cos(3)sin()(ϕϕ+-+=x x x f 为偶函数,且在区间π0,4⎡⎤⎢⎥⎣⎦上是减函数的ϕ的一个值为( ) A .3π-B .π32 C .π65 D .6π-11.关于函数()cos cos 2f x x x =+有下列三个结论:①π是f(x)的一个周期;②f(x)在35[,]44ππ上单调递增;③f(x)的值域为[-2,2].则上述结论中,正确的个数为( ) A.0 B.1 C.2 D.312.函数22()()e x f x x ax ax a =--+(e 为自然对数的底数,R a ∈,a 为常数)有三个不同零点,则a 的取值范围是( ) A .1(,0)e-B .(,0)-∞C .1(,)e-+∞ D .(0,)+∞二、填空题(本大题共4小题,每小题5分,共20分)13.已知(),2Pm 为角α终边上一点,且tan 34πα⎛⎫+= ⎪⎝⎭,则cos α=________. 14.设曲线ln 1xy x =+在点(1,0)处的切线与直线10x ay -+=垂直,则=a .15.已知定义在R 上的函数()f x 在区间)[0,+∞上单调递增,且()1y f x =-的图象关于1x =对称,若实数a满足()()2log 2f a f <,则a 的取值范围是 .16.已知c b a ,,分别为ABC ∆三个内角C B A ,,的对边,a=1,且(1)(sin sin ))sin ,b A Bc b C +-=-(则ABC ∆面积的最大值为____________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,已知(a -b)2=c 2-ab . (1)求角C ; (2)若4cos()sin 02c A b C π++=,a =1,求△ABC 的面积.18.(本小题满分12分)如图所示,三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,点D ,E 分别在线段AA 1,CC 1上,且AD =13AA 1,DE//AC ,F 是线段AB 的中点. (1)求证:EF//平面B 1C 1D ;(2)若AB ⊥AC ,AB =AC ,AA 1=3AB ,求直线BC 与平面B 1DE 所成角的正弦值.19.(本小题满分12分) 函数)2()232sin cos 30f x x x x ωωωω=+->,其图象上相邻两个最高点之间的距离为2π3.(1)求ω的值; (2)将函数()y f x =的图象向右平移π6个单位,再将所得图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到()y g x =的图象,求()g x 在4π0,3⎡⎤⎢⎥⎣⎦上的单调增区间.20.(本小题满分12分)2019年某饮料公司计划从,A B 两款新配方饮料中选择一款进行新品推介,现对这两款饮料进行市场调查,让接受调查的受访者同时饮用这两种饮料,并分别对,A B 两款饮料进行评分,现对接受调查的100万名受访者的评分进行整理得到如下统计图.从对以往调查数据分析可以得出如下结论:评分在[0,60)的受访者中有20%会购买,评分在[60,80)的受访者中有60%会购买,评分在[80,100]的受访者中有90%会购买. (Ⅰ)在受访的100万人中,求对A 款饮料评分在60分以下的人数(单位:万人); (Ⅱ)现从受访者中随机抽取1人进行调查,试估计该受访者购买A 款饮料的可能性高于购买B 款饮料的可能性的概率; (Ⅲ)如果你是决策者,新品推介你会主推哪一款饮料,并说明你理由.21.(错题再现)已知函数2()ln ()2a f x x x x x a a R =--+∈,在其定义域内有两个不同的极值点. (1)求a 的取值范围;(2)记两个极值点为12,x x ,且12x x >,证明:212e x x ⋅>.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x轴的正半轴为极轴建立极坐标系,曲线C :2=2sin 3ρρθ+,直线l :sin()23πρθ+=.(1)求曲线C 和直线l 的直角坐标方程;(2)设点P 的直角坐标为(0,4),直线l 与曲线C 相交于M N 、两点,求22PM PN +的值23.设()311f x x x =-++的最小值为k . (1)求实数k 的值;(2)设m ,n ∈R ,224m n k +=,求证:2211312m n +≥+.答案一一、1-5 DCDAD 6-10 BBCCC 11-12 BA二、13.552 14. 21 15. ),(44116.43三、17.19.18.(1)函数()223cos 2sin cos 33cos2sin22sin 2(0)3πf x x x x x x ωωωωωωω⎛⎫=+-=+=+> ⎪⎝⎭,其图象上相邻两个最高点之间的距离为2π2π23ω=,32ω∴=,()2sin 3π3f x x ⎛⎫=+ ⎪⎝⎭.(2)将函数()y f x =的向右平移π6个单位,可得π2sin 32sin 36π36πy x x ⎡⎤⎛⎫⎛⎫=-+=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦的图象;再将所得图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到()32sin 2π6y g x x ⎛⎫==- ⎪⎝⎭的图象.由4π0,3x ⎡⎤∈⎢⎥⎣⎦,可得311π,266π6πx ⎡⎤-∈-⎢⎥⎣⎦,令32π2π2262πππx k k -≤-≤+,求得4π2π4π4π3939k k x -≤≤+, 故()gx 在4π0,3⎡⎤⎢⎥⎣⎦上的单调增区间为4π0,9⎡⎤⎢⎥⎣⎦和10π4π,93⎡⎤⎢⎥⎣⎦20.依题意,函数的定义域为(1,+∞). (1)当m =4时,()()2154ln 1622f x x x x =-+--.()()()22547106111x x x x f x x x x x ---+=+-==---', 令,解得或;令,解得.可知函数()f x 的单调递增区间为(1,2)和(5,+∞),单调递减区间为.(2)()()()2364211x m x m f x x m x x -+++=+-+='--. 若函数()y f x =有两个极值点,则()()()234601360312Δm m m m m =-+-+>⎡⎤⎣⎦-+++⎧⎪⎪⎪⎨>+>⎪⎪⎪⎩,解得3m >. 20.(Ⅰ)由对A 款饮料的评分饼状图,得对A 款饮料评分在60分以下的频率为为0.050.150.2+=,∴对A 款饮料评分在60分以下的人数为1000.220⨯=(万人)(Ⅱ)设受访者购买A 款饮料的可能性高于购买B 款饮料的可能性为事件C .记购买A 款饮料的可能性为20%为事件1A ;购买A 款饮料的可能性为60%为事件2A ;购买A 款饮料的可能性为90%为事件3A ;购买B 款饮料的可能性为20%为事件1B ;购买B 款饮料的可能性为60%为事件2B .购买B 款饮料的可能性为90%为事件3B .则()10.050.150.2PA =+=,()20.10.20.3P A +==,()30.150.350.5P A +==,由用频率估计概率得:()1550.1100PB +==,()215200.35100P B +==,()315400.55100P B +== Q 事件i A 与j B 相互独立,其中,1,2,3i j =.()()213132P C P A B A B A B ∴=++()()()()()()213132P A P B P A P B P A P B =++0.30.10.50.10.50.350.255=⨯+⨯+⨯=∴该受访者购买A 款饮料的可能性高于购买B 款饮料的可能性的概率为0.255 ;(Ⅲ)从受访者对A ,B 两款饮料购买期望角度看:A 款饮料购买期望X 的分布列为:B 方案“选择倾向指数”Y 的分布列为:()0.20.20.60.30.90.50.67E X ∴=⨯+⨯+⨯=,()0.20.10.60.350.90.550.725E Y =⨯+⨯+⨯=,根据上述期望可知()()EX E Y <,故新品推介应该主推B 款饮料.21解:(1)由题意知,函数()f x 的定义域为(0,)+∞,方程()0f x '=在(0,)+∞有两个不同根;即方程ln 0x ax -=在(0,)+∞有两个不同根;转化为函数ln y x =与函数y ax =的图象在(0,)+∞上有两个不同交点,如图.可见,若令过原点且切于函数ln y x =图象的直线斜率为k ,只须0a k <<.令切点()00,ln A x x ,故01x x ky x=='=,又00ln x kx =故00ln 1x x x =,解得,0x e =,故1k e =,故a 的取值范围为10,e ⎛⎫⎪⎝⎭(2)由(1)可知12,x x 分别是方程ln 0x ax -=的两个根,即11ln x ax =, 22ln x ax =,作差得()1122ln x a x x x =-,即1212ln xx a x x =-对于212e x x ⋅>,取对数得12ln 2x x >,即12ln ln 2x x +>又因为()111122ln ln x x x a ax x x a =+=++,所以122a x x >+,得()1212122lnx x x x x x ->+令12x t x =,则1t >,()1212122ln x x x x x x ->+,即2(1)ln 1t t t ->+ 设2(1)()ln 1t g t t t -=-+, 1t >,22(1)()0(1)t g t t t '-=>+,所以函数()g t 在(1,)+∞上单调递增, 所以()(1)0g t g >=,即不等式2(1)ln 1t tt ->+成立,故所证不等式212e x x ⋅>成立.22(1)由曲线C :2=2sin 3ρρθ+得直角坐标方程为22+y =23x y +, 即C 的直角坐标方程为:22+(1)=4x y -. 由直线l :sin()23πρθ+=展开的sin cos 4ρθθ=,40y +-=.(2)由(1)得直线l 的倾斜角为23π.所以l的参数方程为1,24,2x t y t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数), 代入曲线C得:250t ++=.设交点M N 、所对应的参数分别为12t t 、,则1212+=5t t t t -⋅=22222121212+=(+)217PM PN t t t t t t +=-⋅=.23.(1)()42,1,31124,11,42,1,x x f x x x x x x x -+≤-⎧⎪=-++=-+-<<⎨⎪-≥⎩当1x =时,()f x 取得最小值,即()12k f ==.(2)证明:依题意,2242m n +=,则()22416m n ++=.所以22111m n ++()22221114116m n mn ⎛⎫⎡⎤=+++⨯ ⎪⎣⎦+⎝⎭()2222411561n m m n ⎡⎤+⎢⎥=+++⎢⎥⎣⎦(13562≥+=,当且仅当()2222411n m m n +=+,即22m =,20n =时,等号成立. 所以2211312m n +≥+.。

2020年高考三轮冲刺卷理数答案

2020年高考三轮冲刺卷理数答案

)!.! 命 题





分条





的判



二-
观 想 象 数 学 运 算 等 核 心 素 养 !
次不等式恒成立问题!体现了逻辑推理的核心素养! - 试题解析由约束条件作出可行域 如 图 中 阴 影 部 分 所
试题解析不 等 式 $" '$*E+# 在 0 上 恒 成 立#则 "-
8 4
#"#J8#"4#
J 半 焦 距5#
槡4"
*8"
#槡%4#JM#
5 4
#槡%!
参 考 答 案 槡%
,9!故选 $! !"!.! 命 题 立 意 考 查 空 间 几 何 体 的 折 叠 问 题 线 面
的性 质!体 现 了 逻 辑 推 理直 观 想 象数 学 运 算 等
垂 核
直心----!%!推命试理题题立解数
-







(%$&#槡)4'5$674$*674"$'
! "
-
所 以 数 列 !4? '<?"为 等 差 数 列 #设8? #4? '<?# 故0?#0% 对任意的?//; 恒成立#可化为8%'##8/###
$ #槡")4'5"$*
!"674"$#4'5%"$*
/
&图 象




右--
)674$!设曲线 (%$&上 任 意 一 点 "%$!#+!&#曲 线=%$& 上存在 一 点 %%$"#+" &#则 ()%$! &=)%$" &# '!#且 ()%$!&# '+$! '!/%' D #'!&#=)%$"&#E')674$"

2020届全国卷Ⅲ高考压轴卷 数学(理)(解析版)

2020届全国卷Ⅲ高考压轴卷 数学(理)(解析版)

绝密★启用前2020年普通高等学校招生全国统一考试理科数学● 注意事项:● 答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

● 回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给的四个选项中,只有一项是符合题目要求的。

1.已知集合{}(1)(4)0A x x x =+-≤,{}2log 2B x x =≤,则A B ⋂=( ) A. []4,2-B. [)1,+∞C. (]0,4D.[)2,-+∞2.若复数z 满足2(1)z i i -=(i 是虚数单位),则z 为( )A.13 B. 12C. 14D. 15 3.已知123a =,2log 3b =,9log 2c =,则a 、b 、c 的大小关系为( ) A. a b c >> B. a c b >>C. b a c >>D. c b a >>4.在的二项展开式中,若第四项的系数为-7,则( )A.B.C.D. 5.已知x •log 32=1,则4x =( ) A .4B .6C .4D .96.在△ABC 中,若sinB =2sinAcosC ,那么△ABC 一定是( ) A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形7.宋元时期,中国数学鼎盛时期中杰出的数学家有“秦﹝九韶﹞、李﹝冶﹞、杨﹝辉﹞、朱﹝世杰﹞四大家”,朱世杰就是其中之一.朱世杰是一位平民数学家和数学教育家.朱世杰平生勤力研习《九章算术》,旁通其它各种算法,成为元代著名数学家.他全面继承了前人数学成果,既吸收了北方的天元术,又吸收了南方的正负开方术、各种日用算法及通俗歌诀,在此基础上进行了创造性的研究,写成以总结和普及当时各种数学知识为宗旨的《算学启蒙》,其中有关于“松竹并生”的问题:松长四尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图,是源于其思想的一个程序框图.若输入的,a b 分别为3,1,则输出的n =( )A. 2B. 3C. 4D. 58.函数3()e 1=+x x f x 的图象大致是( )A. B.C. D.9.设函数2()ln f x a x bx =+(0,0)a b >>,若函数()f x 的图象在1x =处的切线与直线20x y e --=平行,则11a b+的最小值为( ) A. 1 B.12C. 322-D. 322+10.已知函数f (x )=sin (ωx+φ)(ω>0,)的最小正周期为π,且关于中心对称,则下列结论正确的是( ) A .f (1)<f (0)<f (2) B .f (0)<f (2)<f (1) C .f (2)<f (0)<f (1)D .f (2)<f (1)<f (0)11.函数()()2sin 4cos 1f x x x =⋅-的最小正周期是( )A.3πB. 23π C. π D. 2π 12. 定义在R 上的可导函数()f x 满足(2)()22f x f x x -=-+,记()f x 的导函数为()f x ',当1x ≤时恒有()1f x '<.若()(12)31f m f m m ---≥,则m 的取值范围是A .(,1]-∞-B .1(,1]3-C .[1,)-+∞D .1[1,]3-二、填空题:本题共4小题,每小题5分,共20分。

四川省攀枝花市2020届高三第三次统一考试数学(理科)试题 (解析版)

四川省攀枝花市2020届高三第三次统一考试数学(理科)试题 (解析版)

2020年高考数学三诊试卷(理科)一、选择题(共12小题).1.设集合A={x|(x+1)(x﹣2)<0},集合B={x|1<x<3},则A∩B=()A.{x|﹣1<x<3}B.{x|﹣1<x<1}C.{x|1<x<2}D.{x|2<x<3} 2.若复数z满足(z﹣1)i=3+i(i为虚数单位),则的虚部为()A.3B.3i C.﹣3D.﹣3i3.已知角α(0≤α<2π)终边上一点的坐标为,则α=()A.B.C.D.4.各项均不相等的等差数列{a n}的前5项的和S5=﹣5,且a3,a4,a6成等比数列,则a7=()A.﹣14B.﹣5C.﹣4D.﹣15.设a、b、c依次表示函数x+1,x﹣x+1,x+1的零点,则a、b、c的大小关系为()A.a<b<c B.c<b<a C.a<c<b D.b<c<a6.已知α是给定的平面,设不在α内的任意两点M和N所在的直线为l,则下列命题正确的是()A.在α内存在直线与直线l相交B.在α内存在直线与直线l异面C.在α内存在直线与直线l平行D.存在过直线l的平面与α平行7.(x2﹣x﹣2)3的展开式中,含x4的项的系数是()8.如图是某一无上盖几何体的三视图,则该几何体的表面积等于()A.63πB.57πC.48πD.39π9.有编号分别为1,2,3,4的4个红球和4个黑球,随机取出3个,则取出的球的编号互不相同的概率是()A.B.C.D.10.设双曲线C:的左、右焦点分别为F1、F2,与圆x2+y2=a2相切的直线PF1交双曲线C于点P(P在第一象限),且|PF2|=|F1F2|,则双曲线C的离心率为()A.B.C.D.11.已知函数,若f(x)的任何一条对称轴与x轴交点的横坐标都不属于区间,则ω的取值范围是()A.B.C.D.12.设函数f(x)=ln(x+k)+2,函数y=g(x)的图象与1的图象关于直线x =1对称.若实数x1,x2满足f(x1)=g(x2),且2x1﹣x2有极小值﹣2,则实数k的值是()二、填空题:13.已知||=1,||=2,且•()=﹣2,则向量与的夹角为.14.已知数列{a n}的前n项和为S n,且满足2a n﹣S n=1(n∈N*),则a4=.15.焦点为F的抛物线C:x2=4y的准线与坐标轴交于点A,点P在抛物线C上,则的最大值为.16.如图,在平行四边形ABCD中,∠BAD=60°,AB=2AD=2,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE,设M为线段A1C的中点.则在△ADE翻折过程中,给出如下结论:①当A1不在平面ABCD内时,MB∥平面A1DE;②存在某个位置,使得DE⊥A1C;③线段BM的长是定值;④当三棱锥C﹣A1DE体积最大时,其外接球的表面积为.其中,所有正确结论的序号是.(请将所有正确结论的序号都填上)三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:17.在△ABC中,角A,B,C所对的边分别为a,b,c,且a cos B=(4c﹣b)cos A.(Ⅰ)求cos A的值;(Ⅱ)若b=4,点M在线段BC上,且,,求△ABC的面积.18.某公司为提高市场销售业绩,促进某产品的销售,随机调查了该产品的月销售单价x (单位:元/件)及相应月销量y(单位:万件),对近5个月的月销售单价x i和月销售量y i(i=1,2,3,4,5)的数据进行了统计,得到如表数据:月销售单价x i(元/件)99.51010.511月销售量y i(万件)1110865(Ⅰ)建立y关于x的回归直线方程;(Ⅱ)该公司开展促销活动,当该产品月销售单价为7元/件时,其月销售量达到18万件,若由回归直线方程得到的预测数据与此次促销活动的实际数据之差的绝对值不超过0.5万件,则认为所得到的回归直线方程是理想的,试问:(Ⅰ)中得到的回归直线方程是否理想?(Ⅲ)根据(Ⅰ)的结果,若该产品成本是5元/件,月销售单价x为何值时(销售单价不超过11元/件),公司月利润的预计值最大?参考公式:回归直线方程,其中,.参考数据:,x i2=502.5.19.如图,已知三棱柱ABC﹣A1B1C1的所有棱长均为2,∠B1BA.(Ⅰ)证明:B1C⊥AC1;(Ⅱ)若平面ABB1A1⊥平面ABC,M为A1C1的中点,求B1C与平面AB1M所成角的正弦值.20.已知函数f(x)=(a+2)x2+ax﹣lnx(a∈R).(Ⅰ)当a=0时,求曲线y=f(x)在(1,f(1))处的切线方程;(Ⅱ)设g(x)=x2,若∀x1∈(0,1],∃x2∈[0,1],使得f(x1)≥g(x2)成立,求实数a的取值范围.21.点M(x,y)与定点F(1,0)的距离和它到直线x=4的距离的比是常数.(Ⅰ)求点M的轨迹C的方程;(Ⅱ)过坐标原点O的直线交轨迹C于A,B两点,轨迹C上异于A,B的点P满足直线AP的斜率为.(ⅰ)求直线BP的斜率;(ⅱ)求△ABP面积的最大值.(二)选考题:[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C1的参数方程为(φ为参数),将曲线C1向左平移1个单位长度,再向上平移1个单位长度得到曲线C2.以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系.(Ⅰ)求曲线C1、C2的极坐标方程;(Ⅱ)射线OM:θ=α(ρ≥0)分别与曲线C1、C2交于点A,B(A,B均异于坐标原点O),若,求α的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣a|+|x+b|(a>0,b>0).(Ⅰ)当a=b=1时,解不等式f(x)<x+2;(Ⅱ)若f(x)的值域为[2,+∞),证明:2.参考答案一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|(x+1)(x﹣2)<0},集合B={x|1<x<3},则A∩B=()A.{x|﹣1<x<3}B.{x|﹣1<x<1}C.{x|1<x<2}D.{x|2<x<3}【分析】先解出A={x|﹣1<x<2},然后进行交集的运算即可.解:A={x|﹣1<x<2};∴A∩B={x|1<x<2}.故选:C.【点评】考查描述法表示集合的概念,一元二次不等式的解法,以及交集的运算.2.若复数z满足(z﹣1)i=3+i(i为虚数单位),则的虚部为()A.3B.3i C.﹣3D.﹣3i【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.解:由(z﹣1)i=3+i,得z,∴.则的虚部为3.故选:A.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.已知角α(0≤α<2π)终边上一点的坐标为,则α=()A.B.C.D.【分析】由题意利用任意角的三角函数的定义,诱导公式,求得α的范围以及正切值,可得α的值.解:角α(0≤α<2π)终边上一点的坐标为,α为第三象限角,则tanαcot cot,∴α=π,故选:C.【点评】本题主要考查任意角的三角函数的定义,诱导公式,属于基础题.4.各项均不相等的等差数列{a n}的前5项的和S5=﹣5,且a3,a4,a6成等比数列,则a7=()A.﹣14B.﹣5C.﹣4D.﹣1【分析】设等差数列{a n}的公差为d,d≠0,运用等差数列的求和公式,以及等比数列的中项性质和等差数列的通项公式,化简整理,解方程可得首项和公差,即可得到所求值.解:设等差数列{a n}的公差为d,d≠0,由S5=﹣5,可得5a15×4d=﹣5,即a1+2d=﹣1,①由a3,a4,a6成等比数列,可得a42=a3a6,即(a1+3d)2=(a1+2d)(a1+5d),化为a1d+d2=0,由d≠0,可得a1=﹣d,②由①②解得d=﹣1,a1=1,则a7=1+(7﹣1)×(﹣1)=﹣5.故选:B.【点评】本题考查等差数列的通项公式和求和公式,以及等比数列的中项性质,考查方程思想和运算能力,属于基础题.5.设a、b、c依次表示函数x+1,x﹣x+1,x+1的零点,则a、b、c的大小关系为()A.a<b<c B.c<b<a C.a<c<b D.b<c<a【分析】先确定三个函数在定义域上是增函数,再利用零点存在定理,求出三个函数零点的范围,从而比较大小,即可得解.解:函数x+1,x﹣x+1,x+1的零点,就是方程x﹣1,x=x﹣1,x﹣1方程的的解,在坐标系中画出函数y,y x,y,与y=x﹣1的图象,如图:可得b<c<a,故选:D.【点评】本题主要考查函数零点的大小判断,解题时注意函数的零点的灵活运用,考查数形结合的应用,属于中档题.6.已知α是给定的平面,设不在α内的任意两点M和N所在的直线为l,则下列命题正确的是()A.在α内存在直线与直线l相交B.在α内存在直线与直线l异面C.在α内存在直线与直线l平行D.存在过直线l的平面与α平行【分析】采用举反例方式,逐一排除,从而可得到正确答案.解:由题可知,直线l和平面α要么相交,要么平行.当平面α与直线l平行时,在α内就不存在直线与直线l相交,则A错;当平面α与直线l相交时,在α内就不存在直线与直线l平行,则C错;当平面α与直线l相交时,过直线l的平面与平面α都会相交,则D错;不论直线l和平面α相交还是平行,都会在α内存在直线与直线l异面,则B正确.故选:B.【点评】本题主要考查了点线面位置关系,考查了学生的直观想象能力,属于基础题.7.(x2﹣x﹣2)3的展开式中,含x4的项的系数是()A.9B.﹣9C.3D.﹣3【分析】根据(x2﹣x﹣2)3=(x﹣2)3•(x+1)3=(x3﹣6x2+12x﹣8)(x3+3x2+3x+1),求得含x4的项的系数.解:∵(x2﹣x﹣2)3=(x﹣2)3•(x+1)3=(x3﹣6x2+12x﹣8)(x3+3x2+3x+1),含x4的项的系数为3﹣6×3+12=﹣3,故选:D.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.8.如图是某一无上盖几何体的三视图,则该几何体的表面积等于()A.63πB.57πC.48πD.39π【分析】直接利用三视图,判断几何体的构成,进一步利用几何体的表面积公式求出结果.解:根据几何体的三视图:该几何体是由底面半径为3,高为4的圆柱,挖去一个底面半径为3,高为4的倒圆锥构成的几何体.所以:S=32•π+6π×46π×5=48π.故选:C.【点评】本题考查的知识要点:三视图的应用,几何体的表面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.9.有编号分别为1,2,3,4的4个红球和4个黑球,随机取出3个,则取出的球的编号互不相同的概率是()A.B.C.D.【分析】显然取法总数为C,要取出的球的编号互不相同可先选编号数C,再定颜色有C C C,则有C C C C种取法,相比即可.解:从8个球中随机取出3个的取法有C56种;其中取出的球的编号互不相同的取法有C C C C32种,则取出的球的编号互不相同的概率P.故选:A.【点评】本题考查乘法原理,组合数公式与概率相结合,属于基础题.10.设双曲线C:的左、右焦点分别为F1、F2,与圆x2+y2=a2相切的直线PF1交双曲线C于点P(P在第一象限),且|PF2|=|F1F2|,则双曲线C的离心率为()A.B.C.D.【分析】设直线PF1与圆x2+y2=a2相切于点M,取PF1的中点N,连接NF2,由切线的性质和等腰三角形的三线合一,运用中位线定理和勾股定理可得|PF1|=4b,再由双曲线的定义和a,b,c的关系及离心率公式计算即可得到结果.解:设直线PF1与圆x2+y2=a2相切于点M,则|OM|=a,取PF1的中点N,连接NF2,由于|PF2|=|F1F2|=2c,则NF2⊥PF1,|NP|=|NF1|,由|NF2|=2|OM|=2a,则|NP|2b,即有|PF1|=4b,由双曲线的定义可得|PF1|﹣|PF2|=2a,即4b﹣2c=2a,即2b=a+c,即4b2=(c+a)2=4(c2﹣a2),整理得3c=5a,则e.故选:B.【点评】本题主要考查圆的切线性质、等腰三角形的三线合一、中位线定理、勾股定理及双曲线的定义、离心率计算,属于中档题.11.已知函数,若f(x)的任何一条对称轴与x轴交点的横坐标都不属于区间,则ω的取值范围是()A.B.C.D.【分析】先利用辅助角公式,将函数f(x)化简为,观察选项,可以找两个特殊值ω=2和,进行试验排除.具体做法是,将ω=2和分别代入函数f(x),求出对称轴,给k 赋值,判断对称轴是否能在区间即可得解.解:,∵f(x)的任何一条对称轴与x轴交点的横坐标都不属于区间,∴,∴ω≤2,即,若ω=2,则,令,得,当k=1时,对称轴为,不符合题意,故ω≠2,排除选项B和D,若,则,令,得,当k=0时,对称轴,不符合题意,故,排除选项C.故选:A.【点评】本题考查辅助角公式和正弦函数的对称性,考查学生的逻辑推理能力、分析能力和运算能力,属于中档题.12.设函数f(x)=ln(x+k)+2,函数y=g(x)的图象与1的图象关于直线x =1对称.若实数x1,x2满足f(x1)=g(x2),且2x1﹣x2有极小值﹣2,则实数k的值是()A.3B.2C.1D.﹣1【分析】先由对称性求出g(x),然后由已知可设f(x1)=g(x2)=a,则分别表示x1=e a﹣2﹣k,x2=2ln(a﹣1),代入后结合导数及极值存在的条件可求.解:由题意可得1.设f(x1)=g(x2)=a,则x1=e a﹣2﹣k,x2=2ln(a﹣1),∴2x1﹣x2=2e a﹣2﹣2ln(a﹣1)﹣2k,令h(a)=2e a﹣2﹣2ln(a﹣1)﹣2k,则2()在(1,+∞)上单调递增且h′(2)=0,故当a>2时,h′(a)>0,h(a)单调递增,当1<a<2时,h′(a)<0,h(a)单调递减,故当a=2时,h(a)取得极小值h(2)=2﹣2k,由题意可知2﹣2k=﹣2,故k=2.故选:B.【点评】本题主要考查了利用导数研究函数极值存在的条件,解题的关键是利用已知表示出极值的条件.二、填空题:13.已知||=1,||=2,且•()=﹣2,则向量与的夹角为.【分析】根据题意,设向量与的夹角为θ,由数量积的运算性质可得•()•2=﹣2,变形解可得cosθ的值,结合θ的范围分析可得答案.解:根据题意,设向量与的夹角为θ,若•()=﹣2,则•()•2=﹣2,即2cosθ﹣1=﹣2,解可得cosθ,又由0≤θ≤π,则θ;故答案:.【点评】本题考查向量数量积的计算,注意向量数量积的计算公式,属于基础题.14.已知数列{a n}的前n项和为S n,且满足2a n﹣S n=1(n∈N*),则a4=8.【分析】直接利用数列的递推关系式,逐步求解数列的项即可.解:数列{a n}的前n项和为S n,且满足2a n﹣S n=1(n∈N*),n=1时,2a1﹣S1=1.可得a1=1,n=2时,2a2﹣S2=1,即2a2﹣a2﹣a1=1,解得a2=2,n=3时,2a3﹣S3=1,即2a3﹣a3﹣a2﹣a1=1,解得a3=4,n=4时,2a4﹣S4=1,即2a4﹣a4﹣a3﹣a2﹣a1=1,解得a4=8,故答案为:8.【点评】本题考查数列的递推关系式的应用,数列的项的求法,是基本知识的考查.15.焦点为F的抛物线C:x2=4y的准线与坐标轴交于点A,点P在抛物线C上,则的最大值为.【分析】根据题意作图,结合抛物线性质可得,则当∠PAM最小时,则最大,即当PA和抛物线相切时,最大,设P(a,),利用导数求得斜率求出a的值即可解:由题意可得,焦点F(0,1),A(0,﹣1),准线方程为y=﹣1过点P作PM垂直于准线,M为垂足,由抛物线的定义可得|PF|=|PM|,则,∠PAM为锐角.故当∠PAM最小时,则最大,故当PA和抛物线相切时,最大可设切点P(a,),则PA的斜率为k,而函数y的导数为y′,则有,解得a=±2,可得P(2,1)或(﹣2,1),则|PM|=2,|PA|=2,即有sin∠PAM,则,故答案为:【点评】本题主要考查抛物线的定义、性质的简单应用,直线的斜率公式、利用数形结合进行转化是解决本题的关键.考查学生的计算能力,属于中档题.16.如图,在平行四边形ABCD中,∠BAD=60°,AB=2AD=2,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE,设M为线段A1C的中点.则在△ADE翻折过程中,给出如下结论:①当A1不在平面ABCD内时,MB∥平面A1DE;②存在某个位置,使得DE⊥A1C;③线段BM的长是定值;④当三棱锥C﹣A1DE体积最大时,其外接球的表面积为.其中,所有正确结论的序号是①③④.(请将所有正确结论的序号都填上)【分析】①取DC的中点N,连接NM、NB,可得MN∥A1D,NB∥DE,且MN、NB 和∠MNB均为定值,由平面与平面平行的判定可得面MNB∥面A1DE,则MB∥面A1DE;②用反证法,假设存在某个位置,使DE⊥A1C,在△CDE中,由勾股定理易知,CE⊥DE,再由线面垂直的判定定理可知,DE⊥面A1CE,所以DE⊥A1E,与已知相矛盾;③由①可知MN,NB,∠MNB,在△MNB中,由余弦定理可知,MB2=MN2+NB2﹣2MN •NB cos∠MNB,计算得线段BM的长是定值;④当三棱锥C﹣A1DE体积最大时,平面A1DE⊥平面CDE,又CE⊥DE,得CE⊥平面A1DE,设三棱锥C﹣A1DE的外接球的球心为O,由勾股定理求外接球的半径OE,代入球的表面积公式可得外接球的表面积为.解:如图,∵AB=2AD=2,E为边AB的中点,∠BAD=60°,∴△ADE(A1DE)为等边三角形,则DE=1.①取DC的中点N,连接NM、NB,则MN∥A1D,且MN;NB∥DE,且NB=DE=1,∵MN⊄平面A1DE,A1D⊂平面A1DE,则MN∥平面A1DE,同理NB∥平面A1DE,又NM∩NB=N,∴平面NMB∥平面A1DE,则MB∥平面A1DE,故①正确;②假设存在某个位置,使DE⊥A1C.∵DE=1,可得CE,∴CE2+DE2=CD2,即CE⊥DE,∵A1C∩CE=C,∴DE⊥面A1CE,∵A1E⊂面A1CE,∴DE⊥A1E,与已知∠DA1E=60°矛盾,故②错误;③由①知,∠MNB=∠A1DE=60°,MN,NB=1.由余弦定理得,MB2=MN2+NB2﹣2MN•NB cos∠MNB,∴BM的长为定值,故③正确;当三棱锥C﹣A1DE体积最大时,平面A1DE⊥平面CDE,又CE⊥DE,∴CE⊥平面A1DE,设三棱锥C﹣A1DE的外接球的球心为O,则外接球的半径OE,∴外接球的表面积S=4π,故④正确.∴正确命题的序号是①③④.故答案为:①③④.【点评】本题考查空间中线面的位置关系,理清翻折前后不变的数量关系和位置关系,以及熟练运用线面平行或垂直的判定定理与性质定理是解题的关键,考查学生的空间立体感和逻辑推理能力,属于中档题.三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:17.在△ABC中,角A,B,C所对的边分别为a,b,c,且a cos B=(4c﹣b)cos A.(Ⅰ)求cos A的值;(Ⅱ)若b=4,点M在线段BC上,且,,求△ABC的面积.【分析】(Ⅰ)由正弦定理,两角和的正弦函数公式化简已知等式可得sin C=4sin C cos A,结合在△ABC中,sin C≠0,可求cos A的值.(Ⅱ)解法一:由,两边平方,利用余弦定理可解得c的值,利用同角三角函数基本关系式可求sin A的值,进而根据三角形的面积公式即可求解;解法二:延长BA到N,使AB=AN,连接CN,由,M点为BC线段中点,,可求,,利用余弦定理可求c 的值,进而根据三角形的面积公式即可求解.解:(Ⅰ)因为a cos B=(4c﹣b)cos A,由正弦定理得:sin A cos B=(4sin C﹣sin B)cos A,即sin A cos B+sin B cos A=4sin C cos A,可得sin C=4sin C cos A,在△ABC中,sin C≠0,所以.(Ⅱ)解法一:∵,两边平方得:,由b=4,,,可得:,解得c=2或c=﹣4(舍).又,所以△ABC的面积.解法二:延长BA到N,使AB=AN,连接CN,∵,M点为BC线段中点,,∴,又∵b=4,,,∴CN2=AC2+AN2﹣2AC•AN•cos∠CAN,即,解得:c=2或c=﹣4(舍),又,∴△ABC的面积.【点评】本题主要考查了正弦定理,两角和的正弦函数公式,余弦定理,同角三角函数基本关系式,三角形的面积公式以及平面向量的运算在解三角形中的综合应用,考查了数形结合思想和转化思想,属于中档题.18.某公司为提高市场销售业绩,促进某产品的销售,随机调查了该产品的月销售单价x (单位:元/件)及相应月销量y(单位:万件),对近5个月的月销售单价x i和月销售量y i(i=1,2,3,4,5)的数据进行了统计,得到如表数据:月销售单价x i(元/件)99.51010.511月销售量y i(万件)1110865(Ⅰ)建立y关于x的回归直线方程;(Ⅱ)该公司开展促销活动,当该产品月销售单价为7元/件时,其月销售量达到18万件,若由回归直线方程得到的预测数据与此次促销活动的实际数据之差的绝对值不超过0.5万件,则认为所得到的回归直线方程是理想的,试问:(Ⅰ)中得到的回归直线方程是否理想?(Ⅲ)根据(Ⅰ)的结果,若该产品成本是5元/件,月销售单价x为何值时(销售单价不超过11元/件),公司月利润的预计值最大?参考公式:回归直线方程,其中,.参考数据:,x i2=502.5.【分析】(Ⅰ)求出样本中心,求出回归直线方程的斜率,然后求解y关于x的回归直线方程;(Ⅱ)利用过后直线方程,求出当该产品月销售单价为7元/件时,求出预测数据,通过判断由回归直线方程得到的预测数据与此次促销活动的实际数据之差的绝对值说法超过0.5万件,则认为所得到的回归直线方程是理想的,说明(Ⅰ)中得到的回归直线方程是否理想.(Ⅲ)设销售利润为M,则M=(x﹣5)(﹣3.2x+40)(5<x≤11)M=﹣3.2x2+56x ﹣200,求解x=8.75时,M取最大值,得到结果.解:(Ⅰ)因为,.所以,所以,所以y关于x的回归直线方程为:.(Ⅱ)当x=7时,,则|17.6﹣18|=0.4<0.5,所以可以认为所得到的回归直线方程是理想的.(Ⅲ)设销售利润为M,则M=(x﹣5)(﹣3.2x+40)(5<x≤11)M=﹣3.2x2+56x ﹣200,所以x=8.75时,M取最大值,所以该产品单价定为8.75元时,公司才能获得最大利润.【点评】本题考查回归直线方程的求法与应用,考查转化思想以及计算能力,是基本知识的考查.19.如图,已知三棱柱ABC﹣A1B1C1的所有棱长均为2,∠B1BA.(Ⅰ)证明:B1C⊥AC1;(Ⅱ)若平面ABB1A1⊥平面ABC,M为A1C1的中点,求B1C与平面AB1M所成角的正弦值.【分析】(Ⅰ)取AB中点D,连接B1D,CD,BC1.证明B1C⊥BC1.B1D⊥AB,CD ⊥AB.得到AB⊥平面B1CD.推出AB⊥B1C.即可证明B1C⊥平面ABC1,得到B1C⊥AC1.(Ⅱ)说明DB,DB1,DC两两垂直,以D为原点,DB为x轴,DC为y轴,DB1为z 轴,建立空间直角坐标系.求出平面AB1M的法向量,利用空间向量的数量积求解B1C 与平面AB1M所成的角的正弦值即可.【解答】证明:(Ⅰ)取AB中点D,连接B1D,CD,BC1.∵三棱柱的所有棱长均为2,,∴△ABC和△ABB1是边长为2的等边三角形,且B1C⊥BC1.∴B1D⊥AB,CD⊥AB.∵B1D,CD⊂平面B1CD,B1D∩CD=D,∴AB⊥平面B1CD.∵B1C⊂平面B1CD,∴AB⊥B1C.∵AB,BC1⊂平面ABC1,AB∩BC1=B,∴B1C⊥平面ABC1,∴B1C⊥AC1.(Ⅱ)∵平面ABB1A1⊥平面ABC,且交线为AB,由(Ⅰ)知B1D⊥AB,∴B1D⊥平面ABC.则DB,DB1,DC两两垂直,则以D为原点,DB为x轴,DC为y轴,DB1为z轴,建立空间直角坐标系.则D(0,0,0),A(﹣1,0,0),,,,∵M为A1C1的中点,∴,∴,,,设平面AB1M的法向量为,则,取z=1,得.设B1C与平面AB1M所成的角为α,则.∴B1C与平面AB1M所成角的正弦值为.【点评】本题考查直线与平面所成角的正弦值的求法,直线与平面垂直的判断定理的应用,考查空间想象能力以及逻辑推理能力计算能力,是中档题.20.已知函数f(x)=(a+2)x2+ax﹣lnx(a∈一、选择题).(Ⅰ)当a=0时,求曲线y=f(x)在(1,f(1))处的切线方程;(Ⅱ)设g(x)=x2,若∀x1∈(0,1],∃x2∈[0,1],使得f(x1)≥g(x2)成立,求实数a的取值范围.【分析】(Ⅰ)当a=0时,求出,求出切线的斜率以及切点坐标,然后求解切线方程.(Ⅱ)问题等价于∀x1∈(0,1],∃x2∈[0,1],f(x1)min≥g(x2)min.求出g'(x)=2x ﹣2x2,利用导函数的符号判断函数的单调性,求解函数的最小值,同理求解f(x)min,利用转化不等式,构造函数,转化求解即可.解:(Ⅰ)当a=0时,f(x)=2x2﹣lnx,,则f(1)=2,f'(1)=3,故曲线y=f(x)在(1,f(1))处的切线方程为3x﹣y﹣1=0.(Ⅱ)问题等价于∀x1∈(0,1],∃x2∈[0,1],f(x1)min≥g(x2)min.由得g'(x)=2x﹣2x2,由g'(x)=2x﹣2x2≥0得0≤x≤1,所以在[0,1]上,g(x)是增函数,故g(x)min=g(0)=0.f(x)定义域为(0,+∞),而.当a≤﹣2时,f'(x)<0恒成立,f(x)在(0,1]上是减函数,所以f(x)min=f(1)=2(a+1)≥0⇒a≥﹣1,不成立;当a>﹣2时,由f'(x)<0,得;由f'(x)>0,得,所以f(x)在单调递减,在单调递减.若,即﹣2<a<﹣1时,f(x)在(0,1]是减函数,所以f(x)min=f(1)=2(a+1)≥0⇒a≥﹣1,不成立;若,即a≥﹣1时,f(x)在处取得最小值,,令,则在[﹣1,+∞)上恒成立,所以h(a)在[﹣1,+∞)是增函数且h(a)min=h(﹣1)=0,此时成立,满足条件.综上所述,a≥﹣1.【点评】本题考查函数的导数的应用,切线方程以及函数的单调性,函数的最值的求法,转化思想的应用,是难题.21.点M(x,y)与定点F(1,0)的距离和它到直线x=4的距离的比是常数.(Ⅰ)求点M的轨迹C的方程;(Ⅱ)过坐标原点O的直线交轨迹C于A,B两点,轨迹C上异于A,B的点P满足直线AP的斜率为.(ⅰ)求直线BP的斜率;(ⅱ)求△ABP面积的最大值.【分析】(Ⅰ)利用点M(x,y)与定点F(1,0)的距离和它到直线x=4的距离的比是常数,列出方程化简求解即可.(Ⅱ)(ⅰ)设点A(x1,y1),则点B(﹣x1,﹣y1),满足,设点P(x2,y2),满足,利用平方差法求解AP的斜率,BP的斜率即可.(ⅱ)说明S△ABP=2S△OAP,设直线,代入曲线化简得:3x2﹣3mx+m2﹣3=0,设A(x1,y1),P(x2,y2),利用韦达定理、弦长公式以及点到直线的距离公式,转化求解三角形面积的表达式,然后求解最值即可.解:(Ⅰ)由已知得,两边平方并化简得3x2+4y2=12,即点M的轨迹C的方程为:.(Ⅱ)(ⅰ)设点A(x1,y1),则点B(﹣x1,﹣y1),满足,①设点P(x2,y2),满足,②由①﹣②得:,∵,,∴.(ⅱ)∵A,B关于原点对称,∴S△ABP=2S△OAP,设直线,代入曲线化简得:3x2﹣3mx+m2﹣3=0,设A(x1,y1),P(x2,y2),由△>0得:m2<12,x1+x2=m,,,点O到直线AP的距离,∴,∴,当m2=6时,∴S△ABP取到最大值.【点评】本题考查椭圆方程的求法,直线与椭圆的位置关系的综合应用,平方差法以及距离公式的应用,三角形面积的最值的求法,是中档题.(二)选考题:[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C1的参数方程为(φ为参数),将曲线C1向左平移1个单位长度,再向上平移1个单位长度得到曲线C2.以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系.(Ⅰ)求曲线C1、C2的极坐标方程;(Ⅱ)射线OM:θ=α(ρ≥0)分别与曲线C1、C2交于点A,B(A,B均异于坐标原点O),若,求α的值.【分析】(Ⅰ)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.(Ⅱ)利用极径的应用和三角函数关系式的恒等变换,及正弦型函数的性质的应用求出结果.解:(Ⅰ)由题意:.∵ρ2=x2+y2,x=ρcosθ,y=ρsinθ,∴曲线C1的极坐标方程为ρ=2cosθ.因曲线C1是圆心为(1,0),半径为1的圆,故曲线C2的直角坐标方程为x2+(y﹣1)2=1.∴曲线C2的极坐标方程为ρ=2sinθ.(Ⅱ)设A(ρ1,α),B(ρ2,α),则.所以,因为,所以.所以或.【点评】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,极径的应用,三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣a|+|x+b|(a>0,b>0).(Ⅰ)当a=b=1时,解不等式f(x)<x+2;(Ⅱ)若f(x)的值域为[2,+∞),证明:2.【分析】(Ⅰ)由绝对值的定义分段脱绝对值求解.(Ⅱ)由绝对值不等式求函数f(x)的值域可确定a+b=2,再配凑均值不等式的形式,两次用均值不等式即可证明.解:(Ⅰ)当a=b=1时,不等式为|x﹣1|+|x+1|<x+2,当x<﹣1时,不等式化为,此时不等式无解;当﹣1≤x<1时,不等式化为2<x+2⇒x>0,故0<x<1;当x≥1时,不等式化为2x<x+2⇒x<2,故1≤x<2.综上可知,不等式的解集为{x|0<x<2}.(Ⅱ)f(x)=|x﹣a|+|x+b|≥|a+b|,当且仅当x﹣a与x+b同号时,f(x)取得最小值|a+b|,∵f(x)的值域为[2,+∞),且a>0,b>0,故a+b=2.故(当且仅当a=b=1时取等号).【点评】本题考查绝对值不等式的解法,利用基本不等式证明不等式,属于中低档题.。

陕西省榆林市2020届高三高考模拟第三次测试 数学(理) Word版含答案bychun

陕西省榆林市2020届高三高考模拟第三次测试 数学(理) Word版含答案bychun

绝密★启用前榆林市2020届高考模拟第三次测试数学(理科)试卷本试卷共23题,共150分,共4页.考试结束后,将本试卷和答题卡一并交回.注意事项:1。

答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内.2.选择题必须使用2B铅笔填涂;非选择题必须使用0。

5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色的签字笔描黑.5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正液、刮纸刀.一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1。

设集合A={x|3x-1<m},若1∈A且2 A,则实数m的取值范围是(A)2〈m〈5 (B)2≤m〈5 (C)2<m≤5 (D)2≤m≤52.下面关于复数z=-1+i(其中i为虚数单位)的结论正确的是(A)z对应的点在第一象限(B)|z|〈|z+1| (C)z的虛部为i (D)z+z〈03。

如图,给出了样本容量均为7的A、B两组样本数据的散点图,已知A组样本数据的相关系数为r1,B组数据的相关系数为r2,则(A)r1=r2(B)r1<r2(C)r1〉r2(D)无法判定4。

已知数列{a n}为等差数列,且a3=4,a5=8,则该数列的前10项之和S10=(A)80 (B)90 (C)100 (D)1105。

已知m、n是两条不同的直线,α、β、γ是三个不同的平面,下列命题中,是真命题的是(A)若m//α,m//β,则α//β(B)若m//α,n//α,则m//n(C)若m⊥α,n⊥α,则m//n (D)若α⊥γ,α⊥β,则γ//β6.设x1、x2、x3均为实数,且1x e-=lnx1,2x e-=ln(x2+1),3x e-=lgx3,则(A)x1<x2〈x3(B)x1<x3〈x2(C)x2<x3<x1(D)x2〈x1〈x37.已知向量AB与AC的夹角为120°,且|AB|=3,|AC|=2,若AP=λAB+AC,且AP⊥BC,则实数λ的值为A。

2020高考数学(理)三轮复习每日一卷试题+参考答案+评分标准 (19)

2020高考数学(理)三轮复习每日一卷试题+参考答案+评分标准 (19)

2020高考数学三轮每日一卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集U = {1,2,3,4,5,6,7,8,9},集合 A = {2,4,6,7},B = {3,5,6,7,8},则()()U U C A C B =IA .{1,9}B .{2,3,4,5,6,7,8}C .{1,2,3,4,5,8,9}D .{1.6.7.9}2. 设21(1z i i =++是虚数单位), 则z = A .2 B .3 C .5 D .323. 已知等差数列{}n a 的前n 项和为S n ,a 3=7, S 3=9,则a 10= A .25 B .35 C .40 D .454. 已知函数)(x f 的图象如图所示,则)(x f 可以为A .3()x x f x e =B .()x x x f x e e -=-C .()x x f x e =D .=)(x f x xe 5. 某歌手大赛进行电视直播,比赛现场有6名特约嘉宾给每位参赛选手评分,场内外的观众可以通过网络平台给每位参赛选手评分.某选手参加比赛后,现场嘉宾的评分情况如下表,场内外共有数万名观众参与了评分,组织方将观众评分按照[70, 80),[80,90) ,[90, 100]分组,绘成频率分布直方图如下:嘉宾评分的平均数为1x ,场内外的观众评分的平均数为2x :,所有嘉宾与场内外的观众评分的平均数为x ,则下列选项正确的是A .122x x x +=B .122x x x +> C .122x x x +< D .12122x x x x x +>>> 6. 已知角α的终边在直线2y x =上,则tan()4πα+=A .322--B .3+22C .322-+D .3-227. 四棱锥V-ABCD 的底面是正方形,且各条棱长均相等,点P 是VC 的中点,则异面直线AP 与CD 所成角的余弦值为A .35B .55C .510D .35108.若两个非零向量ba,满足0)()(=-⋅+baba,且baba-=+2,则a与b夹角的余弦值为A.35B.35±C.12D.12±9.已知F1、F2分别是双曲线C:22221(0,0)x ya ba b-=>>的左,有焦点,过F2作双曲线C的一条渐近线的垂线,分别交两条渐近线于点A,B,过点B作x轴的垂线,垂足恰为F1.则双曲线C的离心率为A.2 B3C.3D510.已知32)32(32)32(,32,32=⎪⎭⎫⎝⎛==cba,则A.cba<<B.abc<<C.bac<<D.bca<<11.过抛物线22(0)y px p=>的焦点F的直线与抛物线交于A,B两点,且FBAF2=,抛物线的准线l与x轴交于ACFC∆,的面积为2则AB=A.6 B.9 C.92D.6212.在四面体ABCD中,AB=AC= BC= BD= CD=2,AD6,则四面体ABCD的外接球的表面积为A.163πB.5π C.20π D.203π二、填空题:本题共4小题,每小题5分,共20分.13.若x、y满足约束条件3236yx yx y≤⎧⎪+≥⎨⎪-≤⎩,则2z x y=+的最小值为________14.已知函数1()ln1xf xax-=-为奇函数,则a=_____________.15.如图是一个不规则的几何图形,为了求它的面积,在图形中画了一个边长为1 m的正方形,现向图形中随机投掷石子,并记录如下:请估计该不规则的几何图形的面积约为_____ m2(保留整数).16.如图,在∆ABC中,AC=2,∠A=3π,点D在线段AB上,且AD= 2DB,sin∠ACD7sin∠BCD,则∆ABC的面积为_____。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020高考数学三轮每日一卷时间:120分钟 分值:150分一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}0)3)(32(<-+∈=x x Z x A ,{}x y x B ln 1-==,则=B A I ( )A .(]e ,0B .{}e ,0C .{}2,1D .)2,1(2.已知复数z 满足i zi21211+=+(为虚数单位),则z 的虚部为( ) A .4B .i 4C .4-D .i 4-3.设m R ∈,则"2"m =是“1,,4m 成等比数列”的( )A.充分不必要条件B.必要不充分条件C. 充要条件D.既不充分也不必要条件4. 设曲线sin cos y x x =+在点(,1)2π处的切线与直线10x ay -+=平行,则实数a 等于( )A .1-B .12C .2-D .25. 函数2ln ||x y x x=+的图象大致为( )6.已知实数x y 、满足不等式组21010x x y m x y ≤⎧⎪-+≥⎨⎪+-≥⎩,若目标函数2z x y =-+的最大值不超过4,则实数m 的取值范围是( ) A .(3,3)-B .3]C.[3,0]D .[3,3]7. 某几何体的三视图如图所示,则该几何体的表面积为( )A .8(π+4)B .8(π+8)C .16(π+4)D .16(π+8)8. 已知函数()()sin cos sin f x x x x =+,则下列说法不正确的是( ) A. 函数()f x 的最小正周期为π B.()f x 在37,88ππ⎡⎤⎢⎥⎣⎦上单调递减 C.()f x 的图象关于直线8x π=-对称D.将函数()f x 的图象向右平移8π个单位,再向下平移12个单位长度后会得到一个奇函数的图象 9.若2sinsin...sin 777n n S πππ=+++(n N +∈),则在122017,,,S S S L 中,值为零的个数是( )A .143B .144C .287D .28810. 在平面直角坐标系 xOy 中,已知抛物线()2:20E y px p =>的焦点为,F P 是抛物线 E 上位于第一象限内的任意一点,Q 是线段 PF 上的点,且满足2133OQ OP OF =+u u u r u u u r u u u r,则直线 OQ 的斜率的最大值为( )A .22B 31 D 2 11.已知122)(+-=x x a x f 为奇函数,)ln()(2b x x g -=,若对)()(,,2121x g x f R x x ≤∈∀恒成立,则b 的取值范围为( )A .]0,(-∞B .],(e --∞C .]0,[e -D .),[+∞-e12.设函数⎭⎬⎫⎩⎨⎧=x e x x x x f 2,ln min )((0x >)({}b a ,m in 表示b a ,中的较小者),则函数)(x f 的最大值为( )A .24eB .2ln 2C .e1D .2ln 23二、填空题:本大题共4小题,每小题5分,共20分.13.在平面直角坐标系xOy 中,已知角α的顶点和点O 重合,始边与x 轴的非负半轴重合,终边上一点M 坐标为(1,3)-,则tan()4πα+= .14.在菱形ABCD 中,ο60,2=∠=A AB ,M 为BC 中点,则=⋅BD AM .15.若曲线2(1)y ax x =>在曲线2(1)21x y x x =>-的上方,则a 的取值范围为 .16.如右图所示,在棱长为2的正方体1111ABCD A B C D -中,E 为棱1CC 的中点,点,P Q 分别为面1111A B C D 和线段1B C 上的动点,则PEQ ∆周长的最小值为 .三、解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知数列{}n a 满足:11a =, 121n n a a n +-=+().n N +∈(1)求数列{}n a 的通项公式; (2)求3223111111n n a a a a a a ++++++---L 的值.18.(本小题满分12分)在Rt ABC ∆中,90C ∠=︒,4AC =,2BC =,E 是AC 的中点,F 是线段AB 上一个动点,且−→−AF =λ−→−AB(0<λ<1),如图所示,沿BE 将CEB ∆翻折至DEB ∆,使得平面DEB ⊥平面ABE . (1)当13λ=时,证明:EF ⊥平面DBE ; (2)是否存在λ,使得三棱锥D BEF -的体积是23?若存在,求出λ的值;若不存在,请说明理由.19.(本小题满分12分)在ABC ∆中,角C B A 、、的对边分别为a 、b 、c ,若12cos 2cos 22=-+C BA . (1)求角C 的大小;(2)若ABC ∆三边长成等差数列,且1a =,求ABC ∆的面积.20.(本小题满分12分)已知椭圆()2222:10x y E a b a b+=>>的短轴长为2,6直线l 过点()1 0-,交椭圆E 于A 、B 两点,O 为坐标原点. (1)求椭圆E 的方程; (2)求OAB △面积的最大值.21.(本小题满分12分)已知函数()22ln f x x a x ax a R =-+∈,,且0a ≠.(1)若函数()f x 在区间[1 )+∞,上是减函数,求实数a 的取值范围;(2)设函数()()()2231g x a x a a x =+-+,当1x >时,()()f x g x <恒成立,求a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-4:坐标系与参数方程已知直线l的参数方程为x ty =⎧⎪⎨=⎪⎩t 为参数),若以直角坐标系xOy 的O 点为极点,Ox 方向为极轴,选择相同的长度单位建立极坐标系,得曲线C 的极坐标方程为2cos 4πρθ⎛⎫=-⎪⎝⎭. (1)求直线l 的倾斜角和曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于A 、B两点,设点0 P ⎛ ⎝⎭,求PA PB +.23.(本小题满分10分)选修4-5:不等式选讲 设函数()212f x x x =+--. (1)求不等式()2f x >的解集; (2)若x R ∀∈,()2112f x t t ≥-恒成立,求实数t 的取值范围.答案1-5. CCAA C 6—10:DBDDD 11-12.BA13.14. 15. [1,)+∞ 16.17.(本小题满分12分) 解(1)121(2)n n a a n n --=-≥Q又112211()()()n n n n n a a a a a a a a ---=-+-++-+Q L =2(21)(23)31n n n -+-+++=L (2)2112222111111(2)1111(1)(1)11n n n n n a a n a a a n n n n n +-+==+=+=+=+-≥-----+-+ 1111111=(11)(1)(1)(1)3243511n n ∴+-++-++-+++-++L 原式1111111111=(n-1)+(1)324351121n n n n n -+-+-++-=+--+++L18.解析:(1)在ABC ∆中,90C ∠=︒,即AC BC ⊥,则BD DE ⊥, 取BF 的中点N ,连接CN 交BE 于M , 当13λ=时,F 是AN 的中点,而E 是AC 的中点, ∴EF 是ANC ∆的中位线,∴EF CN ∥.在BEF ∆中,N 是BF 的中点, ∴M 是BE 的中点.在Rt BCE ∆中,2EC BC ==,∴CM BE ⊥,则EF BE ⊥. 又平面DBE ⊥平面ABC ,平面DBE I 平面ABC BE =, ∴EF⊥平面DBE .(2)连接DM ,由(1)知CM BE ⊥,∴DMBE ⊥,而平面DBE ⊥平面ABC ,平面DBE I 平面ABC BE =.∴DM⊥平面ABC ,即DM 是三棱锥D BEF -的高,且DM CM ==过E 作EHAB ⊥于点H .则1122ABE S AE BC AB EH ∆=⋅⋅=⋅⋅,即112222EH ⨯⨯=,可得EH =.假设存在满足题意的λ,则三棱锥D BEF -的体积为13BEF V S DM ∆=⨯=1132BF EH DM ⨯⨯⨯=113253BF ⨯⨯⨯=.解得BF =,∴12AF AB λ===, 故存在12λ=,使得三棱锥D BEF -的体积是3.19.(本小题满分12分)解:(1)01cos cos 20cos 2cos 12cos 2cos 222=-+⇒=+⇒=-+C C C C C BA Θ 31cos 21cos π=⇒-==∴C C C (舍)或(2))(2为等差中项只可能三边成等差数列c b a c +=⇒Θ,3)32sin(sin 3sin sin sin sin sin 2=-+⇒=+⇒+=∴A A B A B A C π31)6sin(1cos 21sin 23ππ=⇒=+⇒=+∴A A A A 因此△ABC 为边长为1的等边三角形,ABC S ∆∴=20.(1)2213x y +=;(2解析:(1)由题意得1b =,由221c a a c ⎧=⎪⎨⎪=+⎩得a c ⎧=⎪⎨=⎪⎩∴椭圆E 的方程为2213x y +=;(2)依题意设直线l 的方程为1x my =-, 由22131x y x my ⎧+=⎪⎨⎪=-⎩,得()223220m y my +--=, ()224830m m ∆=++>,设()()1122 A x y B x y ,,,,则1221222323m y y m y y m ⎧+=⎪⎪+⎨⎪=-⎪+⎩,12112OABS y y =⨯⨯-=△设()233m t t +=≥,则OABS =△.∵3t ≥,∴1103t <≤,∴当113t =,即3t =时,OAB△,此时0m =.21.(1)1( ][1 )2-∞-+∞U ,,;(2)[ 1 0)-,. 解:(1)∵函数()f x 在区间[1 )+∞,上是减函数,则()21'20f x a x a x=-+≤, 即()()()22212110F x a x ax ax ax =--=+-≥在[1 )+∞,上恒成立,当0a ≠时,令()0F x =,得12x a =-或1x a =,①若0a >,则11a ≤,解得1a ≥;②若0a <,则112a -≤,解得12a ≤-. 综上,实数a 的取值范围是1( ][1 )2-∞-+∞U ,,.(2)令()()()h x f x g x =-,则()()221ln h x ax a x x =-++,根据题意,当()1 x ∈+∞,时,()0h x <恒成立,所以()()()()1211'221x ax h x ax a x x--=-++=. ①当102a <<时,1 2x a ⎛⎫∈+∞ ⎪⎝⎭,时,()'0h x >恒成立,所以()h x 在1 2a ⎛⎫+∞ ⎪⎝⎭,上是增函数,且()1 2h x h a ⎛⎫⎛⎫∈+∞ ⎪ ⎪⎝⎭⎝⎭,,所以不符题意. ②当12a ≥时,()1 x ∈+∞,时,()'0h x >恒成立,所以()h x 在()1 +∞,上是增函数,且()()()1 h x h ∈+∞,所以不符题意.③当0a <时,()1 x ∈+∞,时,恒有()'0h x <,故()h x 在()1 +∞,上是减函数,于是“()0h x <对任意()1 x ∈+∞,都成立”的充要条件是()10h ≤,即()210a a -+≤,解得1a ≥-,故10a -≤<22.(1)3π,221x y ⎛⎛+-= ⎝⎭⎝⎭;(2)PA PB +=. 解析:(1)直线l 倾斜角为3π, 曲线C的直角坐标方程为221x y ⎛⎛-+= ⎝⎭⎝⎭, (2)容易判断点0 P ⎛ ⎝⎭在直线l 上且在圆C 内部,所以PA PB AB +=, 直线l的直角坐标方程为y =所以圆心⎝⎭到直线l的距离d =AB =PA PB +=. 23.(1){}15x x x ><-或;(2)1 52⎡⎤⎢⎥⎣⎦,.解析:(1)由题意得()13 213 1 223 2x x f x x x x x ⎧--<-⎪⎪⎪=--≤<⎨⎪+≥⎪⎪⎩,,,,当12x <-时,不等式化为32x -->,解得5x <-,∴5x <-,当122x -≤<时,不等式化为312x ->,解得1x >,∴12x <<,当2x ≥时,不等式化为32x +>,解得1x >-,∴2x ≥,综上,不等式的解集为{}15x x x ><-或. (2)由(1)得()2min 51122f x t t =-≥-,解得152t ≤≤,综上,t 的取值范围为1 52⎡⎤⎢⎥⎣⎦,.。

相关文档
最新文档