2020年高考数学模拟考试试卷+解析答案+评分标准

合集下载

2020年上海市高考数学模拟试卷6套(附答案解析)

2020年上海市高考数学模拟试卷6套(附答案解析)

高考数学一模试卷一二三总分题号得分一、选择题(本大题共4 小题,共20.0 分)1.若函数在区间(1,e)上存在零点,则常数a的取值范围为()A. 0<a<1B. C. D.2.下列函数是偶函数,且在[0,+∞)上单调递增的是()A. B. f(x)=|x|-2cos xC. D. f(x)=10|lg x|3.已知平面α、β、γ两两垂直,直线a、b、c满足a⊆α,b⊆β,c⊆γ,则直线a、b、c不可能满足的是()A. 两两垂直B. 两两平行C. 两两相交D. 两两异面4.提鞋公式也叫李善兰辅助角公式,其正弦型如下:,-π<φ<π,下列判断错误的是()A. 当a>0,b>0 时,辅助角B. 当a>0,b<0 时,辅助角C. 当a<0,b>0 时,辅助角D. 当a<0,b<0 时,辅助角二、填空题(本大题共12 小题,共54.0 分)5.若复数z满足z(1+i)=2i(i为虚数单位),则|z|=______.6.已知,则λ=______.7.函数y=3x-1(x≤1)的反函数是______.8.2019 年女排世界杯共有12 支参赛球队,赛制采用12 支队伍单循环,两两捉对厮杀一场定胜负,依次进行,则此次杯赛共有______场球赛.9.以抛物线y2=-6x的焦点为圆心,且与抛物线的准线相切的圆的方程是______.10.在(1-x)5(1+x3)的展开式中,x3 的系数为______.(结果用数值表示)11.不等式|x-x2-2|>x2-3x-6 的解集是______.12.已知方程x2-kx+2=0(k∈R)的两个虚根为x、x,若|x-x|=2,则k=______.1 2 1 213.已知直线l过点(-1,0)且与直线2x-y=0 垂直,则圆x2+y2-4x+8y=0 与直线l相交所得的弦长为______.14.有一个空心钢球,质量为142g,测得外直径为5cm,则它的内直径是______cm(钢的密度为7.9g/cm3,精确到0.1cm).15.已知{a}、{b}均是等差数列,c=a•b,若{c}前三项是7、9、9,则c=______.n n n n n n1016.已知a>b>0,那么,当代数式取最小值时,点P(a,b)的坐标为______.三、解答题(本大题共5 小题,共76.0 分)17.在直四棱柱ABCD-A B C D中,底面四边形ABCD是边长1 1 1 1为2 的菱形,∠BAD=60°,DD1=3,E是AB的中点.(1)求四棱锥C1-EBCD的体积;(2)求异面直线C1E和AD所成角的大小.(结果用反三角函数值表示)18.已知函数.(1)求函数f(x)的最小正周期及对称中心;(2)若f(x)=a在区间上有两个解x、x,求a的取值范围及x+x的值.1 2 1 219.一家污水处理厂有A、B两个相同的装满污水的处理池,通过去掉污物处理污水,A池用传统工艺成本低,每小时去掉池中剩余污物的10%,B池用创新工艺成本高,每小时去掉池中剩余污物的19%.(1)A池要用多长时间才能把污物的量减少一半;(精确到1 小时)(2)如果污物减少为原来的10%便符合环保规定,处理后的污水可以排入河流,若A、B两池同时工作,问经过多少小时后把两池水混合便符合环保规定.(精确到1 小时)20.已知直线l:x=t(0<t<2)与椭圆象限,M是椭圆上一点.相交于A、B两点,其中A在第一(1)记F、F是椭圆Γ的左右焦点,若直线AB过F,当M到F的距离与到直1 2 2 1线AB的距离相等时,求点M的横坐标;(2)若点M、A关于y轴对称,当△MAB的面积最大时,求直线MB的方程;(3)设直线MA和MB与x轴分别交于P、Q,证明:|OP|•|OQ|为定值.21.已知数列{a}满足a=1,a=e(e是自然对数的底数),且,令n 1 2b=ln a(n∈N*).n n(1)证明:(2)证明:;是等比数列,且{b n}的通项公式是;(3)是否存在常数t,对任意自然数n∈N*均有b n+1≥tb n成立?若存在,求t的取值范围,否则,说明理由.答案和解析1.【答案】C【解析】解:函数在区间(1,e)上为增函数,∵f(1)=ln1-1+a<0,f(e)=ln e- +a>0,可得<a<1故选:C.判断函数的单调性,利用零点判断定理求解即可.本题考查函数与方程的应用,函数的零点的判断,是基本知识的考查.2.【答案】A【解析】解:由偶函数的定义,偶函数的定义域关于原点对称,故D错;A:f(-x)=log2(4-x+1)+x=log2+x=log (4x+1)-log 22x+x=log (4x+1)-x=f(x);2 2 2f(x)=log2(4x+1)-x=log2号成立,故A正确;=log (2x+ )≥log2=1,当且仅当2x= ,即x=0 时等2 2B:x>0 时,f(x)=x-2cos x,令f′(x)=1-2sin x>0,得x∈(0,2kπ+)∪(2kπ+,2kπ+2π)(k∈N*),故B不正确;C:x≠0时,x2+ ≥2,当且仅当x2= ,即x=±1时,等号成立,∴不满足在[0,+∞)上单调递增,故C不正确;故选:A.由偶函数的定义,及在[0,+∞)上单调即可求解;考查偶函数的定义,函数在特定区间上的单调性,属于低档题;3.【答案】B【解析】解:平面α、β、γ两两垂直,直线a、b、c满足a⊆α,b⊆β,c⊆γ,所以直线a、b、c在三个平面内,不会是共面直线,所以:当直线两两平行时,a、b、c为共面直线.与已知条件整理出的结论不符.故选:B.直接利用直线和平面的位置关系的应用求出结果.本题考查的知识要点:直线和平面之间的关系的应用,主要考查学生的空间想象能力,属于基础题型.4.【答案】B【解析】解:因为cosφ=,sinφ=⇒tanφ=,对于A,因为a>0,b>0,则辅助角φ在第一象限⇒0<φ<,因为>0,φ=arctan>0,故A选项正确;对于B,因为a>0,b<0,则辅助角φ在第四象限⇒- <φ<0;,故φ=π-arctan(- )=π+arctan>0,故B选项错误;对于C,因为a<0,b>0,则辅助角φ在第二象限⇒⇒<φ<π;<0,故φ═π-arctan(- )=π+arctan>0,故C选项正确;对于D,因为a<0,b<0,则辅助角φ在第三象限⇒-π<φ<- ,>0,故φ=arctan,又因为φ∈(-π,π],故φ=arctan-π<0,故D选项正确;故选:B.分别判断出a,b的值,对辅助角φ的影响.①a>0,b>0,则辅助角φ在第一象限;②a>0,b<0,则辅助角φ在第四象限;③a<0,b<0,则辅助角φ在第三象限;④a<0,b>0,则辅助角φ在第二象限.本题考查了三角函数的性质,考查学生的分析能力;属于中档题.5.【答案】【解析】解:∵复数z满足z(1+i)=2i,∴(1-i)z(1+i)=2i(1-i),化为2z=2(i+1),∴z=1+i.∴|z|= .故答案为:.利用复数的运算法则、模的计算公式即可得出.本题考查了复数的运算法则、模的计算公式,属于基础题.6.【答案】3【解析】解:=(λ-4)+2λ=5,解之得λ=3,故答案为:3.由行列式的公式化简求解.本题考查行列式,属于基础题.7.【答案】y=1+log3x,x∈(0,1]【解析】解:y=3x-1(x≤1),y∈(0,1],得x-1=log3y,x,y对换,得y=1+log3x,x∈(0,1],故答案为:y=1+log3x,x∈(0,1],利用反函数的求法,先反解x,再对换x,y,求出即可.本题考查了反函数的求法,属于基础题.8.【答案】66【解析】解:根据题意利用组合数得.故答案为:66.直接利用组合数的应用求出结果.本题考查的知识要点:组合数的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.9.【答案】(x+ )2+y2=9【解析】解:抛物线y2=-6x的焦点坐标为:(- ,0)准线的方程为x= ,所以叫点到准线的距离为3,所以以焦点为圆心且与抛物线的准线相切的圆的方程是:故答案为:首先求出抛物线的交点坐标和准现方程,进一步求出圆的方程...本题考查的知识要点:圆锥曲线的性质的应用,圆的方程的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.10.【答案】6【解析】解:(1-x)5•(1+x)3=(1-x)2•[(1-x)(1+x)]3=(x2-2x+1)•(1-3x2+3x4-x6)∴展开式中x3 的系数为(-2)•(-3)=6.故答案为:6.把(1-x)5•(1+x)3 化为(1-x)2•[(1-x)(1+x)]3,再化为(x2-2x+1)•(1-3x2+3x4-x6),由此求出展开式中x3 的系数.本题考查了二项式系数的性质与应用问题,解题时应根据多项式的运算法则合理地进行等价转化,是基础题目.11.【答案】(-4,+∞)【解析】解:不等式|x-x2-2|>x2-3x-6 转换为不等式|x2-x+2|>x2-3x-6,由于函数y=x2-x+2 的图象在x轴上方,所以x2-x+2>0 恒成立,所以x2-x+2>x2-3x-6,整理得x>-4,故不等式的解集为(-4,+∞).故答案为(-4,+∞)直接利用绝对值不等式的解法及应用求出结果.本题考查的知识要点:不等式的解法及应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.12.【答案】±2【解析】解:∵方程程x2-kx+2=0 的两个虚根为x、x,1 2可设x=a+bi,x=a-bi(a,b∈R).1 2∴x+x=2a=k,x x=a2+b2=2,1 2 1 2∵|x-x|=2,∴|2bi|=2,1 2联立解得:b=±1,a=±1.∴k=±2.故答案为:±2.由题意设x=a+bi,x=a-bi(a,b∈R),利用根与系数的关系结合|x-x|=2 求得a与b1 2 1 2的值,则k可求.本题考查了实系数一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于基础题.13.【答案】2【解析】解:由题意可得,l的方程为x+2y+1=0,∵x2+y2-4x+8y=0 可化为(x-2)2+(y+4)2=20,圆心(2,-4),半径r=2 ,∴圆心(2,-4)到l的距离d= = ,∴AB=2 =2 =2 .故答案为:2 .先求出直线l的方程,再求出圆心C与半径r,计算圆心到直线l的距离d,由垂径定理求弦长|AB|.本题考查直线与圆的方程的应用问题,考查两条直线垂直以及直线与圆相交所得弦长的计算问题,是基础题.14.【答案】4.5【解析】解:设钢球的内半径为r,所以7.9××3.14×[- ]=142,解得r≈2.25.故内直径为4.5cm.故答案为:4.5.直接利用球的体积公式和物理中的关系式的应用求出结果.本题考查的知识要点:球的体积公式和相关的物理中的关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.15.【答案】-47【解析】解:设c=a•b=an2+bn+c,n n n则,解得∴c10=-1×102+5×10+3=-47,故答案为:-47.{a}、{b}均是等差数列,故{c}为二次函数,设c=an2+bn+c,根据前3 项,求出a,b n n n n,c的值,即可得到c10.本题考查了等差数列的通项公式,考查分析和解决问题的能力和计算能力,属于基础题.16.【答案】(2,)【解析】解:因为a>b>0:∴b(a-b)≤= ;所以≥a2+ ≥2=16.当且仅当,).⇒时取等号,此时P(a,b)的坐标为:(2故答案为:(2 ,).先根据基本不等式得到b(a-b)≤= ;再利用一次基本不等式即可求解.本题考查的知识点:关系式的恒等变换,基本不等式的应用,属于基础题型.17.【答案】解:(1)在直四棱柱ABCD-A B C D中,1 1 1 1∵底面四边形ABCD是边长为2 的菱形,∠BAD=60°,∴B到DC边的距离为,又E是AB的中点,∴BE=1,则.∵DD1=3,∴= ;(2)在直四棱柱ABCD-A B C D中,1 1 1 1∵AD∥B C,∴∠B C E即为异面直线C E和AD所成角,1 1 1 1 1连接B E,在△C B E中,B C=2,,1 1 1 1 1= .∴cos∠B C E= ,1 1∴异面直线C1E和AD所成角的大小为arccos .【解析】(1)求解三角形求出底面梯形BCDE的面积,再由棱锥体积公式求解;(2)在直四棱柱ABCD-A B C D中,由题意可得AD∥B C,则∠B C E即为异面直线1 1 1 1 1 1 1 1C1E和AD所成角,求解三角形得答案.本题考查多面体体积的求法及异面直线所成角的求法,考查空间想象能力与思维能力,是中档题.18.【答案】解:(1)函数= == .所以函数的最小正周期为,令(k∈Z),解得(k∈Z),所以函数的对称中心为()(k∈Z).(2)由于,所以,在区间上有两个解x、x,1 2所以函数时,函数的图象有两个交点,故a的范围为[0,).由于函数的图象在区间 上关于 x = 对称,故.【解析】(1)直接利用三角函数关系式的恒等变换的应用,把函数的关系式变形成正 弦型函数,进一步求出函数的周期和对称中心.(2)利用函数的定义域求出函数的值域,进一步求出参数 a 的范围和 x +x 的值. 1 2本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考 查学生的运算能力和转换能力及思维能力,属于基础题型.19.【答案】解:(1)A 池用传统工艺成本低,每小时去掉池中剩余污物的 10%,剩余原来的 90%,设 A 池要用 t 小时才能把污物的量减少一半, 则 0.9x =0.5,可得 x = ≈7,则 A 池要用 7 小时才能把污物的量减少一半;(2)设 A 、B 两池同时工作,经过 x 小时后把两池水混合便符合环保规定, B 池用创新工艺成本高,每小时去掉池中剩余污物的 19%,剩余原来的 81%, 可得 =0.1,即 0.92x +0.9x -0.2=0, 可得 0.9x = 可得 x =, ≈17.则 A 、B 两池同时工作,经过 17 小时后把两池水混合便符合环保规定.【解析】(1)由题意可得 A 池每小时剩余原来的 90%,设 A 池要用 t 小时才能把污物 的量减少一半,则 0.9x =0.5,两边取对数,计算可得所求值; (2)设 A 、B 两池同时工作,经过 x 小时后把两池水混合便符合环保规定,B 池每小时 剩余原来的 81%,可得=0.1,由二次方程的解法和两边取对数可得所求值.本题考查对数在实际问题的应用,考查方程思想和运算能力,属于基础题.20.【答案】解:(1)设 M (x ,y ),-2≤x ≤2,F 1(-过 F 2,),F 2( ,0),直线 AB所以 t = 由题意得:=|x - |⇒y 2=-4 x ,联立椭圆方程: + =1⇒y 2=2- ,解得 x =-6+4 即 M 的横坐标是:-6+4 (2)设 A (t ,y ),B (t ,-y ),M (-t ,y ), ,. 1 1 1则 S △MAB = 2t •|2y |=2t •|y |,而 A 在椭圆上,所以, + =1 1 1 ∴1≥2• ⇒ty 1≤ ,∴S △MAB ≤2 ,当且仅当 t = ,即 t = y 1 时取等号,∴t = ,这时 B ( ,-1),M (- ,1),所以直线 MB 方程:y =- x ;(3)设点A(t,y),B(t,-y),M(x,y),则直线MA:y= •(x-t)+y1,1 1 0 0所以P的坐标(同理直线MB:y= 所以|OP|•|OQ|=| 代入|OP|•|OQ|=|,0)(x-t)-y1,所以Q的坐标(|,又因为A,M在椭圆上,所以y2=2- t2,y2=2- x2,0)1 0 0 |=4,恒为定值.【解析】(1)由题意可得焦点F,F的坐标,进而可求出A的坐标,设M的坐标,1 2注意横坐标的范围[-2,2],在椭圆上,又M到F1 的距离与到直线AB的距离相等,可求出M的横坐标;(2)M,A,B3 个点的位置关系,可设一个点坐标,写出其他两点的坐标,写出面积的表达式,根据均值不等式可求出横纵坐标的关系,又在椭圆上,进而求出具体的坐标,再求直线MB的方程;(3)设M,A的坐标,得出直线MA,MB的方程,进而求出两条直线与x轴的交点坐标,用M,A的坐标表示,而M,A又在椭圆上,进而求出结果.考查直线与椭圆的综合应用,属于中难度题.21.【答案】(1)证明:由已知可得:a n>1.∴ln a n+1+ln a n≥2,∴ln≥,∵,b=ln a(n∈N*).n n∴ln a n+2≥,∴.(2)证明:设c n=b n+1-b n,∵,b=ln a(n∈N*).∴= =n n= =- .∴是等比数列,公比为- .首项b-b=1.2 1∴b n+1-b n= .∴b=b+(b-b)+(b-b)+……+(b-b)n 1 2 1 3 2 n n-1=0+1+ =+ +……+ = .∴{b n}的通项公式是;(3)假设存在常数t,对任意自然数n∈N*均有b n+1≥tb n成立.由(2)可得:≥0.∴n=1 时,1≥t•0,解得t∈R.n≥2时,t≤,∵= = =1- .取得最小值,= .当n=2 时,∴t≤.【解析】(1)由已知可得:a n>1.利用基本不等式的性质可得:ln a n+1+ln a n≥2,可得ln ≥,代入化简即可得出.(2)设c n=b n+1-b n,由,b=ln a(n∈N*).可得= =- .即n n可证明是等比数列,利用通项公式、累加求和方法即可得出.(3)假设存在常数t,对任意自然数n∈N*均有b n+1≥tb n成立.由(2)可得:≥0.n=1 时,1≥t•0,解得t∈R.n≥2时,t≤,利用单调性即可得出.本题考查了数列递推关系、数列的单调性、等比数列的定义通项公式求和公式,考查了推理能力与计算能力,属于难题.高考数学三模试卷题号得分一 二 三 总分一、选择题(本大题共 4 小题,共 12.0 分)1. 关于三个不同平面 α,β,γ 与直线 l ,下列命题中的假命题是( )A. 若 α⊥β,则 α 内一定存在直线平行于 βB. 若 α 与 β 不垂直,则 α 内一定不存在直线垂直于 βC. 若 α⊥γ,β⊥γ,α∩β=l ,则 l ⊥γD. 若 α⊥β,则 α 内所有直线垂直于 β2. 在一次化学测试中,高一某班 50 名学生成绩的平均分为 82 分,方差为 8.2,则下 列四个数中不可能是该班化学成绩的是( )A. 60B. 70C. 80D. 100 3. 已知双曲线 : ,过点 作直线 ,使 与 有且仅有一个公共点,则满 足上述条件的直线 共有()A. 1 条B. 2 条C. 3 条D. 4 条4. 有红色、黄色小球各两个,蓝色小球一个,所有小球彼此不同,现将五球排成一行 ,颜色相同者不相邻,不同的排法共有()种A. 48B. 72C. 78D. 84 二、填空题(本大题共 12 小题,共 36.0 分) 5. 若全集为实数集 R ,,则∁R M =______ 的准线方程为______. =0 的解为______ . 的反函数 f -1(x )=______ 6. 抛物线7. 关于 x 方程8. 函数 f (x )=2sin x +1,9. 函数的图象相邻的两条对称轴之间的距离是______ ,则二项式(x -2a )10 展开式的系数和是______10. 若 11. 某校要从 名男生和 名女生中选出 人担任某游泳赛事的志愿者工作,则在选出的 志愿者中,男、女都有的概率为______(结果用数值表示).12. 某几何体的三视图如图所示(单位:cm ),则该几何体的体积是______13.设实数x、y满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为2,则2a+3b的值为______14.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数),设直线l与椭圆C相交于A、B两点,则线段AB的长是______15.定义在R上的偶函数f(x)对任意的x∈R有f(1+x)=f(1-x),且当x∈[2,3]时,f(x)=-x2+6x-9.若函数y=f(x)-log a x在(0,+∞)上有四个零点,则a的值为______ .16.已知向量、满足三、解答题(本大题共5 小题,共60.0 分)17.如图,已知多面体ABC-A B C,A A,B B,C C均垂直于平面ABC,∠ABC=120°,,,则的取值范围是______1 1 1 1 1 1A A=4,C C=1,AB=BC=B B=2.1 1 1(1)证明:AB⊥平面A B C;1 1 1 1(2)求直线AC与平面ABB所成的角的正弦值.1 118. 在△ABC中,角A,B,C的对边分别为a,b,c,向量,,(1)求sin A的值;(2)若,b=5,求角B的大小及向量在方向上的投影.19. 某单位有员工1000 名,平均每人每年创造利润10 万元,为了增加企业竞争力,决定优化产业结构,调整出x(x∈N*)名员工从事第三产业,调整后这x名员工他们平均每人创造利润为万元,剩下的员工平均每人每年创造的利润可以提高0.2x%.(1)若要保证剩余员工创造的年总利润不低于原来1000 名员工创造的年总利润,则最多调整多少名员工从事第三产业?(2)设x≤400,若调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,求a的最大值.20. 如图,以椭圆=1(a>1)的右焦点F为圆心,1-c为半径作圆F(其中c为2 2已知椭圆的半焦距),过椭圆上一点P作此圆的切线,切点为T.(1)若a= ,P为椭圆的右顶点,求切线长|PT|;(2)设圆F2 与x轴的右交点为Q,过点Q作斜率为k(k>0)的直线l与椭圆相交于A、B两点,若|PT|≥(a-c)恒成立,且OA⊥OB.求:①c的取值范围;②直线l被圆F2 所截得弦长的最大值.21. 给定数列{a},记该数列前i项a,a,…,a中的最大项为A,即A=max{a,an 1 2 i i i 1 2,…,a};该数列后n-i项a,a,…,a中的最小项为B,即B=min{a,ai i+1 i+2 n i i i+1 i+2,…,a};d=A-B(i=1,2,3,…,n-1)n i i i(1)对于数列:3,4,7,1,求出相应的d,d,d;1 2 3(2)若S是数列{a}的前n项和,且对任意n∈N*,有,n n其中λ为实数,λ>0 且.①设,证明数列{b n}是等比数列;②若数列{a}对应的d满足d>d对任意的正整数i=1,2,3,…,n-2 恒成立,n i i+1 i求实数λ的取值范围.答案和解析1.【答案】D【解析】解:对于A,假设α∩β=a,则α内所有平行于a的直线都平行β,故A正确;对于B,假设α内存在直线a垂直于β,则α⊥β,与题设矛盾,故假设错误,故B正确;对于C,设α∩γ=c,β∩γ=d,在γ内任取一点P,作PM⊥c于点M,PN⊥d于点N则PM⊥α,PN⊥β,且PM、PN不可能共线.又l⊂α,l⊂β,∴PM⊥l,PN⊥l.又PM∩PN=P,PM⊂γ,PN⊂γ,∴l⊥γ.故C正确.对于D,假设α∩β=a,则α内所有平行于a的直线都平行β,故D错误.故选:D.根据空间线面位置关系的判定和性质判断或距离说明.本题主要考查了直线与平面位置关系的判定,考查了空间想象能力和推理论证能力,属于中档题.2.【答案】A【解析】解:高一某班50 名学生成绩的平均分为82 分,方差为8.2,根据平均数、方差的意义,可知60 分不可能是该班化学成绩.故选A.根据平均数、方差的意义,可知结论.本题考查平均数、方差的意义,比较基础.3.【答案】D【解析】【分析】本题主要考查了双曲线的简单性质.考查了学生数形结合和转化和化归的思想的运用,属于一般题.先确定双曲线的右顶点,进而根据图形可推断出当l垂直x轴时与C相切,与x轴不垂直且与C相切,与渐近线平行且与C较与1 点(两种情况)满足l与C有且只有一个公共点.【解答】解:根据双曲线方程可知a=1,①当直线l斜率不存在时,直线l方程为:x=1,满足与曲线C只有一个公共点;②当直线l斜率存在时,设直线l方程为:y-1=k(x-1),即:y=k(x-1)+1,联立,整理可得:,当,即k= 时,此时方程有且仅有一个实数根,∴直线l: 与曲线C有且仅有一个公共点,当时,,解得:∴直线l: ,与曲线C有且仅有一个公共点,综上所述:满足条件的直线l有4 条.故选:D.4.【答案】A【解析】解:将五个球排成一行共有种不同的排法,当两个红色球相邻共有当两个黄色球相邻共有种不同的排法,种不同的排法,当两个黄色球、两个红色球分别相邻共有种不同的排法,则将五球排成一行,颜色相同者不相邻,不同的排法共有- - +=120-48-48+24=48(种),故选:A.由排列组合及简单的计数问题得:将五球排成一行,颜色相同者不相邻,不同的排法共有- - + =48(种),得解.本题考查了排列组合及简单的计数问题,属中档题.5.【答案】【解析】解:∵∴;.故答案为:.可以求出集合M,然后进行补集的运算即可.考查描述法、区间表示集合的定义,对数函数的单调性及对数函数的定义域,以及补集的运算.6.【答案】y=1【解析】解:由,得x2=-4y,∴2p=4,即p=2,则抛物线的准线方程为y= =1.故答案为:y=1.化抛物线方程为标准式,求得p,则直线方程可求.本题考查抛物线的简单性质,是基础题.7.【答案】x= 或x= ,k∈Z【解析】解:由=0,得4sin x cosx-1=0,即sin2x= .∴2x= 则x= 或x=或x=,,k∈Z.或x=故答案为:x= ,k∈Z.由已知可得sin2x= .求出2x的值,则原方程的解可求.本题考查二阶矩阵的应用,考查了三角函数值的求法,是基础题.8.【答案】,x∈[1,3]【解析】解:由y=2sin x+1,得sin x=,∴x=把x与y互换,可得f-1(x)=故答案为:,x∈[1,3].,∵,,x∈[1,3].由已知利用反正弦求得x,把x与y互换得答案.本题考查三角函数的反函数的求法,注意原函数的定义域是关键,是基础题.9.【答案】【解析】解:=(sin x+cos x)cos x== ,所以f(x)的周期T= ,所以f(x)的图象相邻的两条对称轴之间的距离为,故答案为:.化简f(x),然后根据f(x)图象相邻的两条对称轴之间的距离为即可得到结果.本题考查了三角函数的图象与性质,属基础题.10.【答案】1024【解析】解:由,知a≠1,∴= == ,∴a= ,∴(x-2a)10=(x+1)10,∴其展开式系数之和为C100+C101+C102+…+C1010=210=1024,故答案为:1024.根据数列的极限求出a的值,然后代入二项式(x-2a)10 中求其展开式的系数和即可.本题考查了数列的极限和二项式展开式系数和的求法,属基础题.11.【答案】【解析】【分析】本题考查等可能事件的概率计算,在求选出的志愿者中,男、女生都有的情况数目时,可以先求出只有男生、女生的数目,进而由排除法求得.根据题意,首先计算从2 名男生和4 名女生中选出4 人数目,再分析选出的4 人中只有男生、女生的数目,由排除法可得男、女生都有的情况数目,进而由等可能事件的概率公式,计算可得答案.【解答】解:根据题意,从2 名男生和4 名女生中选出4 人,有C64=15 种取法,其中全部为女生的有C44=1 种情况,没有全部为男生的情况,则选出的4 名志愿者中,男、女生都有的情况有15-1=14 种,则其概率为.故答案为.12.【答案】【解析】解:由已知可得该几何体是以俯视图为底面的锥体,(也可以看成是一个三棱锥与半圆锥的组合体),= ,其底面积:S= ×2×1+高h=3,故棱锥的体积V= = ,故答案为:由已知可得该几何体是以俯视图为底面的锥体,(也可以看成是一个三棱锥与半圆锥的组合体),代入锥体体积公式,可得答案.本题考查的知识点是由三视图求体积和表面积,难度中档.13.【答案】1【解析】解:由z=ax+by(a>0,b>0)得y=- x+,∵a>0,b>0,∴直线的斜率- <0,作出不等式对应的平面区域如图:平移直线得y=- x+ ,由图象可知当直线y=- x+经过点B时,直线y=- x+ 的截距最大,此时z最大.由,解得,即B(4,6),此时目标函数z=ax+by(a>0,b>0)的最大值为2,即4a+6b=2,即2a+3b=1,故答案为:1.作出不等式对应的平面区域,利用z的几何意义确定取得最大值的条件,即可得到结论.本题主要考查线性规划的基本应用,利用数形结合求出目标函数取得最大值的条件是解决本题的关键.14.【答案】【解析】解:由得x2+ =1,将代入到x2+ =1 并整理得:t2+4t=0,设A,B对应的参数为t,t,1 2则t=0,t=- ,1 2∴|t-t|=1 2故答案为:.联立直线的参数方程与曲线C的普通方程,利用参数的几何意义可得.本题考查了参数方程化成普通方程,属中档题.15.【答案】【解析】【分析】由已知中f(x+1)=f(1-x),故可能函数是以2 为周期的周期函数,又由函数f(x)是定义在R上的偶函数,结合当x∈[2,3]时,f(x)=-x2+6x-9.我们易得函数f(x)的图象,最后利用图象研究零点问题即可.本题考查的知识点是函数奇偶性与单调性的综合应用,函数的周期性,考查函数的零点与方程的根的关系,体现了化归与转化与数形结合的数学思想,属于中档题.【解答】解:由函数f(x)是定义在R上的偶函数,且f(x+1)=f(1-x)成立,可得f(x+2)=f(-x)=f(x),∴函数f(x)是定义在R上的周期为2 的偶函数,当x∈[2,3]时,f(x)=-x2+6x-9.函数y=f(x)-log x在(0,+∞)上的零点个数等于函数y=f(x)和函数y=log x的图象a a在(0,+∞)上的交点个数,如图所示:当y=log x的图象过点A(4,-1)时,函数y=f(x)-log x在(0,+∞)上有四个零点,a a∴-1=log a4,∴a= .故答案为:.16.【答案】【解析】解:向量、满足,,由题意可设,=(0,1)、=(x,y);、满足则:+ =(x,1+y);- =(-x,1-y);,,且x2+y2=4;则= +转换成所求为点(x.y)到(0,-1)与点(0,1)的距离之和大小,且(x,y)可看成在x2+y2=4 表示的圆周上的点;由数形结合法知即:当(x,y)在(2,0)或(-2,0)时,则值最小为3+1=4;当(x,y)在(0,2)或(0,-2)时,则值最大为2 =2 ;则的取值范围是故答案为:.利用设向量、的坐标表示法,利用向量模长转换成函数求最值,利用数形结合法求转换后的最值即可.本题考查了向量模长应用的问题,采用数形结合法,分类讨论解题时应根据平面向量的线性运算法则进行化简..17.【答案】(1)证明:由余弦定理得,所以,∵A A⊥平面ABC,B B⊥平面ABC,AB⊂平面ABC,1 1∴AA∥BB,AB⊥BB,1 1 1∵AA=4,BB=2,AB=2,1 1∴A B= =2 ,1 1又AB1= =2 ,∴,∴AB⊥A B,1 1 1, ,即即AB⊥B C,1 1 1又A B∩B C=B,A B,B C平面A B C,1 1 1 1 1 1 1 1 1 1 1 1∴AB⊥平面A B C.1 1 1 1(2)解:取AC中点O,过O作平面ABC的垂线OD,交A C于D,1 1∵AB=BC,∴OB⊥OC,以O为原点,以OB,OC,OD所在直线为坐标轴建立空间直角坐标系如图所示:则A(0,- ,0),B(1,0,0),B(1,0,2),C(0,,1),1 1∴=(1,,0),=(0,0,2),=(0,2 ,1),设平面ABB1 的法向量为=(x,y,z),则,∴,令y=1 可得=(- ,1,0),∴cos = = = .设直线AC与平面ABB所成的角为θ,则sinθ=|cos|= .1 1∴直线AC与平面ABB所成的角的正弦值为.1 1【解析】本题主要考查了线面垂直的判定定理,线面角的计算与空间向量的应用,考查计算能力与空间想象能力,属于中档题.(1)利用勾股定理的逆定理证明AB⊥A B,AB⊥B C,从而可得AB⊥平面A B C;1 1 1 1 1 1 1 1 1 1 (2)以AC的中点为坐标原点建立空间坐标系,求出平面ABB1 的法向量,计算与的夹角即可得出线面角的正弦值.18.【答案】解:(1)由题意可得=cos[(A-B)+B]=cos A=∴sin A= = ;(2)由正弦定理可得∴sin B= = ,∵a>b,∴A>B,∴B= ,由余弦定理可得解得c=1,或c=-7(舍去),故向量方向上的投影为=cos(A-B)cos B-sin(A-B)sin B,,== ,在cos B=c cos B=1×= .【解析】(1)由数量积的坐标表示和涉及函数的公式可得=cos A= ,由同角三角函数的基本关系可得sin A;(2)由正弦定理可得sin B=,由余弦定理可得c值,由投影的定义可得.,结合大边对大角可得B值本题考查平面向量的数量积和两角和与差的三角函数公式,属中档题.19.【答案】解:(1)由题意得:10(1000-x)(1+0.2x%)≥10×1000,即x2-500x≤0,又x>0,所以0<x≤500.即最多调整500 名员工从事第三产业.(2)由题意得:10x(a- )≤10(1000-x)(1+0.2x%),即ax≤+1000+x,因为x>0,所以a≤在(0,400]恒成立,令f(x)= ,则f(x)= ≥2×2+1=5,当仅当时取等,此时x=500,但因为x≤400,且函数f(x)= 在(0,500)上单调递减,所以x=400 时,f(x)取最小值为f(400)= ,所以a最大值为.【解析】本题考查函数的实际应用,涉及不等式、函数基本性质等知识点,属于中档题.(1)根据题意列出不等式10(1000-x)(1+0.2x%)≥10×1000,求出解集即可;(2)根据题意可列10x(a- )≤10(1000-x)(1+0.2x%),化成a≤在(0,400]恒成立,构造函数令f(x)= 20.【答案】解:(1)由a= ,得c= ,则当P为椭圆的右顶点时|PF2|=a-c= ,故此时的切线长|PT|=,利用对勾函数性质求出最值即可.;(2)①当|PF2|取得最小值时|PT|取得最小值,而|PF| =a-c,2 min由|PT|≥(a-c)恒成立,得≥(a-c),解得≤c<1;②由题意Q点的坐标为(1,0),则直线l的方程为y=k(x-1),代入,得(a2k2+1)x2-2a2k2x+a2k2-a2=0,设A(x,y),B(x,y),1 12 2则有可得,,= ,又OA⊥OB,则=0,得k=a.可得直线l的方程为ax-y-a=0,圆心F2(c,0)到直线l的距离d= ,半径r=1-c,则直线l被圆F2 所截得弦长为L=2设1-c=t,则0<t≤,= ,又= ,∴当t= 时,的最小值为,。

2020最新高考数学模拟测试含解答(20200404103106)

2020最新高考数学模拟测试含解答(20200404103106)

平面 PAD
∴ BG ∥ 平 面 PAD
∵ EF ∥ BG ∴ EF ∥ 平 面 PAD
(7 分)
(II)∵ BG⊥平面 PDC,EF∥BG ∴EF⊥平面 PDC
2
(B) cos
1
2
1 sin
2
(D) sin
1
2
( C)
(文)已知曲线 C 与 C′ 关于直线 x y 2 0对称,若 C 的方程为
, x2 y2 4x 4y 7 0
则 C′的方程为
()
(A ) x 2 y2 8x 8y 31 0
(B) x 2 y2 8x 8y 31 0
(C) x2 y 2 8x 8 y 31 0
又 CD=2a, DP=a,
CP CD 2 DP2 5a
△ PBC 中, G 为 PC 中点,∴ BG⊥PC
易得 BG 3 a, HG 1 a, BH a
2
2
∴ △ BGH 为直角三角形,且
BG ⊥ GH ∴ GB ⊥平面 PDC
(5 分)
∴GB⊥CD 又 CD⊥HB ∴CD⊥平面 BGH ∴平面 BGH ∥
( 12 )有一位同学写了这样一个不等式: x 2 1 c 1 c ( x R) ,他发现,
x2 c
c
当 c=1 ,2 ,
3 时,不等式对一切实数 x 都成立,由此他作出如下猜测:
①当 c 为所有自然数时,不等式对一切实数 x 都成立;
②只存在有限个自然数 c,对 x R不等式都成立;
③当 c 1时,不等式对一切 x R都成立;
已 知 z1=3+4 i , z2=65 cos i sin ) (
2
5
sin(

2020年高考_理科数学模拟试卷(含答案和解析)

2020年高考_理科数学模拟试卷(含答案和解析)

【高仿咫卷•理科数学 笫1页(共4页)】2020年普通高等学校招生全国统一考试高仿密卷理科数学注意事项:L 本卷满分150分,考试时间120分钟.答题前,先将自己的姓名、准考证号 厦写在试题卷和答题卡上,并将准考证号条影码粘贴在答勉卡上的曲 定位JL 。

2.选择题的作答:每小题选出答案后•用2B 铅爸把答题卡上对应题目的答案 标号涂浜,写在试晦卷、草稿纭和答题卡上的非答题区域均无殁°3,非选释题的作答:用签字名直报答在卷麴卡上对应的答意区域内。

客在试 场卷、草稿纸和答邈卡上的非答邈.区域均无效。

4.选考题的作冬:先把所选题目的期号在笔超卡上指定的位置用2B 铅笔涂耍.至案写在答题卡上 对应的冬题区域内,写在试题卷、草稿纸和答题卡上的非答麴区域均无效. 5,考试结束后,请将本试四卷和答题于一并上交,一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要 求的61.已知复数2=~<i 为虚数单位八则|片十2| = £ 1 A.ZB.75D.HH IgGr-DV1卜廿二《衣|2炉一9父+4t0},则AD 《C RB>=A. (1,4)B. (y.4)C. (4J + /I^)D. (1,14-710)2 .已知集合A={3 .已知向量:%。

则“E| =㈤"是口一2川=12。

一加”的 A.充分不必要条件 C,充要条件B.必鬟不充分条件 口既不充分也不必要条件4 .我国古代名著仪孙子算经》中有如卜有趣的问题广今有三女,长女五日一归,中女四日一归•少女三日一归.问三女何n 相会之意思是「一家有三个女儿郴已出嫁.大女儿五天回一次娘家9二女儿四天回一 次娘家,小女儿三天回一次娘家,三个女儿从娘冢同一天走后•至少再隔多少天三人可以再次在娘家相 会?:三人再次在娘家相会■则要隔的天数可以为A. 90 天C. 270 天S.执行如图所示的程序框图,则输出S 的值为B. 180天B. 2 020 *2 019 2Q21 '2 020n 2 020I I ------- 276.已知等差数列{。

2020年普通高等学校全国统一考试数学(模拟卷)(带答案解析)

2020年普通高等学校全国统一考试数学(模拟卷)(带答案解析)
3、试题开放性有所加强
数列第17题解答题中题干的条件让学生自由选择,很多题目不再拘泥于固定题型的固定解题思路,可以对一个问题从不同的思维角度进行一题多解,发散性较强,考查知识点的深度和广度都有所增加。
三、复习建议
重视基础是关键:本次模拟卷非常注重基础题的考查,比例达到了60%,中档题的比例增加,达到了30%,难题比例10%左右。整体难度介于全国高考文数和理数之间,符合新高考数学不分文理的要求。
又由 , ,且 ,得 .
因为 ,从而知 ,即
所以 .
又由于 ,
从而 .
故选:C.
【点睛】
本题考查棱锥体积的计算,考查线面垂直的证明,考查计算能力与推理能力,属于基础题.
6 . 已知点 为曲线 上的动点, 为圆 上的动点,则 的最小值是( )
A.3
B.4
C.
D.
【答案】A
【解析】
【分析】
设 ,并设点A到圆 的圆心C距离的平方为 ,利用导数求最值即可.
2020年普通高等学校招生全国统一考试(模拟卷)
数学试卷
一、整体分析:
本次山东模拟试卷考查全面,涵盖高中数学的重点内容,布局合理,难易得当,包含基础题,中档题,综合题及创新题,考查对基础知识、基本技能、基本运算的掌握。试题对高中数学课程的主干知识,如函数、导数、三角函数、数列、立体几何、解析几何、统计概率等内容,保持了较高比例的考查,其中在题型方面有较大的变化,增加了多选题,并且删除了选做题。
故选:A
【点睛】
本题考查两动点间距离的最值问题,考查利用导数求最值,考查转化思想与数形结合思想,属于中档题.
7 . 设命题 所有正方形都是平行四边形,则 为( )
A.所有正方形都不是平行四边形

惠州市2020届高三模拟考试 理科数学参考答案与评分细则

惠州市2020届高三模拟考试 理科数学参考答案与评分细则

惠州市2020届高三模拟考试理科数学参考答案与评分细则一、选择题1.【解析】集合B=1x x ≥,则A B ⋃=}0x x >,故选A .2.【解析】对于A :(1)1i i i +=-,不是纯虚数;对于B :22(1)22i i i +==-是实数对于C :22(1)2i i i +=-为纯虚数;对于D :234110i i i i i i +++=--+=不是纯虚数.故选C . 3.【解析】因为5950a a +=,所以759250a a a =+=,即725a =,则1104738a a a a +=+=,故1101010()538190.2a a S +==⨯=故选D.4.【解析】由定义知si nα=45,3cos 5α=-,所以24sin 22sin cos 25ααα==-,故选B.5.【解析】,0,0xxx y x ππ⎧>⎪=⎨-<⎪⎩ ,故选B .另解:(1)1f π=>,可排除CD ,1(1)1f π-=->-,可排除A ,故选B .6.【解析】由散点图知两变量间是相关关系,非函数关系,所以①正确。

利用概率知识进行预测,得到的结论有一定的随机性,所以④正确,故选B 。

7.【解析】选项 A 错误,同时和一个平面平行的两条直线不一定平行,可能相交,可能异面;选项B 错误,两平面平行,两平面内的直线不一定平行,可能异面;选项C 错误,一个平面内垂直于两平面交线的直线,只有在两个平面互相垂直时才与另一个平面垂直;选项D 正确,由,//,n m m α⊥得,α⊥n 又,βαβ⊥∴⊂,n故选D 。

8.【解析】从4个视频中选2个有24C 种方法,2篇文章全选22C 种方法,2篇文章要相邻则可以先捆绑看成1个元素,三个学习内容全排列为33A 种方法,最后需要对捆绑元素进行松绑全排列22A ,故满足题意的学法有2232423272C C A A =,选C 。

9.【解析】F ,设左焦点为0(F ,由题意可知APF ∆的周长l 为||||PA PF +||AF +,而000||2||,||||2||||||2PF a PF l PA PF a AF AF AF a =+∴=+++≥++=41)=,当且仅当0,,A F P 三点共线时取“=”,故选A 。

上海市奉贤区2020届第二次高考模拟考试数学学科参考答案及评分标准

上海市奉贤区2020届第二次高考模拟考试数学学科参考答案及评分标准

崇明区2020届第二次高考模拟考试数学学科参考答案及评分标准一. 填空题 1.323π;2. 2;3. 180±;4. ;5. [0,2];6. 45;7. (0,]3π;8. 1或5;9.2π;10. (,1)[4,)-∞-+∞U ;11. ;12. 1-+,12-,16-;二. 选择题13. C 14. B 15. C 16. A三、解答题(第17-19题每题14分,第20题16分,第21题18分,满分76分)17.解:(1)以D 为原点,DA 、DC 、DD 1所在直线分别为x 、y 、z 轴建立 空间直角坐标系O -xyz ,则D (0,0,0),C (0,2,0),B (2,2,0), A 1(2,0,4),B 1(2,2,4) 3分 设E (0,2,t ),∵1(2,0,),(2,0,4),BE t BC =-=--u u u r u u u r114040BE BC BE BC t ⊥∴⋅=+-=u u u r u u u rQ ,1,1t EC ∴==(2)设(,,)n u v w =r是平面BED 的一个法向量. 因为n BE ⊥r u u u r ,n BD ⊥r u u u r ,所以20n BE u w ⋅=-+=r u u u r,022=--=⋅v u BD n可以取得其中的一个法向量得(1,1,2)n =-r4由1(0,2,4)A B =-u u u r, 设直线1A B 与平面BED 所成的角为θ63020610sin =⋅==θ,所以sin arc θ= 所以直线1A B 与平面BED 所成的角的大小为sin 6arc . 3分 第1问7分(3+4),第2问7分(4+3)18.解:(1)1,1,sin a b a b x ==⋅=-r r r r2分()x f =()xxx f sin sin 212--+=λλ 2 分21sin ,2sin sin 221=∴-=--=x x x ,λ 2分⎭⎬⎫⎩⎨⎧∈+=+=Z k k x k x x ,65262ππππ或 2分 不写集合扣2分,不写Z k ∈扣1分 (2)()λλλλ2sin 1sin sin 2122+-+=--+==xxxx f()()λ4=-+∴x f x f 2分()()2,21=-+=∴x f x f λ 所以()f x P ∈ 2分 ()()2,21≠-+≠∴x f x f λ 所以()f x P ∉ 2分(注意集合运算符号错扣1分,例如()x f P 这样的是错的) 第1问8分(4+2+2),第2问6分(2+2+2)不写集合扣2分,不写Z k ∈扣1分19.解:(1)依题意知汽车从甲地匀速行驶到乙地所用时间为v300, 全程运输成本为23003003000001000300y bv bv v v v =⋅+⋅=+ 故所求函数()bv vv f y 300300000+==,定义域(]100,0∈v 5+1分(2)依题意知,b v 都为正数,故有1000y bv v=+≥ 当且仅当bv bv v 1000,1000==即时上式中等号成立 2分 若bv b b 1000,101,1001000=≥≤则当时,全程运输成本y 最小 1分 若]100,0(1010,1001000∈<<>v b b 当时,有300000300,(0,100].y bv v v=+∈ ()()()300000100300300030000f v f bv b v -=+-+)10)(100(300bv v v--= 因为1000,10-0,v bv -≥>故有()bv v v f y 300300000+==在(]100,0∈v 上单调递减,所以当且100=v 时等号成立,全程运输成本y 最小 5分⊂≠第一类3分应用基本不等式并指出什么时候取到得3分(1+2) 第二类5分:只有结论不证单调性扣4分 第1问6分(5+1),第2问8分(3+5) 20.解:(1=2分y =+-=解出Q3分(2)10PF TT⋅=u 所以)F1分 得2216a b =⎪+=⎩,解得2233a b ⎧=⎨=⎩ 2分 所以双曲线的方程是223x y -= 1分 (3)假设存在满足题意的直线l ,设l 为y kx t =+由223y kx t x y =+⎧⎨-=⎩得222(1)230k x ktx t ----=, 此步不得分 ()()222244130k t k t ∆=+-+>得出22330t k +->且21k ≠ 1分 所以22112kktx x -=+ 设11(,)M x y 、22(,)N x y ,线段MN 的中点1212(,)22x x y y H ++, 即⎪⎪⎭⎫ ⎝⎛+--t k tk k kt H 2221,1,得22(,)11kt t H k k -- 2分 因为QN QM =,所以1QH k k ⋅=-, 此步不得分得221111tk k kt k +-⋅=--化简得221k t =+ 2分所以6t >或0t <,所以,213k >或201k <<, 找到一条斜率为k 的直线212-+=k kx y ,()()()()+∞--∞-∈,131,00,113,Y Y Y k.(只回答结论没道理不给分) 2分第1问5分(2+3),第2问4分(1+2+1),第3问7分(1+2+2+2)21.解:(1)在{}n c 中,01012n =时,{}n c 有最大值10112022C , 2分在{}n d 中,01011n =或时01013n =或,{}n d 有最大值10002022C , 2分所以{}n c 与{}n d 不具有性质 1分(2)令19823nn b =-,则3(13)3319821982+31322n n n T n n -=-=-⋅- 由11n n n n T T T T -+≥⎧⎨≥⎩ 即1133331982+31982(1)+3222233331982+31982(1)+32222n n n n n n n n -+⎧-⋅≥--⋅⎪⎪⎨⎪-⋅≥+-⋅⎪⎩得131********n n +⎧≤⎨≥⎩所以331982log log 19823n ≤≤,又*2,n n N ≥∈, 所以6n =时,6max 331982631080022n T =⨯+-⋅= 3分所以{}n S 与{}n T 具有性质P 所以6n =时,max 10800n S =60,70n a t dn t d t d =-∴->-<n a t dn =-是等差数列,所以()666108002t d t d S -+-⨯== 2分,*27360067t d N t d d t d ∈⎧⎪-=⎨⎪<<⎩解出360636134313,516518718t t t d d d ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩L 一共102个数列 2分 (3)因为()11n n n n a a b b λ++-=-,n *∈N ,当*2,n n N ≥∈时,112211()()()n n n n n a a a a a a a a ---=-+-+⋅⋅⋅+-+11221()()()0n n n n b b b b b b λλλ---=-+-+⋅⋅⋅+-+1()0n n b b b λλ=-+=n n a b λ= 1分当1n =时,110a b ==,符合上式所以n n a b λ=,*n N ∈ 1分因为{}n a 与{}n b 是有限项数列,所以一定存在最大值假设()0max n n a a =,()0max n n b b '= 1分因为{}n a 与{}n b 具有性质P ,所以0000,=n n n n a b '=∴ 1分1λ=时显然成立 1分假设1>λ,则显然()0max n n a a =()0max n n b b'=000n n n b b a >=λ产生矛盾,同法1<λ,也产生矛盾所以1=λ 说理唯一性 1分 第1问5分(2+2+1),第2问7分(3+2+2),第3问6分(3+3)。

2020年高考理科数学模拟试题含答案及解析5套)

2020年高考理科数学模拟试题含答案及解析5套)

绝密 ★ 启用前2020年高考模拟试题(一)理科数学时间:120分钟 分值:150分注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、考生号填写在答题卡上。

2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试卷上无效。

3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。

4、考试结束,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a ,b 都是实数,那么“22a b >”是“22a b >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件2.抛物线22(0)x py p =>的焦点坐标为( )A .,02p ⎛⎫⎪⎝⎭B .1,08p ⎛⎫⎪⎝⎭C .0,2p ⎛⎫ ⎪⎝⎭D .10,8p ⎛⎫ ⎪⎝⎭3.十字路口来往的车辆,如果不允许掉头,则行车路线共有( )A .24种B .16种C .12种D .10种4.设x ,y 满足约束条件36020 0,0x y x y x y ⎧⎪⎨⎪+⎩---≤≥≥≥,则目标函数2z x y =-+的最小值为( )A .4-B .2-C .0D .2 5.《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(网格纸上小正方形的边长为1),则该“阳马”最长的棱长为( )A .5B .34C .41D .526. ()()()()sin ,00,xf x x x=∈-ππ大致的图象是( )A .B .C .D .此卷只装订不密封班级 姓名 准考证号 考场号 座位号7.函数()sin cos (0)f x x x ωωω=->ω的取值不可能为( ) A .14B .15C .12D .348.运行如图所示的程序框图,设输出数据构成的集合为A ,从集合A 中任取一个元素a ,则函数ay x =,()0,x ∈+∞是增函数的概率为( ) A .35B .45C .34D .37开始输出y结束是否3x =-3x ≤22y x x=+1x x =+9.已知A ,B 是函数2xy =的图象上的相异两点,若点A ,B 到直线12y =的距离相等,则点A ,B 的横坐标之和的取值范围是( ) A .(),1-∞-B .(),2-∞-C .(),3-∞-D .(),4-∞-10.在四面体ABCD 中,若AB CD ==,2AC BD ==,AD BC ==体ABCD 的外接球的表面积为( ) A .2π B .4πC .6πD .8π11.设1x =是函数()()32121n n n f x a x a x a x n +++=--+∈N 的极值点,数列{}n a 满足11a =,22a =,21log n n b a +=,若[]x 表示不超过x 的最大整数,则122320182019201820182018b b b b b b ⎡⎤+++⎢⎥⎣⎦=( )A .2017B .2018C .2019D .202012.[]0,1上单调递增,则实数a 的取值范围( ) A .()1,1- B .()1,-+∞C .[]1,1-D .(]0,+∞第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.命题“00x ∃>,20020x mx +->”的否定是__________.14.在ABC △中,角B2π3C =,BC =,则AB =__________.15.抛物线24y x =的焦点为F ,过F 的直线与抛物线交于A ,B 两点,且满足4AFBF =,点O 为原点,则AOF △的面积为__________.16.已知函数()()2cos2cos0222xxxf x ωωωω=+>的周期为2π3,当π03x ⎡⎤∈⎢⎥⎣⎦,时,函数()()g x f x m=+恰有两个不同的零点,则实数m 的取值范围是__________.三、解答题:共70分。

2020年高考数学模拟试题附参考答案解析(各省市模拟题汇编)(9)

2020年高考数学模拟试题附参考答案解析(各省市模拟题汇编)(9)

A. 8
B. 6
C. 4
D. 2
第Ⅱ卷
二、填空题:本大题共
4 小题,每小题 5 分.
13. [2019 ·平罗中学 ] 某中学为调查在校学生的视力情况,拟采用分层抽样的方法,从该校三个年
级中抽取一个容量为 30 的样本进行调查, 已知该校高一、 高二、高三年级的学生人数之比为 4:5: 6 ,
则应从高三年级学生中抽取 ______名学生.

A.
B.
C.
D.
5.[2019 ·南昌外国语 ] 右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减 损术”.执行该程序框图,若输入的 a , b 分别为 16,20,则输出的 a ( )
A. 0
B. 2
C. 4
D. 1
6. [2019 ·广州测试 ] 已知 sin cos 1 ,其中 5
绘制了他在 26 岁 35 岁( 2009 年 2018 年)
注:年龄代码 1 10 分别对应年龄 26 35 岁.
( 1)由散点图知, 可用回归模型 y bln x a 拟合 y 与 x 的关系, 试根据有关数据建立 y 关于 x 的回
归方程;
( 2)如果该 IT 从业者在个税新政下的专项附加扣除为 3000 元/ 月,试利用( 1)的结果,将月平均
2
19.(12 分) [2019 ·福建毕业 ] “工资条里显红利,个税新政入民心”.随着
2019 年新年钟声的
敲响, 我国自 1980 年以来, 力度最大的一次个人所得 R(简称个税) 改革迎来了全面实施的阶段. 某
IT 从业者为了解自己在个税新政下能享受多少税收红利, 之间各年的月平均收入 y (单位:千元)的散点图:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高考数学模拟考试试题及答案
参考答案
一、单项选择题
1. 一看就是两个交点,所以需要算吗?C
2. 分母实数化,别忘了“共轭”,D
3. 简单的向量坐标运算,A
4. 球盒模型(考点闯关班里有讲),37分配,B
5. 在一个长方体中画图即可(出题人就是从长方体出发凑的题,其实就是一个鳖臑bie nao )C
6. 画个图,一目了然,A
7. 关键是把“所有”翻译成“任取”,C
8. 用6、4、2特值即可(更高级的,可以用极限特值8-、4、2,绝招班里有讲),B
二、多项选择题
9. 这个,主要考语文,AD
10. 注意相同渐近线的双曲线设法,22
22x y a b
λ-=,D 选项可用头哥口诀(直线平方……)AC
11. B 选项构造二面平行,C 选项注意把面补全为AEFD1(也可通过排除法选出),D 选项CG 中点明显不在面上,BC
12. 利用函数平移的思想找对称中心,ABC
三、填空题
13. 确定不是小学题?36
14. 竟然考和差化积,头哥告诉过你们记不住公式怎么办,不过这题直接展开也可以,45
- 15. 利用焦半径公式,或者更快的用特殊位置,或者更更快用极限特殊位置(绝招班有讲),2,1
16. 根据对称之美原则(绝招班有讲),8
(老实讲,选择填空所有题都可以不动笔直接口算出来的呀~~~)
四、解答题
17. 故弄玄虚,都是等差等比的基本运算,选①,先算等比的通项()13n n b -=--,再算等差的通项316n a n =-,4k =,同理②不存在,③ m.cksdu 牛逼 4k =
18. (1)根据三角形面积很容易得出两边之比,再用正弦定理即可,60°
(2)设AC=4x (想想为什么不直接设为x ?),将三角形CFB 三边表示出来,再用余
19. (1)取SB 中点M ,易知AM//EF ,且MAB=45°,可得AS=AB ,易证AM ⊥面SBC ,进一步得证
(2)可设AB=AS=a ,,建系求解即可,-
20. (1)正相关
(2)公式都给了,怕啥,但是需要把公式自己化简一下,ˆ121.867.89y
x =+ (3)两侧分布均匀,且最大差距控制在1%左右,拟合效果较好
21. (1)没啥可说的,2
214x y +=
,(2214
x y += (2)单一关参模型,条件转化为AB=CD=1(绝招班里有讲),剩下就是计算了,无解,所以不存在
22. (1)送分的(求导可用头哥口诀),7
(2)考求导,没啥意思,注意定义域,单增()0,+∞
(3)有点意思,详细点写
由递推公式易知1n a ≥
由(
11711
n n n n n a a a a a ++-==++知
若n a <
,则1n a +>
;若n a >
1n a +<
又11a =<n
为奇数时n a <,n
为偶数时n a >
1)n
为奇数时,n a
,1n a +>,由(2)的单增可知 (
)2
221n n n n a a a f a +=<=
可知22111ln 02ln 77n n n n a a ++<<⇒>>⇒> 2)n
为偶数时,n a >
,1n a +<2)的单增可知
(
)2221n n n n a a a f a +⎛⎫=>=
2211771ln 0ln 2n n a a ++>>⇒>>⇒>由1)2
12<
所以
11
1
11
7
ln ln ln
22
ln
n n
n
a
--
-
⎛⎫⎛⎫
=≤<


⎝⎭⎝⎭所以
2
22ln ln71
n
n
a
-⋅-<
证毕
注:奉劝大家千万不要
求通项公式
,当然利用不动点也能求出来)(
((
1
1
77
11
n
n n
a
-
-
+--
⎝⎭
=
-
,只是接下来你就要崩溃了吧~~~。

相关文档
最新文档