人教版九上数学第21章一元二次方程练习题(无答案)
人教版九年级数学上册第二十一章一元二次方程测试题(全章)

第二十一章一元二次方程周周测6一、选择题(每题3分,共30分)1.已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是() A.1 B.﹣1 C.0 D.无法确定2.若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()A.x2+3x﹣2=0 B.x2﹣3x+2=0 C.x2﹣2x+3=0 D.x2+3x+2=0 3.一元二次方程(x﹣2)=x(x﹣2)的解是()A.x=1 B.x=0 C.x1=2,x2=0 D.x1=2,x2=14.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,则k的取值范围是()A.k>12B.k≥12C.k>12且k≠1 D.k≥12且k≠15.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9 B.(x﹣2)2=9 C.(x+2)2=1 D.(x﹣2)2=16.下列关于x的方程有实数根的是()A.x2-x+1=0 B.x2+x+1=0C.(x-1)(x+2)=0 D.(x-1)2+l=07.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144C.144(1+x)2=100 D.100(1+x)2=1448.一元二次方程x2+px﹣2=0的一个根为2,则p的值为()A.1 B.2 C.﹣1 D.﹣29.关于x的一元二次方程x2+2(m﹣1)x+m2=0的两个实数根分别为x1,x2,且x1+x2>0,x1x2>0,则m的取值范围是()A.m≤ B.m≤且m≠0 C.m<1 D.m<1且m≠0 10.若,a b是方程2220060x x+-=的两根,则23a a b++=()A.2006 B.2005 C.2004 D.2002第II卷(非选择题)二、填空题(每题3分,共18分)11.方程x2﹣2x=0的解为12.已知关于x的方程02=+-nmxx的两个根是0和3-,则m= ,n= .13.已知关于x的方程240x x a-+=有两个相同的实数根,则a的值是.14.已知一元二次方程22310x x--=的两根为12x x,,则=+2111xx___________.15.如图(1),在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田国,假设试验田面积为570m2,求道路宽为多少?设宽为x m,从图(2)的思考方式出发列出的方程是_ .16.已知关于x的一元二次方程01)1(2=++-xxm有实数根,则m的取值范围是.三、解答题(共112分)17.(共24分,每小题6分)解下列一元二次方程.(1)x2﹣5x+1=0;(2)3(x﹣2)2=x(x﹣2).(3) 022=+x x (4)02632=+-x x18.(12分)在实数范围内定义一种新运算“”,其规则为:a b =a 2-b 2,根据这个规则:(1)求43的值; (2)求(x +2)5=0中x 的值.19.(12分)已知x 1=-1是方程052=-+mx x 的一个根,求m 的值及方程的另一根x 2。
人教版九年级上册数学第二十一章 一元二次方程单元练习题附详细解析学生版

人教版九年级上册数学第二十一章一元二次方程单元练习题附详细解析一、单选题1.已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是().A.a<2 B.a>2C.a<2且a≠1D.a<-22.若α、β是方程x2+2x﹣2007=0的两个实数根,则α2+3α+β的值()A.2007B.2005C.﹣2007D.40103.一元二次方程x2-kx-1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断4.用配方法解方程时,原方程应变形为()A.B.C.D.5.方程-x2+3x=1用公式法求解,先确定a,b,c的值,正确的是()A.a=-1,b=3,c=-1B.a=-1,b=3,c=1C.a=-1,b=-3,c=-1D.a=1,b=-3,c=-16.下列方程中,有两个不相等实数根的是().A.x2-4x+4=0B.x2+3x-1=0C.x2+x+1=0D.x2-2x+3=07.关于x的一元二次方程kx2-2x-1=0有实数根,则k的取值范围是()A.k>-1或k≠0B.k≥-1C.k≤-1或k≠0D.k≥-1且k≠08.参加一次活动的每个人都和其他人各握了一次手,所有人共握手10次,有多少人参加活动?设有x人参加活动,可列方程为()A.12x(x−1)=10B.x(x−1)=10C.12x(x+1)=10D.2x(x−1)=109.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32−x)(20−x)=32×20−570B.32x+2×20x=32×20−570C.32x+2×20x−2x2=570D.(32−2x)(20−x)=57010.直角三角形两条直角边的和为7,面积是6,则斜边长是()A.√37B.5C.√38D.7二、填空题11.已知(x2+y2+1)(x2+y2+2)=6,则x2+y2的值为。
人教版九年级数学上学期 第21章 一元二次方程 单元练习

20.2020 年 3 月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这
3/6
一.选择题 1. C. 2. A. 3. A. 4. B. 5. A. 6. D. 7. C. 8. D. 9. D. 10. A. 二.填空题 11.﹣3、16. 12. 4. 13.6. 14. 18 或 21. 15. x(x﹣1)=21.
参考答案
三.解答题 16.解:(1)∵(x﹣2)2=9,
(6)
=1.
17.已知关于 x 的方程 x2﹣(k+1)x+k﹣1=0. (1)试判断该方程根的情况,说明理由; (2)若该方程与方程 2x2﹣(k﹣3)x+k﹣6=0 有且只有一个公共根,求 k 的值.
18.为深化疫情防控国际合作、共同应对全球公共卫生危机,我国有序开展医疗物资出口工 作.2020 年 3 月,国内某企业口罩出口订单额为 1000 万元,2020 年 5 月该企业口罩出口 订单额为 1440 万元.求该企业 2020 年 3 月到 5 月口罩出口订单额的月平均增长率.
则 x=
=
,
即 x1=
,x2=
;
(4)∵3x(x﹣2)=﹣2(x﹣2), ∴3x(x﹣2)+2(x﹣2)=0, 则(x﹣2)(3x+2)=0,
解得 x1=2,x2=﹣ ;
(5)∵(x﹣1)2﹣5(x﹣1)+4=0, ∴(x﹣1﹣1)(x﹣1﹣4)=0,即(x﹣2)(x﹣5)=0, 则 x﹣2=0 或 x﹣5=0, 解得 x1=2,x2=5; (6)两边都乘以 x﹣2,得:2x+2=x﹣2, 解得 x=﹣4, 检验:当 x=﹣4 时,x﹣2=﹣6≠0, ∴分式方程的解为 x=﹣4. 17.解:(1)方程有两个不相等的实数根,理由如下: △=[﹣(k+1)]2﹣4×1×(k﹣1)=k2﹣2k+5=(k﹣1)2+4. ∵(k﹣1)2≥0, ∴(k﹣1)2+4>0,即△>0, ∴无论 k 取何值,方程总有两个不相等的实数根. (2)设两个方程的一个公共根为 m,
人教版九年级数学上册第21章一元二次方程的应用归类练习(无答案)

第21章一元二次方程的归类应用一、公式运用问题例1:某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有多少队?例2:怎样用一条长40cm的绳子围成一个面积为96cm的矩形?能围成一个面积为102cm的矩形吗?如果能,说明围法;如果不能,说明理由.练习:1.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人?2.一块正方形钢板上截去3cm宽的长方形钢条,剩下的面积是,则原来这块钢板的面积是多少?3.世界杯小组赛阶段一共比赛48场,来自全世界的参赛球队通过抽签分为八个小组,每个小组的每支球队都必须和其余的球队进行且只进行一场比赛,求世界杯有多少支参赛队伍?4.一条长的铁丝被剪成两段,每段均折成正方形.若两个正方形的面积和等于,则两个正方形的边长分别为多少?二、数字问题例:一个两位数,十位上的数字比个位上的数字的平方少9.如果把十位上的数字与个位上的数字对调,得到的两位数比原来的两位数小27,则原来的两位数是多少?练习:一个两位数,它的个位数与十位数的和是12,而这两个数的积比这个两位数少16 ,这个两位数是多少?三、平均变化率问题〖增长率〗例:某省为解决农村饮用水问题,省财政部门共投资10亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2016年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2018年该市计划投资“改水工程”864万元.(1)求A市投资“改水工程”费用的年平均增长率;(2)从2016年到2018年,A市三年共投资“改水工程”多少万元?〖降低率〗例:某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是多少?254cm2cm64cm2160cm练习:1.某养猪专业户每年的养猪成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养猪专业户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率.2.汽车产业是我市支柱产业之一,产量和效益逐年增加. 据统计,2016年我市某种品牌汽车的年产量为6.4万辆,到2018年,该品牌汽车的年产量达到10万辆. 若该品牌汽车年产量的年平均增长率从2016年开始五年内保持不变,则该品牌汽车2019年的年产量将为多少万辆?3.2016年,东营市某楼盘以每平方米6500元的均价对外销售.因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2018年的均价为每平方米5265元.(1)求平均每年下调的百分率;(2)假设2019年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)4.受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为2.88亿元.(1)求该企业从2015年到2017年利润的年平均增长率;(2)若2018年保持前两年利润的年平均增长率不变,该企业2018年的利润能否超过3.4亿元?四、传播问题例:“埃博拉”病毒是一种能引起人类和灵长类动物产生“出血热”的烈性传染病毒,传染性极强,一日本游客在非洲旅游时不慎感染了“埃博拉”病毒,经过两轮传染后,共有121人受到感染,(1)问每轮传染中平均一个人传染了几个人?(2)如果得不到控制,按如此的传播速度,经过三轮后将有多少人受到感染?1.有一人患了流感,经过两轮传染后共有64人患了流感。
2019-2020人教版九年级数学上册第21章一元二次方程单元训练题含解析

第21章一元二次方程一.选择题(共10小题)1.关于x的方程(m+1)x2+2mx﹣3=0是一元二次方程,则m的取值是()A.任意实数B.m≠1 C.m≠﹣1 D.m>12.若m是方程x2﹣2x﹣1=0的根,则1+2m﹣m2的值为()A.0 B.1 C.﹣1 D.23.方程4x2=81化成一元二次方程的一般形式后,其中的二次项系数、一次项系数和常数项分别是()A.4,0,81 B.﹣4,0,81 C.4,0,﹣81 D.﹣4,0,﹣81 4.已知x=a是方程x2﹣3x+1=0的根,则2a2﹣5a﹣2+的值是()A.﹣1 B.1 C.3 D.﹣35.用配方法解方程时,应将其变形为()A.B.C.D.6.下列一元二次方程中两根之和为﹣4的是()A.x2﹣4x+4=0 B.x2+2x﹣4=0 C.x2+4x﹣5=0 D.x2+4x+10=0 7.《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x尺,根据题意,可列方程为()A.82+x2=(x﹣3)2B.82+(x+3)2=x2C.82+(x﹣3)2=x2D.x2+(x﹣3)2=828.如果长方形的宽增加1cm,长减少1cm,那么其面积增加3cm2.已知原长方形的面积为12cm2,则原长方形的长和宽分别为()A.7cm,3cm B.6cm,2cm C.4cm,3cm D.5cm,2.4cm9.某超市一月份的营业额是100万元,月平均增加的百分率相同,第一季度的总营业额是364万元,若设月平均增长的百分率是x,那么可列出的方程是()A.100(1+x)2=364B.100+100(1+x)+100(1+x)2=364C.100(1+2x)=364D.100+100(1+x)+100(1+2x)=36410.若等腰三角形一条边的边长为3,另两条边的边长是关于x的一元二次方程x2﹣12x+k =0的两个根,则k的值是()A.27 B.36 C.27或36 D.18二.填空题(共10小题)11.已知x=3是方程x2﹣2x+m=0的一个根,那么m=.12.已知x=m是方程x2﹣2x﹣3=0的根,则代数式2m2﹣4m﹣3的值为.13.如果a,b满足a2+2a﹣2=0,b2+2b﹣2=0,且a≠b,则+的值为.14.已知实数ab满足等式a2+3a﹣2=0,b2+3b﹣2=0,那么求的值是.15.若x2﹣6x+7=(x﹣3)2+n,则n=.16.当m满足时,1除以x2+x+m有意义.17.在中秋晚会上,同学们互送礼物,共送出的礼物有110件,则参加晚会的同学共有人.18.关于x的一元二次方程x2+x+1=0有两个相等的实数根,则m的取值为.19.阅读材料:为解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我们可以将x2﹣1视为一个整体,然后设x2﹣1=y,则(x2﹣1)2=y2,原方程化为y2﹣5y+4=0.解得y1=1,y2=4当y=1时,x2﹣1=1.∴x2=2.∴x=±;当y=4时,x2﹣1=4,∴x2=5,∴x=±.∴原方程的解为x1=,x2=﹣,x3=,x4=﹣请利用以上知识解决下列问题:如果(m2+n2﹣1)(m2+n2+2)=4,则m2+n2=.20.如果关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,那么k的取值范围是.三.解答题(共7小题)21.配方法解方程(1)x2+4x﹣6=0.(2)x2﹣2x=822.解方程(1)x2﹣6x=﹣2(2)(2x﹣1)2﹣9x2=023.关于x的一元二次方程x2﹣(k+3)x+2k+2=0有一个根小于1,求k的取值范围.24.已知关于x的一元二次方程x2﹣4mx+2m2=0(1)求证:不论m为何值,该方程总有两个实数根;(2)若x=1是该方程的根,求代数式2(m﹣1)2﹣3的值.25.已知关于x的方程x2+2(m﹣2)x+m2=0有两个实数根x1,x2,(1)求m的取值范围;(2)若x12+x22=56,求m的值.26.如图,等腰直角三角形ABC中,∠B=90°,AB=BC=8cm,动点P从A出发沿AB向B 移动,通过点P引PQ∥AC,PR∥BC,问当AP等于多少时,平行四边形PQCR的面积等于16cm2?设AP的长为xcm,列出关于x的方程.27.一商品销售某种商品,平均每天可售出20件,每件盈利50元.为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若每件商品降价2元,则平均每天可售出件;(2)当每件商品降价多少元时,该商品每天的销售利润为1600元?参考答案与试题解析一.选择题(共10小题)1.关于x的方程(m+1)x2+2mx﹣3=0是一元二次方程,则m的取值是()A.任意实数B.m≠1 C.m≠﹣1 D.m>1【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足二次项系数不为0,所以m+1≠0,即可求得m的值.【解答】解:根据一元二次方程的定义得:m+1≠0,即m≠﹣1,故选:C.2.若m是方程x2﹣2x﹣1=0的根,则1+2m﹣m2的值为()A.0 B.1 C.﹣1 D.2【分析】根据一元二次方程的解的定义,将x=m代入已知方程后即可求得所求代数式的值.【解答】解:∵m是方程x2﹣2x﹣1=0的根,∴m2﹣2m﹣1=0,∴﹣m2+2m=﹣1,∴1+2m﹣m2=1﹣1=0.故选:A.3.方程4x2=81化成一元二次方程的一般形式后,其中的二次项系数、一次项系数和常数项分别是()A.4,0,81 B.﹣4,0,81 C.4,0,﹣81 D.﹣4,0,﹣81 【分析】方程整理后为一般形式,找出二次项系数、一次项系数和常数项即可.【解答】解:方程整理得:4x2﹣81=0,二次项系数为4;一次项系数为0,常数项为﹣81,故选:C.4.已知x=a是方程x2﹣3x+1=0的根,则2a2﹣5a﹣2+的值是()A.﹣1 B.1 C.3 D.﹣3【分析】根据一元二次方程的解的定义得到a2﹣3a+1=0,即a2=3a﹣1,把a2=3a﹣1代入原式,化简得a+﹣4,再通分得到原式=﹣4,然后再把a2=3a﹣1代入化简即可.【解答】解:∵a是方程x2﹣3x+1=0的根,∴a2﹣3a+1=0,∴a2=3a﹣1,∴2a2﹣5a﹣2+=2(3a﹣1)﹣5a﹣2+=6a﹣2﹣5a﹣2+=a+﹣4=﹣4=﹣4=3﹣4=﹣1.故选:A.5.用配方法解方程时,应将其变形为()A.B.C.D.【分析】先移项,再配方,即可得出选项.【解答】解:,x2﹣x=,x2﹣x+()2=+()2,(x﹣)2=,故选:C.6.下列一元二次方程中两根之和为﹣4的是()A.x2﹣4x+4=0 B.x2+2x﹣4=0 C.x2+4x﹣5=0 D.x2+4x+10=0 【分析】利用一元二次方程的根与系数的关系x1+x2=﹣对以下选项进行一一验证并作出正确的选择.【解答】解:A、∵x1+x2=4;故本选项错误;B、∵x1+x2=1;故本选项错误;C、∵△=16+20=36>0,x1+x2=﹣4;故本选项正确;D、∵△=16﹣40=﹣24<0,所以本方程无根;故本选项错误.故选:C.7.《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x尺,根据题意,可列方程为()A.82+x2=(x﹣3)2B.82+(x+3)2=x2C.82+(x﹣3)2=x2D.x2+(x﹣3)2=82【分析】设绳索长为x尺,根据勾股定理列出方程解答即可.【解答】解:设绳索长为x尺,可列方程为(x﹣3)2+82=x2,故选:C.8.如果长方形的宽增加1cm,长减少1cm,那么其面积增加3cm2.已知原长方形的面积为12cm2,则原长方形的长和宽分别为()A.7cm,3cm B.6cm,2cm C.4cm,3cm D.5cm,2.4cm【分析】设长方形的长为xcm,则长方形的宽为cm,根据长方形的面积公式结合“长方形的宽增加1cm,长减少1cm,那么其面积增加3cm2”,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设长方形的长为xcm,则长方形的宽为cm,依题意,得:(x﹣1)(+1)=12+3,整理,得:x2﹣4x﹣12=0,解得:x1=6,x2=﹣2(不合题意,舍去),∴=2.故选:B.9.某超市一月份的营业额是100万元,月平均增加的百分率相同,第一季度的总营业额是364万元,若设月平均增长的百分率是x,那么可列出的方程是()A.100(1+x)2=364B.100+100(1+x)+100(1+x)2=364C.100(1+2x)=364D.100+100(1+x)+100(1+2x)=364【分析】设月平均增长的百分率是x,则该超市二月份的营业额为100(1+x)万元,三月份的营业额为100(1+x)2万元,根据该超市第一季度的总营业额是364万元,即可得出关于x的一元二次方程,此题得解.【解答】解:设月平均增长的百分率是x,则该超市二月份的营业额为100(1+x)万元,三月份的营业额为100(1+x)2万元,依题意,得:100+100(1+x)+100(1+x)2=364.故选:B.10.若等腰三角形一条边的边长为3,另两条边的边长是关于x的一元二次方程x2﹣12x+k =0的两个根,则k的值是()A.27 B.36 C.27或36 D.18【分析】分3为腰长及3为底边长两种情况考虑:当3为腰长时,将x=3代入原方程可求出k的值,将k的值代入原方程可求出x的值,由三角形的三边关系可得出k=27舍去;当3为底边长时,由根的判别式△=0,可求出k值.综上即可得出结论.【解答】解:当3为腰长时,将x=3代入原方程得9﹣12×3+k=0,解得:k=27,∴原方程为x2﹣12x+27=0,∴x1=3,x2=9,∵3+3<9,∴长度为3,3,9的三条边不能围成三角形∴k=27舍去;当3为底边长时,△=(﹣12)2﹣4k=0,解得:k=36.故选:B.二.填空题(共10小题)11.已知x=3是方程x2﹣2x+m=0的一个根,那么m=﹣3 .【分析】将x=3代入原方程即可求出m的值.【解答】解:将x=3代入x2﹣2x+m=0,∴9﹣6+m=0,∴m=﹣3,故答案为:﹣3.12.已知x=m是方程x2﹣2x﹣3=0的根,则代数式2m2﹣4m﹣3的值为 3 .【分析】把x=m代入已知方程,可以求得m2﹣2m=3,然后整体代入所求的代数式求值即可.【解答】解:∵实数m是关于x的方程x2﹣2x﹣3=0的一个根,∴m2﹣2m﹣3=0,∴m2﹣2m=3,∴2m2﹣4m﹣3=2(m2﹣2m)﹣3=2×3﹣3=3.故答案为:3.13.如果a,b满足a2+2a﹣2=0,b2+2b﹣2=0,且a≠b,则+的值为﹣4 .【分析】根据题意可知a、b是一元二次方程x2+2x﹣2=0的两个不相等的实数根,再由根与系数的关系可得a+b=﹣2,ab=﹣2,再将+进行变形,然后代入计算即可.【解答】解:∵a2+2a=2,b2+2b=2,且a≠b,∴a、b是一元二次方程x2+2x﹣2=0的两个不相等的实数根,∴a+b=﹣2,ab=﹣2,∴+====﹣4.故答案为﹣4.14.已知实数ab满足等式a2+3a﹣2=0,b2+3b﹣2=0,那么求的值是2或6.【分析】分类讨论:当a=b时,易得原式=2;当a≠b时,可把a、b看作方程x2+3x ﹣2=0的两根,根据根与系数的关系得a+b=﹣3,ab=﹣2,再把原式变形得到,然后利用整体代入的方法计算.【解答】解:当a=b时,原式=1+1=2;当a≠b时,可把a、b看作方程x2+3x﹣2=0的两根,则a+b=﹣3,ab=﹣2,所以原式====6.故答案为:2或6.15.若x2﹣6x+7=(x﹣3)2+n,则n=﹣2 .【分析】已知等式左边配方后,利用多项式相等的条件求出n的值即可.【解答】解:已知等式整理得:x2﹣6x+7=(x﹣3)2﹣2=(x﹣3)2+n,则n=﹣2,故答案为:﹣216.当m满足m>时,1除以x2+x+m有意义.【分析】根据题意得到分式,再根据分式有意义的条件得到x2+x+m≠0,然后利用根的判别式求解.【解答】解:要使有意义,则x2+x+m≠0,所以△=1﹣4m<0,解得m>.故答案为m>.17.在中秋晚会上,同学们互送礼物,共送出的礼物有110件,则参加晚会的同学共有11 人.【分析】设参加晚会的同学共有x人,则每个同学需送出(x﹣1)件礼品,根据晚会上共送出礼物110件,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设参加晚会的同学共有x人,则每个同学需送出(x﹣1)件礼品,依题意,得:x(x﹣1)=110,解得:x1=11,x2=﹣10(不合题意,舍去).故答案为:11.18.关于x的一元二次方程x2+x+1=0有两个相等的实数根,则m的取值为 4 .【分析】要使方程有两个相等的实数根,即△=b2﹣4ac=0,则利用根的判别式即可求得一次项的系数.【解答】解:由题意,△=b2﹣4ac=()2﹣4=0得m=4故答案为419.阅读材料:为解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我们可以将x2﹣1视为一个整体,然后设x2﹣1=y,则(x2﹣1)2=y2,原方程化为y2﹣5y+4=0.解得y1=1,y2=4当y=1时,x2﹣1=1.∴x2=2.∴x=±;当y=4时,x2﹣1=4,∴x2=5,∴x=±.∴原方程的解为x1=,x2=﹣,x3=,x4=﹣请利用以上知识解决下列问题:如果(m2+n2﹣1)(m2+n2+2)=4,则m2+n2= 2 .【分析】将m2+n2视为一个整体,然后设m2+n2=y,则原方程化为y2+y﹣6=0.求得方程的解,进一步分析探讨得出答案即可.【解答】解:(m2+n2﹣1)(m2+n2+2)=4设m2+n2=y,则原方程化为(y﹣1)(y+2)=4即y2+y﹣6=0,(y+3)(y﹣2)=0,解得y1=﹣3,y2=2,∵m2+n2不能是负数,∴m2+n2=2故答案为2.20.如果关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,那么k的取值范围是k≤且k≠﹣2 .【分析】因为一元二次方程有实数根,所以△≥0,得关于k的不等式,求解即可.【解答】解:∵关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,∴△≥0且k+2≠0即(﹣3)2﹣4(k+2)×1≥0且k+2≠0整理,得﹣4k≥﹣1且k+2≠0∴k≤且k≠﹣2.故答案为:k≤且k≠﹣2.三.解答题(共7小题)21.配方法解方程(1)x2+4x﹣6=0.(2)x2﹣2x=8【分析】(1)根据配方法即可求出答案.(2)根据配方法即可求出答案.【解答】解:(1)∵x2+4x﹣6=0,∴x2+4x+4=10,∴(x+2)2=10,∴x=﹣2±;(2)∵x2﹣2x=8,∴x2﹣2x+1=9,∴(x﹣1)2=9,∴x=4或﹣2;22.解方程(1)x2﹣6x=﹣2(2)(2x﹣1)2﹣9x2=0【分析】(1)利用配方法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2﹣6x=﹣2,∴x2﹣6x+9=﹣2+9,即(x﹣3)2=7,则x﹣3=±,∴x1=3+,x2=3﹣;(2)∵(2x﹣1)2﹣9x2=0,∴(2x﹣1+3x)(2x﹣1﹣3x)=0,即(5x﹣1)(﹣x﹣1)=0,则5x﹣1=0或﹣x﹣1=0,解得x1=0.2,x2=﹣1.23.关于x的一元二次方程x2﹣(k+3)x+2k+2=0有一个根小于1,求k的取值范围.【分析】根据一元二次方程根的判别式公式,求出判别式,得到该方程有实数根,把原方程等号左边因式分解后,根据有一个根小于1,得到关于k的一元一次不等式,解之即可.【解答】解:△=[﹣(k+3)]2﹣4(2k+2)=k2﹣2k+1=(k﹣1)2≥0,即该方程有实数根,∵x2﹣(k+3)x+2k+2=(x﹣2)(x﹣k﹣1)=0,∴x1=2,x2=k+1,∵方程有一根小于1,∴k+1<1,解得:k<0,∴k的取值范围为k<0.24.已知关于x的一元二次方程x2﹣4mx+2m2=0(1)求证:不论m为何值,该方程总有两个实数根;(2)若x=1是该方程的根,求代数式2(m﹣1)2﹣3的值.【分析】(1)进行判别式的值得到△=8m2,从而可判断△≥0,于是得到结论;(2)利用一元二次方程根的定义得到2m2﹣4m=1,再利用完全平方公式得到2(m﹣1)2﹣3=2m2﹣4m+2﹣3,然后利用整体代入的方法计算.【解答】(1)证明:△=(4m)2﹣4•2m2=8m2≥0,所以不论m为何值,该方程总有两个实数根;(2)解:把x=1代入方程得1﹣4m+2m2=0,则2m2﹣4m=﹣1,所以2(m﹣1)2﹣3=2m2﹣4m+2﹣3=﹣1+2﹣3=﹣2.25.已知关于x的方程x2+2(m﹣2)x+m2=0有两个实数根x1,x2,(1)求m的取值范围;(2)若x12+x22=56,求m的值.【分析】(1)由方程有实根,根据根的判别式可得到关于m的不等式,则可求得m的取值范围;(2)利用根与系数的关系可分别表示出x1+x2与x1x2的值,利用条件可得到关于m的方程,可求得m的值.【解答】解:(1)∵关于x的一元二次方程x2+2(m﹣2)x+m2=0有两个实数根,∴△≥0,即[2(m﹣2)]2﹣4m2≥0,解得m≤1;(2)∵方程的两个实数根为x1,x2,∴x1+x2=﹣2(m﹣2),x1x2=m2,∴x12+x22=(x1+x2)2﹣2x1x2=4(m﹣2)2﹣2m2=2m2﹣16m+16,∵x12+x22=56,∴2m2﹣16m+16=56,解得m=﹣2或m=10,∵m≤1,∴m=﹣2.26.如图,等腰直角三角形ABC中,∠B=90°,AB=BC=8cm,动点P从A出发沿AB向B 移动,通过点P引PQ∥AC,PR∥BC,问当AP等于多少时,平行四边形PQCR的面积等于16cm2?设AP的长为xcm,列出关于x的方程.【分析】设AP的长为xcm,▱PQCR的面积等于16cm2,根据等腰三角形的性质和平行四边形的面积公式可列方程求解.【解答】解:设AP的长为xcm时,▱PQCR的面积等于16cm2,依题意有x(8﹣x)=16.27.一商品销售某种商品,平均每天可售出20件,每件盈利50元.为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若每件商品降价2元,则平均每天可售出24 件;(2)当每件商品降价多少元时,该商品每天的销售利润为1600元?【分析】(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价2元,则平均每天可多售出2×2=4(件),即平均每天销售数量为20+4=24(件);(2)利用商品平均每天售出的件数×每件盈利=每天销售这种商品利润列出方程解答即可.【解答】解:(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价2元,则平均每天可多售出2×2=4(件),即平均每天销售数量为20+4=24(件).故答案为:24.(2)设每件商品降价x元时,该商品每天的销售利润为1600元,由题意得:(50﹣x)(20+2x)=1600整理得:x2﹣40x+300=0∴(x﹣10)(x﹣30)=0∴x1=10,x2=30∵每件盈利不少于25元∴x2=30应舍去.答:每件商品降价10元时,该商品每天的销售利润为1600元.。
人教版九年级数学上册第21章《一元二次方程》专题练习

第21章 一元二次方程一、一元二次方程的定义1、下列方程是一元二次方程的有(1)y 2+y=12 (2)x 3+x 2=3 (3)x+2y=12(4)0212=-xx (5)x+1=0 (6)632=x(7)22)32(14+=-x x (8)062)(2=--x x (9)21503x x -=(10)2134x x x +=(11)2110x x--= (12)2111x x =+-(13)3(x +1)2=2(x +1)(14)ax 2+bx +c =02、一元二次方程的一般形式的有(1)ax 2+bx +c =0(2)ax 2+bx +c (a ≠0)(3) ax 2+bx +c =0(a ≠0) (4)ax 2+bx +c =0(b ≠0)(5)ax 2=0(a ≠0) (6)ax 2+bx =0(a ≠0)(7) ax 2+c =0(a ≠0)3、若(m 2-4)x 2+3x -5=0是关于x 的一元二次方程,则 ( )A. m ≠2B. m ≠-2C. m ≠-2,或m ≠2D. m ≠-2,且m ≠24、 若关于x 的方程kx 2+2x -1=0是一元二次方程,则k .5、方程(m -1)x 2-(2m -1)x +m =0当m 时,方程是关于x 的一元二次方程.6、已知关于x 的方程()()021122=-++-x k x k(1)当k 为何值时,此方程为一元一次方程?(2)当k 为何值时,此方程为一元二次方程?并写出二次项系数、一次项系数、常数项7、已知关于x 的方程(m -n )x 2+mx+n=0,你认为: (1)当m 和n 满足什么关系时,该方程是一元二次方程? (2)当m 和n 满足什么关系时,该方程是一元一次方程?二、一元二次方程的项1、一元二次方程02=-x x 的常数项为 2、方程3x 2-3x+3=0的二次项系数与一次项系数及常数项之积为( ) A .3B .-3C .3D .-93、关于x 的一元二次方程()0235122=+-++-m m x x m 的常数项为0,则m =4、将下列方程先化为一般形式,写出二次项、二次项系数、一次项、一次项系数、常数项 (1)3x (x +1)=1 (2)(1-x )(1+x )=2(3)4x (x +1)=16 (4)2x (x +3)=x (2-x )三、 一元二次方程的根(1)已知1是关于x 的方程(m +2)x 2-x +4=0的根,则m = . (2)已知-1是关于x 的方程3x 2-x +a =0的根则a = .(3)已知方程x 2+mx -8=0的一个根是x=-3,求m = .另一个根是 (4)若x=1是一元二次方程ax 2+bx -2=0的根,则a+b= .(5)已知m 是方程x 2-x -2=0的根,则m m -2= . (6)若方程()321=---x m m是关于x 的一元二次方程,则m =四、 根的判别式(1)已知方程x 2+2x -b=0有两个不相同的实数根,求b 的取值范围 (2)已知方程x 2+4x+a=0有两个相同的实数根,求a 的取值范围 (3)已知方程3 x (x+1) +m=0无实数根,求m 的取值范围 (4)关于x 的方程kx 2+3x -2=0有实数根,则k 的取值范围(5)若关于x 的一元二次方程x 2-2x +k =0有两个不相等的实数根,则k 的取值范围 (6)关于x 的一元二次方程2x 2-3x +k =0有两个不相等的实数根,则k 的取值范围(7)关于x的方程x2-kx+k-2=0的根的情况(8)关于x的一元二次方程(m-1)x2-2mx+m=0有两个实数根,m的取值范围(9)关于x的方程x2-(2k-1)x+k2=0有两个不相等的实数根,则k的最大整数值是()A.-2B.-1C. 0D. 1(10)关于x的方程mx2-(m+2)x+2=0(m≠0).求证:方程总有两个实数根(11)关于x的方程x2-6x+(4m+1)=0有实数根,求:m的取值范围五、求方程的两根和与积(1)若方程x2-x-1=0的两根为x1、x2,则x1+x2= , x1x2= 。
人教版九年级数学上册 第21章 一元二次方程 单元练习

第21章一元二次方程一.选择题1.下列方程中是一元二次方程的是()A.B.2x(x﹣1)=2x2+3C.ax2+bx+c=0D.x2=22.一元二次方程4x2﹣1=5x的二次项系数、一次项系数、常数项分别为()A.4,﹣1,5B.4,﹣5,﹣1C.4,5,﹣1D.4,﹣1,﹣5 3.a是方程x2+x﹣1=0的一个根,则代数式﹣2a2﹣2a+2020的值是()A.2018B.2019C.2020D.20214.一元二次方程9x2﹣1=0的根是()A.x1=x2=3B.x1=3,x2=﹣3C.x1=,x2=﹣D.x1=x2=5.将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是()A.﹣4,21B.﹣4,11C.4,21D.﹣8,696.已知a是一元二次方程x2﹣3x﹣5=0的较小的根,则下面对a的估计正确的是()A.﹣2<a<﹣1B.2<a<3C.﹣3<a<﹣4D.4<a<57.实数x,y满足(x+y)(x+y+1)=2,x+y的值为()A.1B.2C.﹣2或1D.2或﹣18.关于x的一元二次方程kx2+4x﹣2=0有实数根,则k的取值范围是()A.k≥﹣2B.k>﹣2且k≠0C.k≥﹣2且k≠0D.k≤﹣29.设方程x2+x﹣2=0的两个根为α,β,那么α+β﹣αβ的值等于()A.﹣3B.﹣1C.1D.310.对于任意实数x,多项式x2﹣2x+3的值是一个()A.正数B.负数C.非负数D.不能确定11.一个矩形内放入两个边长分别为3cm和4cm的小正方形纸片,按照图①放置,矩形纸片没有被两个正方形纸片覆盖的部分(黑色阴影部分)的面积为8cm2;按照图②放置,矩形纸片没有被两个正方形纸片覆盖的部分的面积为11cm2,若把两张正方形纸片按图③放置时,矩形纸片没有被两个正方形纸片覆盖的部分的面积为()A.5cm2B.6cm2C.7cm2D.8cm2二.填空题12.方程5x2﹣x﹣3=x2﹣3+x的二次项系数是.13.已知m是一元二次方程x2﹣2x﹣5=0的一个根,则3m2﹣6m+3=.14.一元二次方程x2﹣x﹣=0配方后可化为.15.一元二次方程4x2=3x的解是.16.关于x的一元二次方程2x2﹣4x+m﹣=0有实数根,则实数m的取值范围是.17.已知﹣3是一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根是18.庆“元旦”,市工会组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛,求这次有多少队参加比赛?若设这次有x队参加比赛,则根据题意可列方程为.19.五个完全相同的小长方形拼成如图所示的大长方形,大长方形的面积是135cm2,则以小长方形的宽为边长的正方形面积是cm2.三.解答题20.已知x=2是方程x2+mx+2=0的一个根,则m的值是.21.如图所示,在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,点P由点A出发,沿AB边以1cm/s的速度向点B移动;点Q由点B出发,沿BC边以2cm/s的速度向点C移动.如果点P,Q分别从点A,B同时出发,问:(1)经过几秒后,△PBQ的面积等于8cm2?(2)经过几秒后,P,Q两点间距离是cm?22.解下列一元二次方程:(1)x2+6x+5=0(2)16(x+1)2=2523.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为15m的住房墙,另外三边用27m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长,宽分别为多少米时,猪舍面积为96m2?24.如图,在Rt△ABC中,∠B=90°,AB=2cm,AC=4cm,动点M从点B出发以每秒cm的速度沿B→C→A方向移动到点A,则点M出发几秒后,可使△ABC的面积是△ABM面积的4倍?参考答案一.选择题1.解:A、x2+﹣3=0,含有分式,不合题意;B、2x(x﹣1)=2x2+3,是一元一次方程,不合题意;C、ax2+bx+c=0(a≠0),不合题意;D、x2=2,是一元二次方程,符合题意.故选:D.2.解:∵一元二次方程4x2﹣1=5x,∴整理为:4x2﹣5x﹣1=0,故一元二次方程的二次项系数、一次项系数、常数项分别为:4,﹣5,﹣1.故选:B.3.解:∵a是方程x2+x﹣1=0的一个根,∴a2+a﹣1=0,即a2+a=1,∴﹣2a2﹣2a+2020=﹣2(a2+a)+2020=﹣2×1+2020=2018.故选:A.4.解:∵9x2﹣1=0,∴9x2=1,则x2=,解得x1=,x2=﹣,故选:C.5.解:∵x2﹣8x﹣5=0,∴x2﹣8x=5,则x2﹣8x+16=5+16,即(x﹣4)2=21,∴a=﹣4,b=21,故选:A.6.解:一元二次方程x2﹣3x﹣5=0,∵a=1,b=﹣3,c=﹣5,∴△=9+20=29,∴x=,则较小的根a=,即﹣2<a<﹣1,故选:A.7.解:设t=x+y,则原方程可化为:t2+t﹣2=0,解得t=﹣2或1,即x+y=﹣2或1.故选:C.8.解:根据题意得k≠0且△=42﹣4k×(﹣2)≥0,解得k≥﹣2且k≠0.故选:C.9.解:∵α,β是方程x2+x﹣2=0的两个根,∴α+β=﹣1,αβ=﹣2,∴原式=﹣1﹣(﹣2)=1.故选:C.10.解:多项式x2﹣2x+3变形得x2﹣2x+1+2=(x﹣1)2+2,任意实数的平方都是非负数,其最小值是0,所以(x﹣1)2+2的最小值是2,故多项式x2﹣2x+3的值是一个正数,故选:A.11.解:设矩形的长为xcm,宽为ycm,依题意,得:,(②﹣①)÷3,得:y﹣x+1=0,∴x=y+1③.将③代入②,得:y(y+1)=16+3(y﹣4)+11,整理,得:y2﹣2y﹣15=0,解得:y1=5,y2=﹣3(舍去),∴x=6.∴按图③放置时,矩形纸片没有被两个正方形纸片覆盖的部分的面积为(x﹣4)(y﹣3)+(x﹣3)(y﹣4)=2×2+3×1=7.故选:C.二.填空题12.解:方程整理得:4x2﹣2x=0,则方程的二次项系数为4.故答案为:4.13.解:∵m是一元二次方程x2﹣2x﹣5=0的一个实数根,∴m2﹣2m﹣5=0,即m2﹣2m=5,∴3m2﹣6m+3=3(m2﹣2m)+3=18,故答案为:18.14.解:∵x2﹣x﹣=0,∴x2﹣x=,则x2﹣x+=+,即(x﹣)2=,故答案为:(x﹣)2=.15.解:4x2=3x,4x2﹣3x=0,x(4x﹣3)=0,x=0,4x﹣3=0,x1=0,x2=故答案为:x1=0,x2=.16.解:∵关于x的一元二次方程2x2﹣4x+m﹣=0有实数根,∴△=(﹣4)2﹣4×2×(m﹣)=16﹣8m+12≥0,解得:m≤,故答案为:m≤.17.解:设方程的另一根为a,∵﹣3是一元二次方程x2﹣4x+c=0的一个根,∴﹣3+a=4,解得a=7,故答案为:7.18.解:设这次有x队参加比赛,则此次比赛的总场数为场,根据题意列出方程得:=45,故答案是:.19.解:设小长方形的长为xcm,宽为xcm,根据题意得:(x+2×x)•x=135,解得:x=9或x=﹣9(舍去),则x=3.所以3×3=9(cm2).故答案为:9.三.解答题20.解:将x=2代入x2+mx+2=0,∴4+2m+2=0,∴m=﹣3故答案为:﹣321.解:(1)设经过x秒后,△PBQ的面积等于8cm2,则BP=(6﹣x)cm,BQ=2xcm,依题意,得:(6﹣x)×2x=8,化简,得:x2﹣6x+8=0,解得:x1=2,x2=4.答:经过2秒或4秒后,△PBQ的面积等于8cm2.(2)设经过y秒后,P,Q两点间距离是cm,则BP=(6﹣y)cm,BQ=2ycm,依题意,得:(6﹣y)2+(2y)2=()2,化简,得:5y2﹣12y﹣17=0,解得:y1=,y2=﹣1(不合题意,舍去).答:经过秒后,P,Q两点间距离是cm.22.解:(1)∵a=1,b=6,c=5,∴△=62﹣4×1×5=16>0,则,∴x1=﹣1,x2=﹣5;(2)∵,∴,∴,,∴,.23.解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(27﹣2x+1)m,由题意得x(27﹣2x+1)=96,解得:x1=6,x2=8,当x=6时,27﹣2x+1=16>15(舍去),当x=8时,27﹣2x+1=12.答:所围矩形猪舍的长为12m、宽为8m.24.解:由题意可得:当BM=BC时,△ABC的面积是△ABM面积的4倍,∵∠B=90°,AB=2cm,AC=4cm,∴BC=2cm,故BM=×2=(cm)时,△ABC的面积是△ABM面积的4倍,即点M出发=秒时,△ABC的面积是△ABM面积的4倍,当AM=AC时,△ABC的面积是△ABM面积的4倍,故AM=×4=1(cm)时,△ABC的面积是△ABM面积的4倍,此时MC=3cm,则M运动的距离为5cm,即点M出发=秒时,△ABC的面积是△ABM面积的4倍.。
初三数学第一学期第21章 一元二次方程 单元测试卷(含解析)

人教版2022年九年级上册第21章《一元二次方程》单元测试卷班级________ 姓名________ 成绩________一.选择题(共10小题,满分30分,每小题3分)1.下列方程中,是一元二次方程的是()A.y=2x﹣1 B.x2=6 C.5xy﹣1=1 D.2(x+1)=22.一元二次方程x2﹣3x﹣4=0的二次项系数、一次项系数、常数项分别是()A.1,3,﹣4 B.0,3,4 C.0,﹣3,4 D.1,﹣3,﹣43.用配方法解一元二次方程3x2+6x﹣1=0时,将它化为(x+a)2=b的形式,则a+b的值为()A .B .C.2 D .4.方程(x﹣2)2=4(x﹣2)的解为()A.4 B.﹣2 C.4或﹣6 D.6或25.一元二次方程ax2+bx+c=0(a≠0)的求根公式是()A .B .C .D .6.已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,则方程a(x+m﹣2)2+n=0(a≠0)的两根分别为()A.1,5 B.﹣1,3 C.﹣3,1 D.﹣1,57.若关于x的一元二次方程(m﹣1)x2+2x﹣2=0没有实数根,则实数m的取值范围是()A.m <B.m >C.m >且m≠1 D.m≠18.2022年2月6日,中国女足获得亚洲杯冠军!某传媒发布的参赛队员简介视频两天的点击量由原来的5万飙升至150万,若设每天点击量的平均增长率为x,则下列所列方程正确的是()A.5(1+x)2=150 B.5+5(1+x)+5(1+x)2=150C.5x2=150 D.5+5x+5x2=1509.某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排21场比赛,则八年级班级的个数为()A.5 B.6 C.7 D.810.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则其中正确的()A.只有①②B.只有①②④C.①②③④D.只有①②③二.填空题(共6小题,满分24分,每小题4分)11.一元二次方程x2=7x的解是.12.关于x的方程(a﹣1)x2﹣3x+3=0是一元二次方程,则a的取值范围是.13.若a是方程2x2﹣x﹣5=0的一个根,则代数式2a﹣4a2+1的值是.14.方程x2+x﹣1=0的两根为x1、x2,则x1+x2的值为.15.已知a,b是一元二次方程x2+3x﹣8=0的两个实数根,则3a2+8a﹣b的值是.16.已知(a2+b2)(a2+b2﹣2)=8,那么a2+b2=.三.解答题(共7小题,满分46分)17.(6分)解下列方程:(1)(x﹣2)2=5(x﹣2);(2)2x2﹣3x=1.18.(5分)某商场销售一批名牌衬衫,平均每天销售20件,每件盈利40元.为了扩大销售,增加盈利和减少库存,商场决定采取适当的降价措施.经调查发现,如果每件降价1元,则每天可多售2件.商场若想每天盈利1200元,每件衬衫应降价多少元?19.(5分)为提高应急处置能力,某社区计划搭建一个临时物资储备仓库,用来放置应急物资.如图,仓库的两边靠墙(墙足够长),另外两边用总长为58米的铁皮围成,两面墙的夹角为90°,铁皮与墙面均垂直,其中CD边上留有宽2米的通道,且边CD的长不小于30米.若仓库的面积是800平方米,则BC的长应为多少米?20.(6分)已知关于x的一元二次方程x2﹣(m+3)x+3m=0.(1)求证:无论m取任何实数,方程总有实数根;(2)若等腰三角形的其中一边为4,另两边是这个方程的两根,求m的值.21.(7分)请根据图片内容,回答下列问题:(1)每轮传染中,平均一个人传染了几个人?(2)按照这样的速度传染,第三轮将新增多少名感染者(假设每轮传染人数相同)?22.(8分)在理解例题的基础上,完成下列两个问题:例题:若m2+2mn+2n2﹣4n+4=0,求m和n的值;解:由题意得:(m2+2mn+n2)+(n2﹣4n+4)=0,∴(m+n)2+(n﹣2)2=0∴,解得.请解决以下问题:(1)若x2+4xy+5y2﹣4y+4=0,求y x的值;(2)若a,b,c是△ABC的边长,满足a2+b2=12a+8b﹣52,c是△ABC的最长边,且c为偶数,则c可能是哪几个数?23.(9分)阅读理解:材料1:对于一个关于x的二次三项式ax2+bx+c(a≠0),除了可以利用配方法求该多项式的取值范围外,爱思考的小川同学还想到了其他的方法:比如先令ax2+bx+c=y(a≠0),然后移项可得:ax2+bx+(c﹣y)=0,再利用一元二次方程根的判别式来确定y的取值范围,请仔细阅读下面的例子:例:求x2+2x+5的取值范围;解:令x2+2x+5=y∴x2+2x+(5﹣y)=0∴Δ=4﹣4×(5﹣y)≥0∴y≥4∴x2+2x+5≥4.材料2:在学习完一元二次方程的解法后,爱思考的小川同学又想到仿造一元二次方程的解法来解决一元二次不等式的解集问题,他的具体做法如下:若关于x的一元二次方程ax2+bx+c=0(a>0)有两个不相等的实数根x1、x2(x1>x2)则关于x的一元二次不等式ax2+bx+c≥0(a>0)的解集为:x≥x1或x≤x2则关于x的一元二次不等式ax2+bx+c≤0(a>0)的解集为:x2≤x≤x1请根据上述材料,解答下列问题:(1)若关于x的二次三项式x2+ax+3(a为常数)的最小值为﹣6,则a=;(2)求出代数式的取值范围;(3)若关于x的代数式(其中m、n为常数且m≠0)的最小值为﹣4,最大值为7,请求出满足条件的m、n 的值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:A.含有两个未知数,不是一元一次方程,故本选项不合题意;B.x2=6是一元一次方程,故本选项符合题意;C.含有两个未知数,不是一元一次方程,故本选项不合题意;D.是一元一次方程的定义,故本选项不合题意;故选:B.2.【解答】解:一元二次方程x2﹣3x﹣4=0的二次项系数为1,一次项系数为﹣3,常数项为﹣4.故选:D.3.【解答】解:∵3x2+6x﹣1=0,∴3x2+6x=1,x2+2x =,则x2+2x+1=,即(x+1)2=,∴a=1,b =,∴a+b =.故选:B.4.【解答】解:(x﹣2)2=4(x﹣2),移项,得(x﹣2)2﹣4(x﹣2)=0,整理,得(x﹣2)(x﹣2﹣4)=0.所以x﹣2=0或x﹣6=0.所以x1=2,x2=6.故选:D.5.【解答】解:一元二次方程的求根公式为x =,故选:A.6.【解答】解:∵一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,∴方程a(x+m﹣2)2+n=0(a≠0)中x﹣2=﹣3或x﹣2=1,解得:x=﹣1或3,即方程a(x+m﹣2)2+n=0(a≠0)的两根分别为﹣1和3,故选:B.7.【解答】解:∵关于x的一元二次方程(m﹣1)x2+2x﹣2=0没有实数根,∴Δ=22﹣4(m﹣1)×(﹣2)<0,且m﹣1≠0,解得m <,故选:A.8.【解答】解:由题意可得,5+5(1+x)+5(1+x)2=150,故选:B.9.【解答】解:设八年级共有x个班,依题意得:x(x﹣1)=21,整理得:x2﹣x﹣42=0,解得:x1=﹣6(不合题意,舍去),x2=7,∴八年级共有7个班.故选:C.10.【解答】解:①若a+b+c=0,则x=1是方程ax2+bx+c=0的解,由一元二次方程的实数根与判别式的关系可知Δ=b2﹣4ac≥0,故①正确;②∵方程ax2+c=0有两个不相等的实根,∴Δ=0﹣4ac>0,∴﹣4ac>0,则方程ax2+bx+c=0的判别式Δ=b2﹣4ac>0,∴方程ax2+bx+c=0必有两个不相等的实根,故②正确;③∵c是方程ax2+bx+c=0的一个根,则ac2+bc+c=0,∴c(ac+b+1)=0若c=0,等式仍然成立,但ac+b+1=0不一定成立,故③不正确;④若x0是一元二次方程ax2+bx+c=0的根,则由求根公式可得:x0=或x0=∴2ax0+b =或2ax0+b =﹣∴故④正确.故选:B.二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:x2﹣7x=0,x(x﹣7)=0,x=0或x﹣7=0,所以x1=0,x2=7.故答案为:x1=0,x2=7.12.【解答】解:∵方程(a﹣1)x2﹣3x+3=0是一元二次方程,∴a﹣1≠0,∴a≠1,故答案为:a≠1.13.【解答】解:∵a是方程2x2﹣x﹣5=0的一个根,∴2a2﹣a﹣5=0,∴2a2﹣a=5,∴4a2﹣2a=10,∴2a﹣4a2+1=﹣10+1=﹣9,故答案为:﹣9.14.【解答】解:∵方程x2+x﹣1=0的两根为x1、x2,∴x1+x2=﹣1,故答案为:﹣1.15.【解答】解:∵a,b是一元二次方程x2+3x﹣8=0的两个实数根,∴a2+3a=8,a+b=﹣3,∴3a2+8a﹣b=3(a2+3a)﹣(a+b)=3×8﹣(﹣3)=27.故答案为:27.16.【解答】解:设a2+b2=t(t≥0),则t(t﹣2)=8,整理,得(t﹣4)(t+2)=0,解得t=4或t=﹣2(舍去),则a2+b2=4.故答案是:4.三.解答题(共7小题,满分46分)17.【解答】解:(1)(x﹣2)2=5(x﹣2),(x﹣2)2﹣5(x﹣2)=0,(x﹣2)(x﹣2﹣5)=0,x﹣=2=0或x﹣2﹣5=0,所以x1=2,x2=7;(2)2x2﹣3x=1,2x2﹣3x﹣1=0,Δ=(﹣3)2﹣4×2×(﹣1)=17>0,x =,所以x1=,x2=.18.【解答】解:设每件衬衫降价x元,则每件盈利(40﹣x)元,平均每天可售出(20+2x)件,依题意得:(40﹣x)(20+2x)=1200,整理得:x2﹣30x+200=0,解得:x1=10,x2=20.答:每件衬衫应降价10元或20元.19.【解答】解:设CD=x米,则BC=(58+2﹣x)米,依题意得:x(58+2﹣x)=800,整理得:x2﹣60x+800=0,解得:x1=20(不符合题意,舍去),x2=40,∴58+2﹣x=58+2﹣40=20.答:BC的长应为20米.20.【解答】(1)证明:Δ=[﹣(m+3)]2﹣4×1×3m=m2﹣6m+9=(m﹣3)2.∵(m﹣3)2≥0,即Δ≥0,∴无论m取任何实数,方程总有实数根;(2)解:当腰为4时,把x=4代入x2﹣(m+3)x+3m=0,得,16﹣4m﹣12+3m=0,解得m=4;当底为4时,则程x2﹣(m+3)x+3m=0有两相等的实数根,∴Δ=0,∴(m﹣3)2=0,∴m=3,综上所述,m的值为4或3.21.【解答】解:(1)设每轮传染中,平均一个人传染x个人,根据题意,可得(1+x)2=121,解得x1=10,x2=﹣12(舍去),答:每轮传染中,平均一个人传染10个人;(2)根据题意,121×10=1210(名),答:按照这样的速度传染,第三轮将新增1210名感染者.22.【解答】解:(1)∵x2+4xy+5y2﹣4y+4=0,∴x2+4xy+4y2+y2﹣4y+4=0,∴(x+2y)2+(y﹣2)2=0,∴x+2y=0,y﹣2=0,解得x=﹣4,y=2,∴y x=2﹣4=;(2)已知等式整理得:(a﹣6)2+(b﹣4)2=0,解得:a=6,b=4,由△ABC中最长的边是c,∴6≤c<10,∵c为偶数,∴c可能是6或8.23.【解答】解:(1)设y=x2+ax+3,变形为x2+ax+3﹣y=0,∵△≥0,∴a2﹣4(3﹣y)≥0可得y,而由已知y≥﹣6,故3﹣=﹣6,∴a=6或a=﹣6.(2)设y =,变形为3x2+(6+3y)x﹣2﹣y=0,∵△≥0,∴(6+3y)2﹣4×3×(﹣2﹣y)≥0,化简得3y2+16y+20≥0,先求出3y2+16y+20=0的二根y1=﹣2,y2=﹣,∴根据材料二得y或y≥﹣2.(3)设y =,变形得yx2﹣(y+5m)x+2y+n=0,∵△≥0,∴(y+5m)2﹣4y(2y+n)≥0,整理得7y2﹣(10m﹣4n)y﹣25m2≤0,由已知可得﹣4≤y≤7,根据材料二知7y2﹣(10m﹣4n)y﹣25m2=0的二根是y1=﹣4,y2=7,代入整理得,解得或.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程练习题
1.解下列方程x 2-6x-7=0, 2x 2-50=0, 3(4x-1)2=(1-4x), 3x 2-5x-6=0,较简便的方法依次是( )
A .因式分解法、公式法、配方法、公式法
B .配方法、直接开平方法、因式分解法、公式法
C .直接开平方法、配方法、公式法、因式分解法
D .公式法、直接开平方法、因式分解法、配方法
2.下列说法中:
①方程02=++q px x 的二根为1x ,2x ,则))((212x x x x q px x --=++
⑤方程07)13(2=-+x 可变形为0)713)(713(=-+++x x
正确的有( )
A.1个
B.2个
C.3个
D.4个
3.若实数x 、y 满足()()023=++-+y x y x ,则x+y 的值为( )
A.-1或-2
B.-1或2
C.1或-2
D.1或2
4.已知一个直角三角形的两直角边长恰是方程07822=+-x x 的两根,则这个直角三 角形的斜边是( )
A.3
B.3
C.6
D.6
5.若一元二次方程ax 2+bx +c = 0 (a ≠0) 的两根之比为2:3,那么a 、b 、c 间的关系应当是( )
A.3b 2
=8ac B.a c a b 2325922= C.6b 2=25ac D.不能确定 6.设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( )
A .2019
B .2019
C .2019
D .2009
7.若一元二次方程的两根x 1、x 2满足下列关系:x 1x 2+x 1+x 2+2=0,x 1x 2-2x 1-2x 2+5=0. 则这个一元二次
方程是( )
A.x 2+x+3=0
B.x 2-x-3=0
C.x 2-x+3=0
D.x 2+x-3=0
8.已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为
9.若=•=-+y x 则y x 324,0352
10.()()=+=-+-+2222222,06b 则a b a b a
11.已知023222=--y xy x ,且0,0>>y x ,则y x y x -+的值为
12.已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根,则m 的值为
13.若142=++y xy x ,282=++x xy y ,则x+y 的值为
14.菱形ABCD 的一条对角线长为6,边AB 的长是方程01272=+-x x 的一个根,则菱形ABCD 的面
积为
15.若912322-+--=x x t ,则t 的最大值为 ,最小值为
16.已知方程012=++mx x 与02=--m x x 有一个公共实根,则字母系数m=
17.已知α,β是方程0522=-+x x 的两个实数根,则α2+β2+2α+2β的值为_______
18.已知3-=+b a ,1=ab ,则=+b a 83
19.已知实数m 、n 满足0142=--m m ,0142=--n n 则=+m
n n m 20.若p 、q 是方程01)2(2=+-+x m x 的两个实根,则=++++)1)(1(22mq q mp p
21.在实数范围内分解因式:
(1)3222--x x ; (2)1842-+-x x ; ⑶22542y xy x --
22.解方程:()
04321322=++++x x
23.如果012=-+x x ,那么代数式7223-+x x 的值。
24.已知二次三项式2)6(92-++-m x m x 是一个完全平方式,试求m 的值.
25.已知21,x x 是方程092=--x x 的两实数根,求663722231-++x x x 的值。
26.关于x 的方程0)2()(2=--++a c bx x c a 的两根之和为-1,两根之差为1
(1) 这个方程的两个根 (2) 求a :b :c
27.已知关于x 的一元二次方程x 2 = 2(1-m )x -m 2 的两实数根为x 1,x 2.
(1)求m 的取值范围;
(2)设y = x 1 + x 2,当y 取得最小值时,求相应m 的值,并求出最小值.
28.已知:△ABC 的两边AB,AC 是关于x 的一元二次方程x 2-(2k+3)x+k 2+3k+2=0的两个实数根,第三边BC 的长为5,(1)k 为何值时, △ABC 是以BC 为斜边的直角三角形;
(2) k 为何值时, △ABC 是等腰三角形,并求出此时△ABC 的周长.
29.已知关于x 的一元二次方程x 2-2kx+12
k 2-2=0. (1)求证:不论k 为何值,方程总有两不相等实数根.
(2)设x 1,x 2是方程的根,且 x 12-2kx 1+2x 1x 2=5,求k 的值.
30.一元二次方程(m+1)x 2+2mx+m-3=0有两个不相等的实数根,并且这两个根又不互为相反数,(1)求m 的取值范围;
(2)当m 在取值范围内取得最小偶数时,方程的两根为x 1,x 2,求(3x 12)(1-4x 2)的值.
31.已知方程x 2-4x-2m+8=0的两根一个大于1,另一个小于1,求m 的取值范围.
32.小明和小红一起做作业,在解一道一元二次方程(二次项系数为1)时,小明因看错 常数项,而得到解为8和2,小红因看错了一次项系数,而得到解为-9和-1。
你知道
原来的方程是什么吗?其正确解应该是多少?
33.某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销量就减少10件;要使每天获得利润
700元,请你帮忙确定售价。