九年级数学一元二次方程与二次函数试卷(有答案)

合集下载

人教版九年级上册数学22 2二次函数与一元二次方程 同步练习(含答案)

人教版九年级上册数学22 2二次函数与一元二次方程 同步练习(含答案)

人教版九年级上册数学22.2二次函数与一元二次方程同步练习一、单选题1.抛物线223y x x =+-与x 轴的交点个数有( )A .0个B .1个C .2个D .3个 2.下列二次函数的图象与x 轴有且只有一个交点的是( ) A .239y x x =+ B .244y x x =-++C .2245y x x =++D .221y x x =-+3.已知二次函数()22221y x b x b =----+的图象不经过第二象限,则实数b 的取值范围是( )4.二次函数2y ax bx c =++图象的一部分如图所示,它与x 轴的一交点为()6,0B ,对称轴为直线2x =,则由图象可知,方程20ax bx c ++=的解是( )A .10x =,26x =B .12x =-,26x =C .11x =-,26x =D .12x =-,22x = 5.已知抛物线()243y a x =--的部分图象如图所示,则图象与x 轴另一个交点的坐标是( )A .()5,0B .()6,0C .()7,0D .()8,06.如图是二次函数²y ax bx c =++的部分图像,由图像可知不等式²0ax bx c ++≥的解集是( )A .15x <<B . 5x ≤C .15x -≤≤D . 1x <-或5x >7.二次函数()()2y x a x b =---,()a b <的图像与x 轴交点的横坐标为m 、n ,且m n <,则a ,b ,m ,n 的大小关系是( )A .m a b n <<<B .a m b n <<<C .a m n b <<<D .m a n b <<<8.二次函数()20y ax bx c a =++≠的图象如图所示,对称轴是直线1x =,下列结论中:①0ac <;①24b ac <;①20a b -=;①930a b c ++>.正确的有( )A .1个B .2个C .3个D .4个二、填空题9.如图,在平面直角坐标系中,抛物线222y x mx m =-++-(m 为常数,且0m >)与直线y =2交于A 、B 两点.若AB =2,则m 的值为______.10.抛物线()231y ax a x =+-+的顶点在x 轴上,则a 的值为________.11.已知二次函数24y x x c =++的图象与x 轴的一个交点坐标是()20,,则它与x 轴的另一个交点坐标是______.12.已知二次函数y =﹣x 2+bx +c 的顶点为(1,5),那么关于x 的一元二次方程﹣x 2+bx +c ﹣m =0有两个相等的实数根,则m =______________.13.若抛物线y =x 2+ax +b 与x 轴两个交点间的距离为2,对称轴为直线x =1,将此抛物线向左平移2个单位,再向下平移3个单位,平移后抛物线的顶点坐标为_____. 14.如图,抛物线2y ax c =+与直线y mx n =+交于()()2,,4,A p B q -两点,则不等式2ax mx c n -+<的解集是___________.15.如图,已知二次函数()20y x m m =-+>的图像与x 轴交于A 、B 两点,与y 轴交于C 点.若AB OC =,则m 的值是______.16.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图.则有以下5个结论:①a <0;①b 2-4ac<0;①b =-2a ;①当0<x <2时,y >0;①a -b +c >0;其中正确的结论有:____________.(写出你认为正确的序号即可)三、解答题17.在平面直角坐标系中,已知抛物线22y x 2mx m 9=-+-.(1)求证:无论m 为何值,该抛物线与x 轴总有两个交点;(2)该抛物线与x 轴交于A ,B 两点,点A 在点B 的左侧,且3OA OB =,求m 的值. 18.如图,抛物线2y x bx c =-++交x 轴于()1,0A -、B 两点,交y 轴于()0,3C ,点P 在抛物线上,横坐标设为m .(1)求抛物线的解析式;求BDC的面积.(1)求抛物线的解析式;(2)若D 是抛物线上一点(不与点C 重合),且ABD ABC S S △△,请求出点D 的坐标.参考答案:。

一元二次方程+二次函数测试(含答案)

一元二次方程+二次函数测试(含答案)

1.下列方程是一元二次方程的是()A.3x+1=0 B.5x2﹣6y﹣3=0 C.ax2﹣x+2=0 D.3x2﹣2x﹣1=02.关于x的一元二次方程x2+k=0有实数根,则()A.k<0 B.k>0 C.k≥0 D.k≤03.若关于x的方程2x2﹣ax+2b=0的两根和为4,积为﹣3,则a、b分别为()A.a=﹣8,b=﹣6 B.a=4,b=﹣3 C.a=3,b=8 D.a=8,b=﹣34.把方程x2﹣8x+3=0化成(x+m)2=n的形式,则m,n的值是()A.4,13 B.﹣4,19 C.﹣4,13 D.4,195.方程x2﹣=0的根的情况为()A.有一个实数根 B.有两个不相等的实数根C.没有实数根D.有两个相等的实数根6.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位7.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n的值是()A.﹣10 B.10 C.﹣6 D.28.一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(﹣1,3),则该抛物线的解析式为()A.y=﹣2(x﹣1)2+3 B.y=﹣2(x+1)2+3 C.y=﹣(2x+1)2+3 D.y=﹣(2x﹣1)2+3 9.对于函数y=x2+1,下列结论正确的是()A.图象的开口向下B.y随x的增大而增大C.图象关于y轴对称 D.最大值是010.在同一直角坐标系中y=ax2+b与y=ax+b(a≠0,b≠0)图象大致为()A.B.C.D.二.填空题11.把方程3x(x﹣1)=(x+2)(x﹣2)+9化成ax2+bx+c=0的形式为.12.已知二次函数y=(x﹣1)2+4,若y随x的增大而减小,则x的取值范围是.13.参加一次聚会的每两人都握了一次手,所有人共握手10次,有人参加聚会.14.三角形的每条边的长都是方程x2﹣6x+8=0的根,则三角形的周长是.15.已知抛物线y=x2﹣2(k+1)x+16的顶点在x轴上,则k的值是.三.解答题(1)(x+1)(x﹣2)=x+1;(2)3x2﹣x﹣1=0.17.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,求k的取值范围.18.关于x的方程x2﹣(k+1)x﹣6=0的一个根是2,求k的值和方程的另一根.19.抛物线y=ax2与直线y=2x﹣3交于点A(1,b).(1)求a,b的值;(2)求抛物线y=ax2与直线y=﹣2的两个交点B,C的坐标(B点在C点右侧);(3)求△OBC的面积.20.已知关于x的一元二次方程x2﹣4x+m=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根为x1,x2,且满足5x1+2x2=2,求实数m的值.21.某市要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?22.端午节期间,某食品店平均每天可卖出300只粽子,卖出1只粽子的利润是1元.经调查发现,零售单价每降0.1元,每天可多卖出100只粽子.为了使每天获取的利润更多,该店决定把零售单价下降m(0<m<1)元.(1)零售单价下降m元后,该店平均每天可卖出只粽子,利润为元.(2)在不考虑其他因素的条件下,当m定为多少时,才能使该店每天获取的利润是420元并且卖出的粽子更多?23.一个二次函数,它的图象的顶点是原点,对称轴是y轴,且经过点(﹣1,2).(1)求这个二次函数的解析式;(2)画出这个二次函数的图象;(3)当x>0时,y值随x的增减情况;(4)指出函数的最大值或最小值.24.已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,﹣3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=﹣x上,并写出平移后抛物线的解析式.2015-2016学年湖北省潜江市积玉口中学九年级(上)第一次月考数学试卷(A卷)参考答案与试题解析一.选择题1.下列方程是一元二次方程的是()A.3x+1=0 B.5x2﹣6y﹣3=0 C.ax2﹣x+2=0 D.3x2﹣2x﹣1=0【考点】一元二次方程的定义.【分析】根据一元二次方程的定义对各选项进行逐一分析即可.【解答】解:A、是一元一次方程,故本选项错误;B、是二元二次方程,故本选项错误;C、当a≠0时,是一元二次方程,当a=0时,是一元一次方程,故本选项错误;D、是一元二次方程,故本选项正确.故选D.2.关于x的一元二次方程x2+k=0有实数根,则()A.k<0 B.k>0 C.k≥0 D.k≤0【考点】根的判别式.【分析】由一元二次方程有实数根得出△=02﹣4×1×k≥0,解不等式即可.【解答】解:∵关于x的一元二次方程x2+k=0有实数根,∴△=02﹣4×1×k≥0,解得:k≤0;故选:D.3.若关于x的方程2x2﹣ax+2b=0的两根和为4,积为﹣3,则a、b分别为()A.a=﹣8,b=﹣6 B.a=4,b=﹣3 C.a=3,b=8 D.a=8,b=﹣3【考点】根与系数的关系.【分析】由关于x的方程2x2﹣ax+2b=0的两根和为4,积为﹣3,直接利用根与系数的关系的知识求解即可求得答案.【解答】解:∵关于x的方程2x2﹣ax+2b=0的两根和为4,积为﹣3,∴﹣=4,=﹣3,解得:a=8,b=﹣3.故选D.4.把方程x2﹣8x+3=0化成(x+m)2=n的形式,则m,n的值是()A.4,13 B.﹣4,19 C.﹣4,13 D.4,19【考点】解一元二次方程-配方法.【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:∵x2﹣8x+3=0∴x2﹣8x=﹣3∴x2﹣8x+16=﹣3+16∴(x﹣4)2=13∴m=﹣4,n=13故选C.5.方程x2﹣=0的根的情况为()A.有一个实数根 B.有两个不相等的实数根C.没有实数根D.有两个相等的实数根【考点】根的判别式.【分析】要判定方程根的情况,首先求出其判别式,然后判定其正负情况即可作出判断.【解答】解:∵x2﹣=0=0,∴△=b2﹣4ac=8﹣8=0,∴方程有两个相等的实数根.故选D.6.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位【考点】二次函数图象与几何变换.【分析】根据“左加右减,上加下减”的原则进行解答即可.【解答】解:抛物线y=x2向左平移2个单位可得到抛物线y=(x+2)2,抛物线y=(x+2)2,再向下平移3个单位即可得到抛物线y=(x+2)2﹣3.故平移过程为:先向左平移2个单位,再向下平移3个单位.故选:B.7.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n的值是()A.﹣10 B.10 C.﹣6 D.2【考点】根与系数的关系.【分析】根据根与系数的关系得出﹣2+4=﹣m,﹣2×4=n,求出即可.【解答】解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,∴﹣2+4=﹣m,﹣2×4=n,解得:m=﹣2,n=﹣8,∴m+n=﹣10,故选A.8.一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(﹣1,3),则该抛物线的解析式为()A.y=﹣2(x﹣1)2+3 B.y=﹣2(x+1)2+3 C.y=﹣(2x+1)2+3 D.y=﹣(2x﹣1)2+3 【考点】待定系数法求二次函数解析式.【分析】直接利用顶点式写出抛物线解析式.【解答】解:抛物线解析式为y=﹣2(x+1)2+3.故选B .9.对于函数y=x 2+1,下列结论正确的是( )A .图象的开口向下B .y 随x 的增大而增大C .图象关于y 轴对称D .最大值是0【考点】二次函数的性质.【分析】根据二次函数y=x 2+1的性质进行判断即可.【解答】解:∵a=1>0,图象的开口向上,对称轴为y 轴;∴当x >0时,y 随x 的增大而增大,当x=0时,y=1.故选:C .10.在同一直角坐标系中y=ax 2+b 与y=ax+b (a ≠0,b ≠0)图象大致为( )A .B .C .D .【考点】二次函数的图象;一次函数的图象.【分析】本题由一次函数y=ax+b 图象得到字母系数的正负,再与二次函数y=ax 2+bx+c 的图象相比较看是否一致.【解答】解:A 、由抛物线可知,a >0,b >0,由直线可知,a <0,b <0,故本选项错误; B 、由抛物线可知,a <0,b >0,由直线可知,a >0,b >0,故本选项错误;C 、由抛物线可知,a >0,b <0,由直线可知,a >0,b >0,故本选项错误;D 、由抛物线可知,a <0,b <0,由直线可知,a <0,b <0,故本选项正确.故选D .二.填空题11.把方程3x (x ﹣1)=(x+2)(x ﹣2)+9化成ax 2+bx+c=0的形式为 2x 2﹣3x ﹣5=0 .【考点】一元二次方程的一般形式.【分析】方程整理为一般形式即可.【解答】解:方程整理得:3x 2﹣3x=x 2﹣4+9,即2x 2﹣3x ﹣5=0.故答案为:2x 2﹣3x ﹣5=0.12.已知二次函数y=(x ﹣1)2+4,若y 随x 的增大而减小,则x 的取值范围是 x ≤1 .【考点】二次函数的性质.【分析】根据二次函数的解析式的二次项系数判定该函数图象的开口方向、根据顶点式方程确定其图象的顶点坐标,从而知该二次函数的单调区间.【解答】解:∵二次函数的解析式的二次项系数是,∴该二次函数的开口方向是向上;又∵该二次函数的图象的顶点坐标是(1,4),∴该二次函数图象在[﹣∞1m]上是减函数,即y随x的增大而减小;即:当x≤1时,y随x的增大而减小,故答案为:x≤1.13.参加一次聚会的每两人都握了一次手,所有人共握手10次,有5人参加聚会.【考点】一元二次方程的应用.【分析】设有x人参加聚会,每个人都与另外的人握手一次,则每个人握手x﹣1次,且其中任何两人的握手只有一次,因而共有x(x﹣1)次,设出未知数列方程解答即可.【解答】解:设有x人参加聚会,根据题意列方程得,=10,解得x1=5,x2=﹣4(不合题意,舍去);答:有5人参加聚会.故答案为:5.14.三角形的每条边的长都是方程x2﹣6x+8=0的根,则三角形的周长是6或12或10.【考点】解一元二次方程-因式分解法;三角形三边关系.【分析】首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程x2﹣6x+8=0的根,进行分情况计算.【解答】解:由方程x2﹣6x+8=0,得x=2或4.当三角形的三边是2,2,2时,则周长是6;当三角形的三边是4,4,4时,则周长是12;当三角形的三边长是2,2,4时,2+2=4,不符合三角形的三边关系,应舍去;当三角形的三边是4,4,2时,则三角形的周长是4+4+2=10.综上所述此三角形的周长是6或12或10.15.已知抛物线y=x2﹣2(k+1)x+16的顶点在x轴上,则k的值是3或﹣5.【考点】二次函数的性质.【分析】抛物线y=ax2+bx+c的顶点纵坐标为,当抛物线的顶点在x轴上时,顶点纵坐标为0,解方程求k的值.【解答】解:根据顶点纵坐标公式,抛物线y=x2﹣2(k+1)x+16的顶点纵坐标为,∵抛物线的顶点在x轴上时,∴顶点纵坐标为0,即=0,解得k=3或﹣5.故本题答案为3或﹣5.三.解答题16.解方程(1)(x+1)(x﹣2)=x+1;(2)3x2﹣x﹣1=0.【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【分析】(1)方程整理后,利用因式分解法求出解即可;(2)方程利用公式法求出解即可.【解答】解:(1)方程整理得:(x+1)(x﹣2)﹣(x+1)=0,分解因式得:(x+1)(x﹣3)=0,解得:x=﹣1或x=3;(2)这里a=3,b=﹣1,c=﹣1,∵△=1+12=13,∴x=.17.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,求k的取值范围.【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程的定义和△的意义得到k≠0且△>0,即(﹣2)2﹣4×k×(﹣1)>0,然后解不等式即可得到k的取值范围.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴k≠0且△>0,即(﹣2)2﹣4×k×(﹣1)>0,解得k>﹣1且k≠0.∴k的取值范围为k>﹣1且k≠0.18.关于x的方程x2﹣(k+1)x﹣6=0的一个根是2,求k的值和方程的另一根.【考点】一元二次方程的解.【分析】将x=2代入原方程,可求出k的值,进而可通过解方程求出另一根.【解答】解:把x=2代入x2﹣(k+1)x﹣6=0,得4﹣2(k+1)﹣6=0,解得k=﹣2,解方程x2+x﹣6=0,解得:x1=2,x2=﹣3.答:k=﹣2,方程的另一个根为﹣3.19.抛物线y=ax2与直线y=2x﹣3交于点A(1,b).(1)求a,b的值;(2)求抛物线y=ax2与直线y=﹣2的两个交点B,C的坐标(B点在C点右侧);(3)求△OBC的面积.【考点】二次函数图象上点的坐标特征;二次函数的性质.【分析】(1)将点A代入y=2x﹣3求出b,再把点A代入抛物线y=ax2求出a即可.(2)解方程组即可求出交点坐标.(3)利用三角形面积公式即可计算.【解答】解:(1)∵点A(1,b)在直线y=2x﹣3上,∴b=﹣1,∴点A坐标(1,﹣1),把点A(1,﹣1)代入y=ax2得到a=﹣1,∴a=b=﹣1.(2)由解得或,∴点C坐标(﹣,﹣2),点B坐标(,﹣2).(3)S△BOC=•2•2=2.20.已知关于x的一元二次方程x2﹣4x+m=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根为x1,x2,且满足5x1+2x2=2,求实数m的值.【考点】根的判别式;根与系数的关系.【分析】(1)若一元二次方程有两实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围;(2)根据根与系数的关系得到x1+x2=4,又5x1+2x2=2求出函数实数根,代入m=x1x2,即可得到结果.【解答】解:(1)∵方程有实数根,∴△=(﹣4)2﹣4m=16﹣4m≥0,∴m≤4;(2)∵x1+x2=4,∴5x1+2x2=2(x1+x2)+3x1=2×4+3x1=2,∴x1=﹣2,把x1=﹣2代入x2﹣4x+m=0得:(﹣2)2﹣4×(﹣2)+m=0,解得:m=﹣12.21.某市要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?【考点】一元二次方程的应用.【分析】可设比赛组织者应邀请x队参赛,则每个队参加(x﹣1)场比赛,则共有场比赛,可以列出一个一元二次方程,求解,舍去小于0的值,即可得所求的结果.【解答】解:∵赛程计划安排7天,每天安排4场比赛,∴共7×4=28场比赛.设比赛组织者应邀请x队参赛,则由题意可列方程为:=28.解得:x1=8,x2=﹣7(舍去),答:比赛组织者应邀请8队参赛.22.端午节期间,某食品店平均每天可卖出300只粽子,卖出1只粽子的利润是1元.经调查发现,零售单价每降0.1元,每天可多卖出100只粽子.为了使每天获取的利润更多,该店决定把零售单价下降m(0<m<1)元.(1)零售单价下降m元后,该店平均每天可卖出300+100×只粽子,利润为(1﹣m)元.(2)在不考虑其他因素的条件下,当m定为多少时,才能使该店每天获取的利润是420元并且卖出的粽子更多?【考点】一元二次方程的应用.【分析】(1)每天的销售量等于原有销售量加上增加的销售量即可;利润等于销售量乘以单价即可得到;(2)利用总利润等于销售量乘以每件的利润即可得到方程求解.【解答】解:(1)300+100×,(1﹣m).(2)令(1﹣m)=420.化简得,100m2﹣70m+12=0.即,m2﹣0.7m+0.12=0.解得m=0.4或m=0.3.可得,当m=0.4时卖出的粽子更多.答:当m定为0.4时,才能使商店每天销售该粽子获取的利润是420元并且卖出的粽子更多.23.一个二次函数,它的图象的顶点是原点,对称轴是y轴,且经过点(﹣1,2).(1)求这个二次函数的解析式;(2)画出这个二次函数的图象;(3)当x>0时,y值随x的增减情况;(4)指出函数的最大值或最小值.【考点】二次函数的性质;二次函数的图象;二次函数的最值;待定系数法求二次函数解析式.【分析】(1)根据题意设出抛物线解析式,把已知点坐标代入求出a的值,即可确定出解析式;(2)画出函数图象即可;(3)利用二次函数的增减性得到结果即可;(4)利用二次函数的性质确定出最小值与最大值即可.【解答】解:(1)根据题意设抛物线解析式为y=ax2,把(﹣1,2)代入得:a=2,则二次函数解析式为y=2x2;(2)画出函数图象,如图所示;(3)当x>0时,y随x的增大而增大;(4)函数的最小值为0,没有最大值.24.已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,﹣3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=﹣x上,并写出平移后抛物线的解析式.【考点】二次函数图象与几何变换;待定系数法求二次函数解析式.【分析】(1)利用交点式得出y=a(x﹣1)(x﹣3),进而得出a的值,再利用配方法求出顶点坐标即可;(2)根据左加右减得出抛物线的解析式为y=﹣x2,进而得出答案.【解答】解:(1)∵抛物线与x轴交于点A(1,0),B(3,0),可设抛物线解析式为y=a(x﹣1)(x﹣3),把C(0,﹣3)代入得:3a=﹣3,解得:a=﹣1,故抛物线解析式为y=﹣(x﹣1)(x﹣3),即y=﹣x2+4x﹣3,∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴顶点坐标(2,1);(2)先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y=﹣x2,平移后抛物线的顶点为(0,0)落在直线y=﹣x上.. 2016年5月26日.。

九年级数学:二次函数与一元二次方程练习题(含解析)

九年级数学:二次函数与一元二次方程练习题(含解析)

九年级数学:二次函数与一元二次方程练习题(含解析)
1.某一抛物线开口向下,且与x 轴无交点,则具有这样性质的抛物线的表达式可能为 (只写一个),此类函数都有______值(填“最大”“最小”).
2.若抛物线y =x 2-(2k +1)x +k 2+2,与x 轴有两个交点,则整数k 的最小值是______.
3.等腰梯形的周长为60 cm,底角为60°,当梯形腰x =______时,梯形面积最大,等于______.
4.关于二次函数y =ax 2+bx +c 的图象有下列命题,其中是假命题的个数是( ) ①当c =0时,函数的图象经过原点; ②当b =0时,函数的图象关于y 轴对称; ③函数的图象最高点的纵坐标是a
b a
c 442
;④当c >0且函数的图象开口向下时,方程ax 2+bx +c =0必有两个不相等的实根.
A.0个
B.1个
C.2个
D.3个
5.抛物线y =kx 2
-7x -7的图象和x 轴有交点,则k 的取值范围是( )
A.k >-47;
B.k ≥-47且k ≠0;
C.k ≥-47;
D.k >-47且k ≠0 6.利用二次函数的图象求下列一元二次方程的根.
(1)4x 2-8x +1=0; (2)x 2-2x -5=0;
(3)2x 2-6x +3=0; (4)x 2-x -1=0.
参考答案
1.y=-x2+x-1 最大
2. 2
3. 15 cm
4.B
5.B
6.解:(1)x1≈1.9,x2≈0.1;(2)x1≈3.4,x2≈-1.4;(3)x1≈2.4,x2≈0.6;(4)x1≈1.6,x2≈-0 .6。

人就版数学九年级上册第 二十一章 一元二次方程---二十二章 二次函数综合复习试卷(含简单答案)

人就版数学九年级上册第 二十一章 一元二次方程---二十二章 二次函数综合复习试卷(含简单答案)

人就版数学九年级上册第二十一章-二十二章一、单选题1.下列方程是一元二次方程的是( )A.x2=x B.a x2+bx+c=0C.xy=1D.x+1x=12.把抛物线y=−x2+1向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( )A.y=−(x+3)2+1B.y=−(x+1)2+3C.y=−(x−1)2+4D.y=−(x+1)2+43.已知关于x的一元二次方程k x2−(4k−1)x+4k−3=0有两个不相等的实数根,则实数k的取值范围是( )A.k<14B.k<14且k≠0C.k>−14D.k>−14且k≠04.如图,长方形花圃ABCD面积为4m2,它的一边AD利用已有的围墙(围墙足够长),另外三边所围的栅栏的总长度是5m.EF处开一门,宽度为1m.设AB的长度是xm,根据题意,下面所列方程正确的是( )A.x(5−2x)=4B.x(5+1−2x)=4C.x(5−2x−1)=4D.x(2.5−x)=45.如图是抛物线型拱桥,当拱顶高离水面2m时,水面宽4m.水面上升1.5m,水面宽度为( )A.1m B.2m C.3m D.23m6.在同一直角坐标系中,一次函数y=ax+c和二次函数y=a(x+c)2的图像大致为( )A .B .C .D .7.一个等腰三角形两边的长分别等于一元二次方程x 2−16x +55=0的两个实数根,则这个等腰三角形周长为( )A .11B .27C .5或11D .21或278.已知关于x 的方程a(x−m)x =x−m 有两个相等的实数根,若M =a 2−2am ,N =4am−1m 2,则M 与N 的关系正确的是 ( )A .M +N =2B .M +N =−2C .2M +N =0D .M +N =09.y =a x 2+bx +c 与自变量x 的部分对应值如下,已知有且仅有一组值错误(其中a ,b ,c ,m 均为常数).x …−1012…y…m 2−2m 2m 2…甲同学发现当a <0时,x =3是方程a x 2+bx +c +2=0的一个根;乙同学发现当a >0时,则2a +b >0.下列说法正确的是( )A .甲对乙错B .甲错乙对C .甲乙都错D .甲乙都对10.已知二次函数y =−12x 2+bx 的对称轴为x =1,当m ≤x ≤n 时,y 的取值范围是2m ≤y ≤2n .则m +n 的值为( )A .−6或−2B .14或−74C .14D .−2二、填空题11.方程 x 2=5x 的根是  .12.已知x =−1是关于x 的方程x 2+mx−n =0的一个根,则m +n 的值是=  .13.已知点A(−1,y 1),B(1,y 2),C(4,y 3)在二次函数y =x 2−6x +c 的图象上,则y 1,y 2,y 3的大小关系是 (用“>”连接).14.如图,水池中心点О处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点О在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距О点2.5m;喷头高4m时,水柱落点距О点3m.那么喷头高 m时,水柱落点距O点4m.15.已知A(x1,y1),B(x2,y2)是抛物线y=a x2−3x+1上的两点,其对称轴是直线x=x0,若|x1−x0|>|x2−x0|时,总有y1>y2,同一坐标系中有M(−1,−2),N(3,2)且抛物线y=a x2−3x+1与线段MN有两个不相同的交点,则a的取值范围是 .16.已知抛物线y=a x2+bx+c(a,b,c是常数),其图像经过点A(2,0),坐标原点为O.①若b=−2a,则抛物线必经过原点;②若c≠4a,则抛物线与x轴一定有两个不同的公共点;③若抛物线与x轴交于点B(不与A重合),交y轴于点C且OB=OC,则a=−12;④点M(x1,y1),N(x2,y2)在抛物线上,若当x1>x2>−1时,总有y1>y2,则8a+c≤0.其中正确的结论是 (填写序号).三、解答题17.解方程:x2−4x−5=0.18.在二次函数y=x2−2tx+3(t>0)中,(1)若它的图象过点(2,1),则t的值为多少?(2)当0≤x≤3时,y的最小值为−2,求出t的值:(3)如果A(m−2,a),B(4,b),C(m,a)都在这个二次函数的图象上,且a<b<3,求m的取值范围.19.阅读下列材料,解答问题:材料:若x1,x2为一元二次方程a x2+bx+c=0(a≠0)的两个实数根,则x1+x2=−ba ,x1⋅x2=ca.(1)已知实数m,n满足3m2−5m−2=0,3n2−5n−2=0,且m≠n,求m2n+m n2的值.解:根据题意,可将m,n看作方程3x2−5x−2=0的两个实数根.∴m+n= ,mn= .∴m2n+m n2=mn(m+n)= .(2)已知实数a,b满足a2=2a+3,9b2=6b+3,且a≠3b,求ab的值.(3)已知实数m,n满足m+mn+n=a24−6,m−mn+n=−a24+2a,求实数a的最大整数值.20.如图,在平面直角坐标系中,从原点O的正上方8个单位A处向右上方发射一个小球,小球在空中飞行后,会落在截面为矩形CDEF的平台EF上(包括端点),把小球看作点,其飞行的高度y与飞行的水平距离x满足关系式L1:y=−x2+bx+c.其中C(6,0),D(10,0),CF=2.(1)求c的值;(2)求b的取值范围;(3)若落在平台EF上的小球,立即向右上方弹起,运动轨迹形成另一条与L1形状相同的拋物线L2,在21.x轴有两个点M、N,且M(15,0),N(16,0),从点N向上作NP⊥x轴,且PN=2.若沿抛物线L2下落的小球能落在边MP(包括端点)上,求抛物线L2最高点纵坐标差的最大值是多少?定义:函数图象上到两坐标轴的距离都不大于n(n≥0)的点叫做这个函数图象的“n阶方点”.例如,点(1 3,13)是函数y=x图象的“12阶方点”;点(−1,1)是函数y=−x图象的“1阶方点”.(1)在①(−1,2);②(0,0);③(12,−1)三点中,是正比例函数y=−2x图象的“1阶方点”的有___(填序号);(2)若y关于x的一次函数y=ax−4a+1图象的“2阶方点”有且只有一个,求a的值;(3)若函数图象恰好经过“n阶方点”中的点(n,n),则点(n,n)称为此函数图象的“不动n阶方点”,若y关于x的二次函数y=14x2+(p−t+1)x+q+t−2的图象上存在唯一的一个“不动n阶方点”,且当2≤p≤3时,q的最小值为t,求t的值.22.如图,抛物线L:y=a(x+2)2+9与x轴交于A,B(−5,0)两点,与y轴交于点C.(1)写出抛物线的对称轴,并求a的值;(2)平行于x轴的直线l交抛物线L于点M,N(点M在点N的左边),交线段BC于点R.当R为线段MN的中点时,求点N的坐标;(3)将线段AB先向左平移1个单位长度,再向上平移5个单位长度,得到线段A′B′.若抛物线L平移后与线段A′B′有两个交点,且这两个交点恰好将线段A′B′三等分,求抛物线L平移的最短路程;(4)P是抛物线L上任意一点(不与点C重合),点P的横坐标为m.过点P作PQ⊥y轴于点Q,E 为y轴上的一点,纵坐标为−2m.以EQ,PQ为邻边构造矩形PQEF,当抛物线L在矩形PQEF内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.答案解析部分1.【答案】A 2.【答案】D 3.【答案】D 4.【答案】B 5.【答案】B 6.【答案】B 7.【答案】B 8.【答案】A 9.【答案】D 10.【答案】D11.【答案】x 1=0,x 2=512.【答案】113.【答案】y 1>y 2>y 314.【答案】815.【答案】109≤a <216.【答案】①②④17.【答案】x 1=−1,x 2=518.【答案】(1)t =32(2)t =5(3)3<m <4或m >619.【答案】(1)53;−23;−109(2)解:∵9b 2=6b +3,∴(3b)2=2×(3b)+3∵a 2=2a +3,a ≠3b∴a ,3b 是一元二次方程x 2=2x +3的不相等的两个实数根整理方程得:x 2−2x−3=0,∴a ×3b =−3∴ab =−1(3)解:∵m +mn +n =a 24−6①,m−mn +n =−a 24+2a②,∴①+②可得:2(m+n)=2a−6,即:m+n=a−3①−②可得:2mn=a22−2a−6,即:mn=a24−a−3∴m,n可以看作是一元二次方程x2−(a−3)x+a24−a−3=0的两个实数根∴Δ=[−(a−3)]2−4×1×(a24−a−3)≥0化简得:−2a+21≥0,解得:a≤21 2,∴实数a的最大整数值为10 20.【答案】(1)c=8;(2)5≤b≤47 5;(3)抛物线L2最高点纵坐标差的最大值是19.71.21.【答案】(1)②③(2)a的值为32或a=−12(3).t=3−3或4+5 22.【答案】(1)x=−2,a=−1;(2)6−2(3)10(4)−6−1<m<0或m>6−1。

(精)人教版数学九年级上册《二次函数和一元二次方程》习题及解析

(精)人教版数学九年级上册《二次函数和一元二次方程》习题及解析

二次函数与一元二次方式练习题附答案一、选择题(共15 小题)1、已知二次函数 2)y=ax +bx+c 的图象如下图, 对称轴为直线 x=1,则以下结论正确的选项是 (A 、 ac > 0B 、方程 ax 2+bx+c=0 的两根是 x 1=﹣ 1, x 2=3C 、 2a ﹣ b=0D 、当 x > 0 时, y 随 x 的增大而减小 2 、已知二次函数y=ax 2+bx+c 的图象如下图,那么以下判断不正确的选项是()A 、 ac < 0B 、 a ﹣b+c > 0C 、 b=﹣ 4aD 、对于 x 的方程 ax 2+bx+c=0 的根是 x 1=﹣ 1, x 2=523、已知抛物线 y=ax +bx+c 中, 4a ﹣ b=0, a ﹣ b+c > 0,抛物线与 x 轴有两个不一样的交点,且 这两个交点之间的距离小于 2,则以下判断错误的选项是( )A 、 abc <0B 、 c > 0C 、 4a > cD 、 a+b+c > 04、抛物线 y=ax 2+bx+c 在 x 轴的下方,则所要知足的条件是()A 、 a <0, b 2﹣ 4ac < 0B 、 a < 0, b 2﹣ 4ac > 0C 、 a > 0, b 2﹣4ac <0D 、 a > 0, b 2﹣ 4ac > 05、如下图,二次函数 21, 2),且与 x 轴交点的横坐y=ax +bx+c ( a ≠0)的图象经过点(﹣ 标分别为 x 1, x 2,此中﹣ 2< x 1<﹣ 1, 0< x 2<1,以下结论: ① abc > 0;② 4a ﹣ 2b+c <0;③ 2a ﹣ b < 0;④b 2+8a > 4ac . 此中正确的有()A 、1 个B 、2 个C 、3 个D 、4 个6、已知: a > b > c ,且 a+b+c=0,则二次函数 y=ax 2+bx+c 的图象可能是以下图象中的()1A 、B 、C 、D 、7、已知 y =a x 2+b x+c,y =a x 2+b x+c 且知足.则称抛物线y , y 互为 “友善抛物线 ”,则1111222212以下对于 “友善抛物线 ”的说法不正确的选项是()A 、 y 1, y 2 张口方向、张口大小不必定相同B 、因为 y 1, y 2 的对称轴相同C 、假如 y 的最值为 m ,则 y 的最值为 kmD 、假如 y 与 x 轴的两交点间距离为212d ,则 y 1 与 x 轴的两交点间距离为|k|d8、已知二次函数的 y=ax 2+bx+c 图象是由的图象经过平移而获取,若图象与x 轴交于 A 、 C(﹣ 1, 0)两点,与 y 轴交于 D (0,),极点为 B ,则四边形 ABCD 的面积为( )A 、 9B 、 10C 、 11D 、 129、依据以下表格的对应值:判断方程 ax 2+bx+c=0( a ≠0, a , b , c 为常数)的一个解 x 的范围是()A 、 8< x < 9B 、 9< x < 10C 、 10< x < 11D 、 11<x < 1210、如图,已知二次函数y=ax 2 +bx+c 的部分图象,由图象可知对于 x 的一元二次方程2)ax +bx+c=0 的两个根分别是 x 1=1.6, x 2=(A 、﹣ 1.6B 、 3.2C 、 4.4D 、以上都不对11、如图,抛物线 2与双曲线 y=的交点 A 的横坐标是 1,则对于 2y=x +1 x 的不等式 +x +1< 0的解集是( )A 、 x > 1C 、 0< x < 1B 、 x <﹣ 1D 、﹣ 1< x < 012、已知二次函数 y=ax 2+bx+c 的图象如下图, 则对于x 的不等式bx+a > 0 的解集是 ()A 、 x <B 、 x <C 、 x >D 、 x >13、方程 7x 2﹣( k+13)x+k 2﹣ k ﹣ 2=0( k 是实数)有两个实根 α、β,且 0< α< 1,1< β< 2, 那么 k 的取值范围是( )A 、 3< k < 4B 、﹣ 2< k <﹣ 1C 、 3< k < 4 或﹣ 2< k <﹣ 1D 、无解14、对于整式 x 2和 2x+3,请你判断以下说法正确的选项是()A 、对于随意实数x ,不等式 x 2> 2x+3 都建立B 、对于随意实数 x ,不等式 x 2< 2x+3都建立C 、 x < 3 时,不等式 x 2< 2x+3 建立D 、 x > 3 时,不等式 x 2> 2x+3 建立二、解答题(共7 小题)215、已知抛物线 y=x +2px+2p ﹣2 的极点为 M ,(2)设抛物线与 x 轴的交点分别为 A , B ,务实数 p 的值使 △ABM 面积达到最小.216、已知:二次函数 y=( 2m ﹣ 1) x ﹣( 5m+3) x+3m+5 (1) m 为什么值时,此抛物线必与 x 轴订交于两个不一样的点; (2) m 为什么值时,这两个交点在原点的左右两边; (3) m 为什么值时,此抛物线的对称轴是 y 轴; (4) m 为什么值时,这个二次函数有最大值.17、已知下表:( 1)求 a 、 b 、 c 的值,并在表内空格处填入正确的数;( 2)请你依据上边的结果判断:① 能否存在实数 x ,使二次三项式 2ax +bx+c 的值为 0?若存在, 求出这个实数值; 若不存在, 请说明原因.② 画出函数 y=ax 2+bx+c 的图象表示图,由图象确立,当 x 取什么实数时, ax 2+bx+c > 0.18 、 请 将 下 表 补 充 完 整 ;(Ⅱ)利用你在填上表时获取的结论,解不等式﹣x 2﹣ 2x+3<0; (Ⅲ)利用你在填上表时获取的结论,试写出一个解集为全体实数的一元二次不等式;(Ⅳ) 试写出利用你在填上表时获取的结论解一元二次不等式ax 2+bx+c >0(a ≠0)时的解题 步骤.219、二次函数 y=ax +bx+c (a ≠0)的图象如下图,依据图象解答以下问题:( 1)写出方程 ax 2+bx+c=0 的两个根;( 2)写出不等式 ax 2+bx+c > 0 的解集;(3)写出 y 随 x 的增大而减小的自变量 x 的取值范围;(4)若方程 ax 2+bx+c=k 有两个不相等的实数根,求 k 的取值范围.20、阅读资料,解答问题.x 2﹣ 2x ﹣ 3> 0.例.用图象法解一元二次不等式:解:设 y=x 2﹣2x ﹣ 3,则 y 是 x 的二次函数.∵ a=1>0,∴抛物线张口向上.22又∵当 y=0 时, x ﹣ 2x ﹣ 3=0,解得 x 1=﹣ 1,x 2=3.∴由此得抛物线y=x ﹣2x ﹣ 3 的大概图象如下图.察看函数图象可知:当 x <﹣ 1或 x > 3 时, y > 0.∴ x 2﹣ 2x ﹣ 3>0 的解集是: x <﹣ 1 或 x > 3.x 2﹣ 2x ﹣ 3< 0 的解集是(1)察看图象,直接写出一元二次不等式: _________ ;(2)模仿上例,用图象法解一元二次不等式:x 2﹣5x+6< 0.(画出大概图象) .三、填空题(共 4 小题)21、二次函数 y=ax 2+bx+c (a ≠0)的图象如下图,依据图象解答以下问题:(1)写出方程 ax 2+bx+c=0 的两个根. x 1= _________ , x 2= _________ ;(2)写出不等式 ax 2+bx+c > 0 的解集. _________ ; (3)写出 y 随 x 的增大而减小的自变量 x 的取值范围. _________ ;(4)若方程 ax 2+bx+c=k 有两个不相等的实数根,求 k 的取值范围. _________ .22、如图是抛物线y=ax 2+bx+c 的一部分,其对称轴为直线x=1,若其与 x 轴一交点为 B (3 ,0),则由图象可知,不等式 2.ax +bx+c > 0 的解集是 _________23、二次函数 y=ax 2+bx+c 和一次函数 y=mx+n 的图象如下图,则 ax 2+bx+c ≤ mx+n 时, x的取值范围是_________ .24、如图,已知函数 y=ax 2+bx+c 与 y=﹣的图象交于 A (﹣ 4,1)、B (2,﹣ 2)、 C ( 1,﹣ 4)三点,依据图象可求得对于 x 的不等式 ax 2+bx+c <﹣的解集为 _________ .答案与评分标准一、选择题(共 15 小题)21、( 2011?山西)已知二次函数 y=ax +bx+c 的图象如下图,对称轴为直线 x=1,则以下结论正确的选项是( )A 、 ac > 0B 、方程 ax 2+bx+c=0 的两根是 x 1=﹣ 1, x 2=3C 、 2a ﹣ b=0D 、当 x > 0 时, y 随 x 的增大而减小考点 :二次函数图象与系数的关系;抛物线与 x 轴的交点。

一元二次方程和一元二次函数真题及答案

一元二次方程和一元二次函数真题及答案

一元二次方程和一元二次函数一元二次方程:20(0)ax bx c a ++=≠(1) 若方程没有实根:判别式240b ac ∆=-< (2) 若方程有两个相等实根:判别式240b ac ∆=-=(3) 若方程有两个不等的实根:判别式240b ac ∆=->注:若方程有两个实根:判别式240b ac ∆=-≥ 若方程有两个实根,记为12x x 、则:12b x a -+=、22b x a--=2121222221212122212121240()22()()b ac c x x a b x x a b c x x x x x x a a x x x x x x ⎧∆=-≥⎪⎪=⎪⎪⎪+=-⎨⎪⎪⎛⎫+=+-=-⎪ ⎪⎝⎭⎪⎪-=+-⎩g g g g一元二次函数: 函数)0(2≠++=a c bx ax y 叫做一元二次函数。

配方写成顶点式:a b ac a b x a y 44)2(22-++=(1)图象的顶点坐标为)44,2(2a b ac a b --,对称轴是直线ab x 2-=。

(2)当0>a ,函数图象开口向上,y 有最小值,ab ac y 442min-=,无最大值。

函数在区间)2,(a b --∞上是减函数,在),2(+∞-ab上是增函数。

2ba=-24)4ac b a-(3) 当0a <,函数图象开口向下,y 有最大值,ab ac y 442max-=,无最小值。

当0<a ,函数在区间上),2(+∞-a b 是减函数,在)2,(ab--∞上是增函数。

2ba-244ac b a-两点间距离公式:11(,)A x y 、22(,)B x yd =图像的移动:x 的系数为正先加后减 先左后右 先上后下例1:2(0)y ax a =≠怎么样变为)0(2≠++=a c bx ax y第一步:将被平移的二次函数的x 系数变为正,并化为顶点式。

2(0)0y a x =-+ 移动为: ab ac a b x a y 44)2(22-++=先左移2b a ,变为2()2b y a x a=+ 再上移244ac b a -,变为ab ac a b x a y 44)2(22-++=另:先上移244ac b a -,变为2244ac b y ax a -=+再左移2ba,变为a b ac a b x a y 44)2(22-++=例2:23y x =-+先向右平移3个单位,再向下平移2个单位。

九年级数学二次函数与一元二次方程(含答案)

九年级数学二次函数与一元二次方程(含答案)

学生做题前请先回答以下问题问题1:二次函数与一元二次方程之间的关系:①一元二次方程的根是二次函数的图象与_____________;当时,二次函数图象与x轴有_____个交点;当时,二次函数图象与x轴有_____个交点;当时,二次函数图象与x轴_______交点.②方程的根是对应的________________,求两个函数交点的坐标就是求对应方程组的解.问题2:结合一次函数、反比例函数以及二次函数的性质,思考函数y值比大小,主要利用函数的________和数形结合;两函数值比大小,借助数形结合,_____________________.二次函数与一元二次方程一、单选题(共10道,每道10分)1.若关于x的二次函数的图象与x轴仅有一个公共点,则k的取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:二次函数图象与方程、不等式2.如图是二次函数(a,c为常数,)与一次函数(k,b为常数,)的图象,方程的解为_______;不等式的解集为_________.( )A.;B.;C.;D.;答案:A解题思路:试题难度:三颗星知识点:数形结合思想3.已知二次函数中,函数y与自变量x的部分对应值如下表:则当时,x的取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:二次函数的对称性4.若一元二次方程的两个实数根分别为,则实数的大小关系为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:二次函数图象上点的坐标特征5.已知二次函数的图象与x轴交于两点,且,则实数的大小关系为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:二次函数图象平移6.方程的根有( )个.A.0B.1C.2D.3答案:B解题思路:试题难度:三颗星知识点:数形结合思想7.方程的根的个数为( )个A.1B.2C.3D.4答案:C解题思路:试题难度:三颗星知识点:数形结合思想8.已知函数,当直线y=k与此图象有两个公共点时,k的取值范围是( )A. B.C. D.或k=-1答案:D解题思路:试题难度:三颗星知识点:数形结合思想9.关于x的一元二次方程的两个不相等的实数根都在-1和0之间(不包括-1和0),则a取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:数形结合的思想10.方程(k是实数)有两个实根,且,那么k的取值范围是( ) A. B. C. D.无解答案:C解题思路:试题难度:三颗星知识点:数形结合的思想第11页共11页。

九年级数学二次函数与一元二次方程的关系练习题(含答案)

九年级数学二次函数与一元二次方程的关系练习题(含答案)

二次函数与一元二次方程的关系一、选择题1、[2021河西区·期末]若关于x的一元二次方程(x﹣5)(x﹣6)=m有实数根x1、x2,且x1≠x2,有下列结论:①;②x1=5,x2=6;③二次函数y=(x﹣x1)(x﹣x2)+m的图象与x轴交点的坐标为(5,0)和(6,0).其中正确结论的个数是()A.0B.1C.2D.3[思路分析]将已知的一元二次方程整理为一般形式,根据方程有两个不相等的实数根,得到根的判别式大于0,列出关于m的不等式,求出不等式的解集即可对选项①进行判断;再利用根与系数的关系求出两根之积为30﹣m,这只有在m=0时才能成立,故选项②错误;将选项③中的二次函数解析式整理后,利用根与系数关系得出的两根之和与两根之积代入,整理得到确定出二次函数解析式,令y=0,得到关于x的方程,求出方程的解得到x的值,确定出二次函数图象与x轴的交点坐标,即可对选项③进行判断.[答案详解]解:一元二次方程(x﹣5)(x﹣6)=m化为一般形式得:x2﹣11x+30﹣m =0,∵方程有两个不相等的实数根x1、x2,∴b2﹣4ac=(﹣11)2﹣4(30﹣m)=4m+1>0,解得:m>﹣,故选项①正确;∵一元二次方程实数根分别为x1、x2,∴x1+x2=11,x1x2=30﹣m,而选项②中x1=5,x2=6,只有在m=0时才能成立,故选项②错误;二次函数y=(x﹣x1)(x﹣x2)+m=x2﹣(x1+x2)x+x1x2+m,=x2﹣11x+(30﹣m)+m=x2﹣11x+30=(x﹣5)(x﹣6),令y=0,可得(x﹣5)(x﹣6)=0,解得:x=5或6.∴抛物线与x轴的交点为(5,0)或(6,0),故选项③正确.综上所述,正确的结论有2个:①③.故选:C.[经验总结]此题考查了抛物线与x轴的交点,一元二次方程的解,根与系数的关系,以及根的判别式的运用,是中考中常考的综合题.2、[2021南关区·期末]二次函数y=ax2+bx+c的部分图象如图所示,可知方程ax2+bx+c=0的所有解的积为()A.﹣4B.4C.﹣5D.5[思路分析]根据抛物线的对称轴的定义、抛物线的图象来求该抛物线与x轴的两交点的横坐标.[答案详解]解:由图象可知对称轴x=2,与x轴的一个交点横坐标是5,它到直线x=2的距离是3个单位长度,所以另外一个交点横坐标是﹣1.所以x1=﹣1,x2=5,∴x1x2=﹣1×5=﹣5,故选:C.[经验总结]考查抛物线与x轴的交点,抛物线与x轴两个交点的横坐标的和除以2后等于对称轴.3、[2021肥东县·期末]二次函数y=ax2﹣6x+3的图象与x轴有两个公共点,则a的取值范围是()A.a<3B.a<3且a≠0C.a>3D.a≥3[思路分析]根据二次函数y=ax2﹣2x﹣3的图象与x轴有两个公共点可知Δ>0且a≠0,据此可知a的取值范围.[答案详解]解:∵二次函数y=ax2﹣6x+3的图象与x轴有两个公共点,∴Δ>0且a≠0,即36﹣4a×3>0,解得a<3且a≠0.故选:B.[经验总结]本题考查了二次函数的定义和抛物线与x轴的交点,要结合判别式进行解答.4、[2021房县·期末]二次函数y=﹣x2+2x+1与坐标轴交点情况是()A.一个交点B.两个交点C.三个交点D.无交点[思路分析]根据题目中的函数解析式可以求得这个二次函数的图象与坐标轴的交点个数.[答案详解]解:当x=0时,y=1,当y=0时,0=﹣x2+2x+1,∴△=b2﹣4ac=22﹣4•(﹣1)•1=8>0.∴与x轴有两个交点∴即该函数图象与坐标轴共有三个交点.故选:C.[经验总结]本题考查抛物线与x轴的交点、与y轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.5、[2021旬邑县·期末]如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B,与y轴的正半轴交于点C,对称轴为x=﹣1.下列结论正确的是()A.abc<0B.3a+c=0C.4a+2b+c>0D.2a+b>0[思路分析]根据二次函数图像和性质依次判断即可.[答案详解]解:∵抛物线开口向下,与y轴交于正半轴,∴a<0,c>0.∵抛物线的对称轴为:x=﹣=﹣1,∴b=2a<0.∴abc>0.∴A不合题意.∵抛物线过点A(1,0).∴a+b+c=0.∴a+2a+c=0,∴3a+c=0.∴B符合题意.由图知:当x=2时,y<0.∴4a+2b+c<0.∴C不合题意.∵b=2a,∴2a﹣b=0.∴D不合题意.故选:B.[经验总结]本题考查二次函数的图像和性质,掌握二次函数的图像和性质是求解本题的关键.6、[2021准格尔旗·期末]如图所示是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a﹣b+c>0;②3a+c>0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n+1没有实数根.其中正确的结论个数是()A.1个B.2个C.3个D.4个[思路分析]根据图象开口向下,对称轴为直线x=1可得抛物线与x轴另一交点坐标在(﹣1,0),(﹣2,0)之间,从而判断①.由对称轴为直线x=1可得b与a的关系,将b=﹣2a代入函数解析式根据图象可判断②由ax2+bx+c=n有两个相等实数根可得Δ=b2﹣4a(c﹣n)=0,从而判断③.由函数最大值为y=n可判断④.[答案详解]解:∵抛物线顶点坐标为(1,n),∴抛物线对称轴为直线x=1,∵图象与x轴的一个交点在(3,0),(4,0)之间,∴图象与x轴另一交点在(﹣1,0),(﹣2,0)之间,∴x=﹣1时,y>0,即a﹣b+c>0,故①正确,符合题意.∵抛物线对称轴为直线x=﹣=1,∴b=﹣2a,∴y=ax2﹣2ax+c,∴x=﹣1时,y=3a+c>0,故②正确,符合题意.∵抛物线顶点坐标为(1,n),∴ax2+bx+c=n有两个相等实数根,∴Δ=b2﹣4a(c﹣n)=0,∴b2=4a(c﹣n),故③正确,符合题意.∵y=ax2+bx+c的最大函数值为y=n,∴ax2+bx+c=n+1没有实数根,故④正确,符合题意.故选:D.[经验总结]本题考查二次函数的性质,解题关键是掌握二次函数与方程及不等式的关系.二、填空题7、[2021汕尾·期末]已知抛物线y=ax2+bx+c的图象与x轴分别交于点A(﹣2,0),B(﹣4,0),则关于x的方程ax2+bx+c=0的根为.[思路分析]根据抛物线与x轴的交点坐标可以直接写出抛物线交点式方程,然后利用二次函数与一元二次方程的关系求得答案.[答案详解]解:根据题意知,该抛物线解析式是y=ax2+bx+c=a(x+2)(x+4),∴关于x的方程ax2+bx+c=0=a(x+2)(x+4)=0.∴x+2=0或x+4=0,∴x1=﹣2,x2=﹣4.故答案是:x1=﹣2,x2=﹣4.[经验总结]本题主要考查了抛物线与x轴的交点,二次函数的交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).8、[2021庆阳·期末]若抛物线y=ax2+bx+c与x轴的两个交点坐标是(﹣6,0)和(4,0),则该抛物线的对称轴是.[思路分析]由抛物线与x轴的两个交点,利用对称性确定出对称轴即可.[答案详解]解:∵抛物线y=ax2+bx+c与x轴的两个交点坐标是(﹣6,0)和(4,0),∴抛物线的对称轴为直线x==﹣1,故答案为:直线x=﹣1.[经验总结]此题考查了抛物线与x轴的交点,二次函数的性质,熟练掌握抛物线的对称性是解决问题的关键.9、[2021姜堰区·期末]已知关于x的一元二次方程ax2+bx+c=0的两个根分别是1和﹣3,若二次函数y=ax2+bx+c+m(m>0)与x轴有两个交点,其中一个交点坐标是(4,0),则另一个交点坐标是.[思路分析]根据一元二次方程与函数的关系,可知抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的横坐标为方程ax2+bx+c=0的两个根,从而求得抛物线的对称轴,根据抛物线的对称性即可求得二次函数y=ax2+bx+c+m(m>0)与x轴的另一个交点.[答案详解]解:∵关于x的一元二次方程ax2+bx+c=0的两个根分别是1和﹣3,∴抛物线y=ax2+bx+c(a≠0)与x轴的两个交点为(1,0),(﹣3,0),∴抛物线y=ax2+bx+c的对称轴为直线x==﹣1,∵二次函数y=ax2+bx+c+m(m>0)与x轴的一个交点坐标是(4,0),∴函数y=ax2+bx+c与直线y=﹣m的一个交点的横坐标为4,∴函数y=ax2+bx+c与直线y=﹣m的另一个交点的横坐标为﹣6,∴次函数y=ax2+bx+c+m(m>0)与x轴的另一个交点坐标是(﹣6,0),故答案为:(﹣6,0).[经验总结]此题主要考查抛物线与x轴的交点,一元二次方程与函数的关系,函数与x轴的交点的横坐标就是方程的根.10、[2021密山市·八五七农场学校期末]如图是二次函数y=ax2+bx+c图象的一部分,对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c>0的解集是.[思路分析]利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出ax2+bx+c>0的解集.[答案详解]解:由图象得:对称轴是直线x=1,其中一个点的坐标为(3,0),∴图象与x轴的另一个交点坐标为(﹣1,0).利用图象可知:ax2+bx+c>0的解集即是y>0的解集,∴﹣1<x<3.故答案为:﹣1<x<3.[经验总结]此题主要考查了利用二次函数的图象解一元二次方程的根,解决本题的关键是利用数形结合.11、[2021娄星区·期末]已知抛物线y=x2﹣x﹣1与x轴的一个交点的坐标为(m,0),则代数式m2﹣m+2021的值为.[思路分析]由题意求出m2﹣m的值,代入代数式m2﹣m+2021进行计算即可得出答案.[答案详解]解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,∴m2﹣m=1,∴m2﹣m+2021=1+2021=2022.故答案为:2022.[经验总结]本题考查的是抛物线与x轴的交点,熟知x轴上点的坐标特点是解答此题的关键.12、[2021雄县·期末]如图,抛物线L1:y=ax2+bx+c(a≠0)与x轴只有一个公共点A(1,0),与y轴交于点B(0,2),虚线为公共对称轴,若将抛物线向下平移两个单位长度得抛物线L2,则图中两个阴影部分的面积和为.[思路分析]根据题意可推出OB=2,OA=1,AD=OC=2,根据平移的性质及抛物线的对称性可知阴影部分的面积等于矩形OCDA的面积,利用矩形的面积公式进行计算即可.[答案详解]解:过抛物线L2的顶点D作CD∥x轴,与y轴交于点C,如右图所示:则四边形OCDA是矩形,∵抛物线L1:y=ax2+bx+c(a≠0)与x轴只有一个公共点A(1,0),与y轴交于点B (0,2),∴OB=2,OA=1,将抛物线L1向下平移两个单位长度得抛物线L2,则AD=OC=2,由图可知,阴影部分的面积等于矩形OCDA的面积,∴S阴影部分=S矩形OCDA=OA•AD=1×2=2.故答案为:2.[经验总结]本题考查抛物线与x轴的交点、二次函数的性质及二次函数图象与几何变换,解题的关键是由平移的性质及抛物线的对称性得到阴影部分的面积等于矩形OCDA的面积.13、[2021临海市·期末]如图,二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),它的对称轴为直线x=1,则下列结论中:①c=3;②2a+b=0;③a﹣b+c>0;④方程ax2+bx+c=0的其中一个根在2,3之间,正确的有(填序号).[思路分析]根据抛物线与坐标轴的交点情况、二次函数与方程的关系、二次函数的性质判断即可.[答案详解]解:∵二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),∴c=3,故①正确;∵抛物线的对称轴为直线x=1,∴﹣=1,∴b=﹣2a,∴2a+b=0,故②正确;由图象可知,当x=﹣1时,y<0,∴a﹣b+c<0,故③错误;∵抛物线y=ax2+bx+c的对称轴为直线x=1,与x轴的一个交点在﹣1,0之间,∴与x轴的另一个一个交点在2,3之间,∴方程ax2+bx+c=0的其中一个根在2,3之间,故④正确,故答案为:①②④.[经验总结]本题考查的是抛物线与x轴的交点、二次函数图象与系数的关系以及二次函数与方程的关系,掌握二次函数的性质、二次函数图象与系数的关系是解题的关键.三、解答题14、[2021密山市·八五七农场学校期末]如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式及顶点坐标;(2)若抛物线上有一点B,且S△OAB=1,求点B的坐标.[思路分析](1)利用交点式求抛物线解析式;解析式配成顶点式即可得到抛物线顶点坐标;(2)设B(t,t2﹣2t),根据三角形面积公式得到×2×|t2﹣2t|=1,则t2﹣2t=1或t2﹣2t=﹣1,然后分别解两个方程求出t,从而可得到B点坐标.[答案详解]解:(1)抛物线解析式为y=x(x﹣2),即y=x2﹣2x.因为y=x2﹣2x=(x﹣1)2﹣1,所以抛物线的顶点坐标为(1,﹣1);(2)设B(t,t2﹣2t),因为S△OAB=1,所以×2×|t2﹣2t|=1,所以t2﹣2t=1或t2﹣2t=﹣1,解方程t2﹣2t=1得t1=1+,t2=1﹣,则B点坐标为(1+,1)或(1﹣,1);解方程t2﹣2t=﹣1得t1=t2=1,则B点坐标为(1,﹣1),所以B点坐标为(1+,1)或(1﹣,1)或(1,﹣1).[经验总结]本题考查了抛物线与x轴的交点,运用待定系数法求一次函数的解析式的运用,二次函数的顶点式的运用,三角形的面积公式的运用,解答时求出函数的解析式是关键.15、[2022金川区·期末]已知二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,求:(1)点A、B、C的坐标;(2)△ABC的面积.[思路分析](1)根据题意得出求出图象与x轴以及y轴交点坐标;(2)根据A,B,C的坐标求出AB,CO长,即可求出S△ABC的值.[答案详解]解:(1)令x=0,则y=﹣3,∴C(0,﹣3);令y=0,则x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)∵A(﹣1,0),B(3,0),C(0,﹣3),∴AB=4,OC=3,∴S△ABC=AB•OC=×4×3=6.[经验总结]此题主要考查了抛物线与x轴的交点,得出图象与坐标轴交点是解题关键.16、[2021定远县·育才学校期末]在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;(2)如图,连接AC,P A,PC,若S△P AC=,求点P的坐标.[思路分析](1)由二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,可得二次函数的解析式为y=(x+2)(x﹣4),由此即可解决问题.(2)根据S△P AC=S△AOC+S△OPC﹣S△AOP,构建方程即可解决问题.[答案详解]解:(1)∵二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,∴该二次函数的解析式为y=(x+2)(x﹣4),即y=x2﹣x﹣4.(2)如图,连接OP,设P(m,m2﹣m﹣4),由题意可知:A(﹣2,0)、C(0,﹣4);∵S△P AC=S△AOC+S△OPC﹣S△AOP,∴×2×4+×4×m﹣×2×(﹣m2+m+4)=;整理得:m2+2m﹣15=0,解得m=3或m=﹣5(舍弃),∴P(3,﹣).[经验总结]本题考查了三角形的面积,二次函数的解析式的求法,二次函数的性质等知识,解题的关键是学会利用参数构建方程解决问题.17、若二次函数y=ax2+bx+c(a≠0)图象的顶点在一次函数y=kx+t(k≠0)的图象上,则称y=ax2+bx+c(a≠0)为y=kx+t(k≠0)的点雅抛物线,如:y=x2+1是y=x+1的点雅抛物线.(1)若y=x2﹣4是y=﹣2x+p的点雅抛物线,求p的值;(2)若二次函数y=﹣x2+4x+7是经过点(﹣1,2)的一次函数y=kx+t(k≠0)的点雅抛物线,求直线y=kx+t(k≠0)与两坐标轴围成的三角形的面积;(3)若函数y=mx﹣3(m≠0)的点雅抛物线y=x2+2x+n与x轴两个交点间的距离为4,求m,n的值.[思路分析](1)利用二次函数的性质得到抛物线y=x2﹣4的顶点坐标为(0,﹣4),再根据新定义,把(0,﹣4)代入y=﹣2x+p值可得到p的值;(2)利用配方法得到抛物线y=﹣x2+4x+7的顶点坐标为(2,11),再利用待定系数法确定一次函数解析式为y=3x+5,接着利用解析式求出一次函数图形与坐标轴的交点坐标,然后计算直线y=kx+t与两坐标轴围成的三角形的面积;(3)先解方程x2+2x+n=0得x1=﹣1+,x2=﹣1﹣,则﹣1+﹣(﹣1﹣)=4,解方程得到n=﹣3,再利用配方法得到抛物线解析式为y=x2+2x﹣3的顶点坐标为(1,﹣4),然后把(1,﹣4)代入y=mx﹣3中可求出m的值.[答案详解]解:(1)抛物线y=x2﹣4的顶点坐标为(0,﹣4),把(0,﹣4)代入y=﹣2x+p得﹣2×0+p=﹣4,解得p=﹣4;(2)∵y=﹣x2+4x+7=﹣(x﹣2)2+11,∴抛物线的顶点坐标为(2,11),把(2,11),(﹣1,2)分别代入y=kx+t得,解得,∴一次函数解析式为y=3x+5,当x=0时,y=5,直线y=3x+5与y轴的交点坐标为(0,5),当y=0时,3x+5=0,解得x=﹣,直线y=3x+5与x轴的交点坐标为(﹣,0),∴直线y=3x+5与两坐标轴围成的三角形的面积=×5×=;(3)当y=0时,x2+2x+n=0,解得x1=﹣1+,x2=﹣1﹣,∵﹣1+﹣(﹣1﹣)=4,∴n=﹣3,∴抛物线解析式为y=x2+2x﹣3,∵y=x2+2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4),把(1,﹣4)代入y=mx﹣3得m﹣3=﹣4,解得m=﹣1,∴m、n的值分别为﹣1,﹣3.[经验总结]本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.18、已知抛物线y=x2+2ax+3a与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(0,﹣3).(1)求抛物线的解析式;(2)当0<x≤k,且k>1时,y的最大值和最小值分别为m,n,且m+n=1,求k的值.[思路分析](1)把C点坐标代入y=x2+2ax+3a中求出a得到抛物线解析式;(2)利用配方法得到y=(x﹣1)2﹣4,则对称轴为直线x=1,当x=1时,y有最小值﹣4,由于当0<x≤k,且k>1时,y的最大值和最小值分别为m,n,所以n=﹣4,则m=5,计算y=5所对应的自变量的值,从而得到k的值.[答案详解]解:(1)把C(0,﹣3)代入y=x2+2ax+3a得3a=﹣3,解得a=﹣1,∴抛物线解析式为y=x2﹣2x﹣3;(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4),对称轴为直线x=1,如图,当x=1时,y有最小值﹣4,∵当0<x≤k,且k>1时,y的最大值和最小值分别为m,n,∴n=﹣4,而m+n=1,∴m=5,当y=5时,(x﹣1)2﹣4=5,解得x1=﹣2,x2=4,∴k=4.[经验总结]本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.19、如图,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,连接BC,与抛物线的对称轴交于点E,顶点为点D.(1)求抛物线的解析式;(2)求△BOC的面积.[思路分析](1)根据抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),即可得到关于a、b的方程,从而可以求得a、b的值,然后即可写出抛物线的解析式;(2)根据(1)中抛物线的解析式,可以写出点C的坐标,然后再根据点B的坐标,即可得到OC和OB的长,再根据三角形面积公式,即可求得△BOC的面积.[答案详解]解:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B (﹣3,0),∴,解得,∴抛物线的解析式为y=﹣x2﹣2x+3;(2)由(1)知,y=﹣x2﹣2x+3,∴点C的坐标为(0,3),∴OC=3,∵点B的坐标为(﹣3,0),∴OB=3,∵∠BOC=90°,∴△BOC的面积是==.[经验总结]本题考查抛物线与x轴的交点、待定系数法求二次函数解析式、二次函数的性质、三角形的面积,解答本题的关键是明确二次函数的性质,利用数形结合的思想解答.20、已知二次函数y=x2﹣4x+3.(1)二次函数图象的开口方向,顶点坐标是,与x轴的交点坐标为,与y轴的交点坐标为;(2)画函数图象;(3)当1<x<4时,y的取值范围是.[思路分析](1)先把一般式配成顶点式,则根据二次函数的性质可判断抛物线的开口方向,顶点坐标;然后解方程x2﹣4x+3=0得抛物线与x轴的交点坐标,计算自变量为0所对应的函数值得到抛物线与y轴的交点坐标;(2)利用描点法画出二次函数的图象;(3)结合函数图象和二次函数的性质求解.[答案详解]解:(1)∵a=1>0,∴抛物线开口向上,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1);当y=0时,x2﹣4x+3=0,解得x1=1,x2=3,∴抛物线与x轴的交点坐标为(1,0),(3,0),当x=0时,y=x2﹣4x+3=3,则抛物线与y轴的交点坐标为(0,3);故答案为:向上;(2,﹣1);(1,0),(3,0);(0,3);(2)如图,(3)当x=1时,y=0;当x=4时,y=3,所以当1<x<4时,y的取值范围为﹣1≤y<3.故答案为:﹣1≤y<3.[经验总结]本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质与图象.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学一元二次方程与二次函数试卷 班级: 总分:
一、选择题(本大题10小题,每小题3分,共30分)
1.下列方程是关于x 的一元二次方程的是( ).
2222221
A.0
B.0
C.421
D.3250x ax bx c x
x x x xy y +
=++=-=--= 2.用配方法解方程 2
210x x --=,变形后的结果正确的是( ).
2.(1)0x A += 2.(1)0x B -= 2C.(1)2x += 2D.(1)2x -=
3.抛物线 2
(2)2y x =-+ 的顶点坐标是( ).
A.(2,2)-
B.(2,2)-
C.(2,2)
D.(2,2)--
4.下列所给方程中,没有实数根的是( ).
2A.0x x += 2B.5410x x --= 2C.3410x x -+= 2D.4520x x -+=
5.已知三角形两边的长分别是3和6,第三边的长是 2
680x x -+= 的根,则这个三角
形的周长是( ).
A.11
B.13
C.1113
D.1215 或 或
6.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x ,根据题意,下面列出的方程正确的是( ).
A.100(1)121x +=
B.100(1)121x -=
2C.100(1)121x += 2D.100(1)121x -=
7.要得到抛物线 2
2(4)1y x =-- ,可以将抛物线 2
2y x = ( ).
A. 向左平移4个单位长度,在向下平移1个单位长度
B. 向右平移4个单位长度,在向下平移1个单位长度
C. 向左平移4个单位长度,在向上平移1个单位长度
D. 向右平移4个单位长度,在向上平移1个单位长度
8.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米²,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( ).
2A.10080100807644B.(100)(80)7644C.(100)(80)7644
D.100807644
x x x x x x x x x ⨯--=--+=--=+=
9.如图,
2210y ax a y ax x a a =+=-+≠函数和(是常数,且)在同一平面直角坐标系中的图象可能
是( ).
10.二次函数 2
(0)y ax bx c a =++≠的图像大致如图,关于该二次函数,下列说法错误..的是( ).
A.1
B.2
1
C.2
D.120x x y x x y =
<-<<>函数有最小值
对称轴是直线当,随的增大而减小
当时,
第10题图 第16题图
二、填空题(本大题6小题,每小题4分,共24分)
11.写出解为3x =的一个一元二次方程: .
12.已知1x =是关于x 的一元二次方程2
0ax bx c ++=的一个根,则代数式a b c ++= . 13.有一人患了流感,经过两轮传染后共有100人患了流感,设每轮传染中,平均一个人传染的人数为x ,可列方程为: .
14.二次函数2
26y x x =-+的最小值是: .
15.正方形的边长是3,若边长增加x ,则面积y 与x 之间的关系是: . 16.抛物线2y ax bx c =++的部分图象如图所示,则 当0y >时,x 的取值范围是 .
三、解答题(一)(本大题3小题,每小题6分,共18分) 17.解方程:2320x x -+=
18.已知关于x 的一元二次方程2
6210x x m -+-=有两个相等的实数根,求m 的值及方程的根.
19.已知抛物线的顶点为(1,-4),且经过点(3,0),求这条抛物线的解析式.
四、解答题(二)(本大题3小题,每小题7分,共21分)
20. 惠州市体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划
安排28场比赛,应邀请多少支球队参加比赛?
21.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120
平方米的矩形草坪ABCD.求该矩形草坪BC边的长.
22.如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始,沿边AB向
点B以2mm/s•的速度移动,动点Q从点B开始,沿边BC向点C以4mm/s的速度移动,如果•P、Q都从A,B点同时出发,那么△PBQ的面积S随出发时间t如何变化?写出S关于t的
函数解析式及t的取值范围.
Q
B
A
C
P
五、解答题(三)(本大题3小题,每小题9分,共27分)
23. 李师傅去年开了一家商店,今年1月份开始盈利,2月份盈利2400元,
4月份的盈利达到3456元,且从2月到4月,每月盈利的平均增长率都相同.
(1)求每月盈利的平均增长率.
(2)按照这个平均增长率,预计5月份家商店的盈利将达到多少元?
24. 石坝特产专卖店销售莲子,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克.后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加20千克.若该专卖店销售这种莲子想要平均每天获利2240元,请回答: ⑴每千克莲子应降价多少元?
⑵在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
25.如图,隧道的截面由抛物线和长方形构成,长方形的长是8m ,宽是2m , 抛物线可以用y=-
4
1x 2
+4表示. (1)一辆货运卡车高4m ,宽2m ,它能通过该隧道吗?
(2)如果该隧道内设双行道,那么这辆货运卡车是否可以通过?
九年级数学试卷答案 一. 选择题
1-----5 C.D.C.D.B 6----10 C.B.C.B.D 二. 填空题 11. 29x =( 答案不唯一) 12.0 13. 21(1)121(1)121x x x x +++=+=或
14.5 15. 2(3)y x =+ 16. 1<<3x - 三.解答题
12(2)(1)0
20102,1
x x x x x x --=-=-===17.解:因式分解得:于是得或 22222
221262104641(21)3684=05
5621062510690(3)03
x x x m b ac m m m m x x m x x x x x x x -+-=∴∆=-=-⨯⨯-=-+∴==-+-=-+⨯-=-+=-=∴==18.解:关于的方程有两个相等的实数根把代入得
222
2()11,4(1)4(3,0)0(31)41(1)4
y a x h k h k y a x a a y x =-+∴==-∴=--=--∴=∴=--19.解:设抛物线的解析式为顶点(,-4) 把代入得抛物线的解析式为
121=28
2
=8=78x x x x x --20.解:设应邀请支球队参加比赛,依题意得()
解得:,(不合题意,舍去)答:应邀请支球队参加比赛.
1223221.,2
32(
)1202
12,2020>162012x
BC x x
x x x x BC --===∴=解:设的长为米则AB 的长为()米,得 解得: (不合题意,舍去)答:该矩形草坪边的长米.
29012 mm 24 mm (12-2t) mm 4t mm
11
=(12-2t)4t
22
244(0<<6)
B BP S PB BP B S t t t ∠=︒==∴==∴∆••=-22.解:,AB ,B
C ,BQ Q Q=化简得
21,2400(1)3450
0.2 2.253450(120%)=4147.220%54147.2x x x x +===-⨯+223.解:(1)设每月盈利的平均增长率依题意得解得,(不合题意,舍去)(2)月份家商店的盈利:(元)答:每月盈利的平均增长率,月份家商店的盈利将达到元
212(6040)(10020)2240
2
102404,6(2)6
6065454
100%90%60
46x x
x x x x x x --+⨯=-+===∴=∴-=∴⨯=24.解:(1)设每千克莲子应降价元,依题意得化简得:解得:尽可能让利于顾客售价为:即:九折
答:每千克莲子应降价元或元;该店应按原售价的九折出售.
2211
1,(1)4 3.75,
4
3.752>4
1
2,(2)43,
4
32>4
x y x y =±=-⨯±+=+∴=±=-⨯±+=+∴25.解:()建立相应的直角坐标系,当货车在正中央时,即对应的货车能通过该隧道.
(2)当隧道内设双行道时,就意味着货车只能走一边,即对应的货车能通过该隧道.。

相关文档
最新文档