仪器分析全知识点

合集下载

(完整版)仪器分析知识点整理..

(完整版)仪器分析知识点整理..

(完整版)仪器分析知识点整理..教学内容绪论分子光谱法:UV-VIS、IR、F原子光谱法:AAS电化学分析法:电位分析法、电位滴定色谱分析法:GC、HPLC质谱分析法:MS、NRS第一章绪论⒈经典分析方法与仪器分析方法有何不同?经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。

仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。

化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。

⒉仪器的主要性能指标的定义1、精密度(重现性):数次平行测定结果的相互一致性的程度,一般用相对标准偏差表示(RSD%),精密度表征测定过程中随机误差的大小。

2、灵敏度:仪器在稳定条件下对被测量物微小变化的响应,也即仪器的输出量与输入量之比。

3、检出限(检出下限):在适当置信概率下仪器能检测出的被检测组分的最小量或最低浓度。

4、线性范围:仪器的检测信号与被测物质浓度或质量成线性关系的范围。

5、选择性:对单组分分析仪器而言,指仪器区分待测组分与非待测组分的能力。

⒊简述三种定量分析方法的特点和应用要求一、工作曲线法(标准曲线法、外标法)特点:直观、准确、可部分扣除偶然误差。

需要标准对照和扣空白应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。

二、标准加入法(添加法、增量法)特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况三、内标法特点:可扣除样品处理过程中的误差应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰第2章光谱分析法引论习题1、吸收光谱和发射光谱的电子能动级跃迁的关系吸收光谱:当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需要的能量满足ΔE=hv的关系时,将产生吸收光谱。

仪器分析 知识点总结

仪器分析 知识点总结

仪器分析知识点总结一、基本原理1. 仪器分析的基本原理仪器分析是通过利用物理、化学、生物等现代科学技术的原理,将样品中所含的各种化学成分,或隐性特征转化为测定结果的工作过程。

其基本原理是将样品与仪器设备相结合,通过检测样品的光学、电学、热学、声学等性质,从而分析出样品中所含的成分、结构和性质。

2. 仪器分析的应用范围仪器分析广泛应用于生产、科研、医疗、环保、食品安全等领域。

在食品安全领域,通过仪器分析可以检测食品中的化学污染物、毒素、添加剂等,确保食品安全。

在医疗领域,可以使用仪器分析对生物样品进行分析,诊断疾病。

在环保领域,可以利用仪器分析监测环境中的污染物含量,保护环境。

二、常见的仪器设备1. 红外光谱仪红外光谱仪是一种分析化学仪器,主要用于分析样品的结构和成分。

其原理是通过测量样品对红外辐射的吸收情况,从而对样品进行分析。

红外光谱仪可以用于有机物、无机物、生物大分子等样品的分析,广泛应用于化学、医学、生物等领域。

2. 质谱仪质谱仪是一种高灵敏度、高分辨率的分析仪器,可以用于分析样品中的各种化合物和元素。

其原理是通过对样品离子化、分子裂解和质谱分析,从而获得样品的成分和结构信息。

质谱仪广泛应用于化学、生物、环境等领域,可以用于检测样品中的有机物、无机物、生物大分子等。

3. 气相色谱仪气相色谱仪是一种用于分离和分析样品中化合物的仪器设备。

其原理是通过气相色谱柱对样品中的化合物进行分离,再通过检测器对分离后的化合物进行检测。

气相色谱仪可以用于分析样品中的有机物、小分子有机化合物、环境中的污染物等,是化学、环境等领域中常用的仪器设备。

4. 离子色谱仪离子色谱仪是一种用于离子分析的仪器设备,主要用于分析水样中的离子成分和浓度。

其原理是通过离子交换柱对水样中的离子进行分离,再通过检测器对分离后的离子进行检测。

离子色谱仪广泛应用于环境、食品安全、医疗等领域,可以对水样中的无机离子、有机离子进行分析。

三、样品处理技术1. 样品前处理样品前处理是仪器分析中一个重要的环节,其目的是提高仪器分析的准确度和可靠性。

仪器分析考试知识点总结

仪器分析考试知识点总结

仪器分析考试知识点总结一、仪器分析的基本概念1. 仪器分析的定义和概念仪器分析是利用各种物理、化学、光学、电子等原理和方法,用各种仪器和设备对化学物质进行检测和分析的过程,以发现物质的性质、结构、组成和含量等信息。

2. 仪器分析的分类仪器分析可以分为物理分析、化学分析和光谱分析等不同的类别,不同的分析方法适用于不同类型的化学物质。

3. 仪器分析的原理仪器分析的原理主要包括化学反应原理、光学原理、电子学原理、物理原理等,不同的仪器在分析过程中会运用不同的原理。

二、基本仪器原理和基本技术1. 常用电子仪器的原理和技术常见的电子仪器如电子天平、电位计、电解质浓度计、电导率计等都是基于电子原理和技术进行工作的。

学习者需要了解这些仪器的原理和操作方法。

2. 常用光学仪器的原理和技术常见的光学仪器如分光光度计、荧光光度计、紫外-可见分光光度计等都是基于光学原理和技术进行工作的。

学习者需要了解这些仪器的原理和操作方法。

3. 常用物理仪器的原理和技术常见的物理仪器如质谱仪、核磁共振仪、X射线衍射仪等都是基于物理原理和技术进行工作的。

学习者需要了解这些仪器的原理和操作方法。

三、仪器分析的基本操作1. 样品的准备样品的准备是仪器分析的第一步,学习者需要学会如何准备不同类型的样品,包括液体样品、固体样品和气体样品等。

2. 仪器的调试仪器的调试是仪器分析的关键步骤,学习者需要学会如何合理地调试仪器,以保证分析的准确性和可靠性。

3. 数据的处理仪器分析得到的数据需要进行合理的处理和分析,学习者需要学会如何处理数据和制作数据报告。

四、仪器分析的常见问题和解决方法1. 仪器的故障和维修仪器在使用过程中可能会出现各种故障,学习者需要学会如何及时发现和解决这些故障。

2. 数据的异常和处理方法在数据分析过程中,可能会出现异常数据,学习者需要学会如何判断异常数据并进行合理的处理。

五、仪器分析的应用1. 仪器分析在化学、医药、环境和食品等领域的应用仪器分析可广泛应用于各种领域,包括化学、医药、环境和食品等。

仪器分析知识点

仪器分析知识点

仪器分析知识点仪器分析是现代化学分析的重要方法之一,它利用各种仪器设备对物质进行定性、定量或结构分析。

仪器分析知识点包括仪器分类、操作原理、常见仪器和技术应用等内容。

一、仪器分类根据分析原理和操作方法,仪器可以分为光谱仪器、色谱仪器、电化学仪器、质谱仪器、质量分析仪器等多种类型。

1. 光谱仪器:光谱仪器是利用物质对光的吸收、发射或散射特性,通过测量光的强度变化来分析物质的组成和性质。

常见光谱仪器包括紫外-可见光谱仪、红外光谱仪、核磁共振仪等。

2. 色谱仪器:色谱仪器是通过物质溶解度、吸附性、分配系数等特性进行分离和分析的仪器。

常见色谱仪器包括气相色谱仪、液相色谱仪、高效液相色谱仪等。

3. 电化学仪器:电化学仪器是利用物质在电场或电流作用下的电化学过程进行分析的仪器。

常见电化学仪器包括电解池、电化学电位计、电导仪等。

4. 质谱仪器:质谱仪器是通过将物质分子进行解离和碎裂,然后测量碎片的质量和相对丰度来分析物质的组成和结构的仪器。

常见质谱仪器包括质谱仪、飞行时间质谱仪、四极质谱仪等。

5. 质量分析仪器:质量分析仪器是利用物质分子的质量进行分析与鉴定的仪器。

常见质量分析仪器包括质谱仪、原子吸收光谱仪、电感耦合等离子体质谱仪等。

二、操作原理不同的仪器有着不同的操作原理,下面以常见的光谱仪器和色谱仪器为例进行介绍。

1. 紫外-可见光谱仪的操作原理:紫外-可见光谱仪是通过将被测溶液或物质吸收或透射的光强度与波长进行测量,从而分析物质的组成和性质。

其操作原理基于光的吸收定律和比尔定律。

2. 气相色谱仪的操作原理:气相色谱仪利用样品在固定填充物上的吸附和解吸特性进行物质分离和分析。

其操作原理是将样品蒸发为气态后进入色谱柱,样品在色谱柱中与固定相发生作用,从而实现物质分离。

三、常见仪器1. 光谱仪器:紫外-可见光谱仪、红外光谱仪、核磁共振仪等。

2. 色谱仪器:气相色谱仪、液相色谱仪、高效液相色谱仪等。

3. 电化学仪器:电解池、电化学电位计、电导仪等。

仪器分析知识点复习汇总

仪器分析知识点复习汇总

仪器分析知识点复习汇总研究必备,欢迎下载。

第一章:绪论1.灵敏度是指被测物质单位浓度或单位质量的变化引起响应信号值变化的程度。

检出限是一定置信水平下检出分析物或组分的最小量或最小浓度。

2.检出限指恰能鉴别的响应信号至少应等于检测器噪声信号的3倍。

3.根据表里给的数据,标准曲线方程为y=5.7554x+0.1267,相关系数为0.9716.第二章:光学分析法导论1.原子光谱是由原子外层或内层电子能级的变化产生的,表现形式为线光谱。

分子光谱是由分子中电子能级、振动和转动能级的变化产生的,表现为带光谱。

吸收光谱是当电磁辐射通过固体、液体或气体时,具一定频率(能量)的辐射将能量转移给处于基态的原子、分子或离子,并跃迁至高能态,从而使这些辐射被选择性地吸收。

发射光谱是处于激发态的物质将多余能量释放回到基态,若多余能量以光子形式释放,产生电磁辐射。

带光谱除电子能级跃迁外,还产生分子振动和转动能级变化,形成一个或数个密集的谱线组,即为谱带。

线光谱是物质在高温下解离为气态原子或离子,当其受外界能量激发时,将发射出各自的线状光谱,其谱线的宽度约为10-3nm,称为自然宽度。

2.UV-Vis和IR属于带状光谱,AES、AAS和AFS属于线性状光谱。

第三章:紫外-可见吸收光谱法1.朗伯-比尔定律的物理意义是样品溶液中吸收光的强度与样品浓度成正比。

透光度是指样品溶液透过光束后的光强度与入射光强度之比。

吸光度是指样品溶液吸收光束后的光强度与入射光强度之比。

两者之间的关系是吸光度等于-log(透光度)。

2.有色配合物的XXX吸收系数与入射光波长有关。

3.物质的紫外-可见吸收光谱的产生是由于原子核外层电子的跃迁。

4.最大能量跃迁需要最大能量,因此跃迁所需能量最大的是电子从基态到最高激发态的跃迁。

A.样品加入量和仪器响应的不确定性B.谱线重叠的问题C.光谱干扰的问题D.样品制备的不确定性改写:1.电感耦合等离子体光源由高频发射器、等离子炬管、雾化器等三部分组成,具有稳定性好、机体效应小、线性范围宽、检出限低、应用范围广、自吸效应小、准确度高等优点。

仪器分析第知识点总结

仪器分析第知识点总结

仪器分析第知识点总结1. 仪器分析的原理仪器分析是利用各种科学仪器对物质进行测试分析,从而确定物质的成分和性质。

仪器分析的原理是基于物质的特定性质和相应的测试方法。

常见的仪器分析原理包括光谱分析、色谱分析、质谱分析、电化学分析等。

2. 仪器分析的分类仪器分析可以按照分析方法、使用仪器、测定目的等多种方式进行分类。

根据不同的分类方式,仪器分析可以分为以下几类:(1)按分析方法分类:包括光谱分析、色谱分析、电化学分析、质谱分析、热分析等。

(2)按使用仪器分类:包括光谱仪、色谱仪、质谱仪、电化学仪器等。

(3)按测定目的分类:包括定性分析和定量分析。

3. 仪器分析的常用技术(1)光谱分析:是利用物质吸收、发射、散射等光谱特性进行定性和定量分析的方法,包括紫外-可见吸收光谱、红外光谱等。

(2)色谱分析:是一种以物质在固定相和流动相中分配系数不同而分离出组分的方法,包括气相色谱、液相色谱等。

(3)质谱分析:是利用物质在质谱仪中被离子化并在电场作用下产生碎片进行分析的方法,包括质子、电子和质子化电子撞击等。

(4)电化学分析:是利用电化学方法进行分析的技术,包括电导率法、电动势法、极谱法等。

4. 仪器分析的应用仪器分析技术已广泛应用于化学、生物、环境、药物等领域,为各行各业的科研和生产提供了重要支持。

例如,在环境保护领域,仪器分析可用于检测大气、水体和土壤中的污染物;在药物研发领域,仪器分析可用于药物的成分分析和质量控制。

综上所述,仪器分析作为一种重要的化学分析手段,具有广泛的应用前景。

通过对仪器分析的原理、分类、常用技术和应用进行系统总结,有助于加深对仪器分析技术的理解,对于提高仪器分析的能力和水平具有积极的意义。

仪器分析知识点总结

仪器分析知识点总结

1、光分析法:基于电磁辐射能量与待测物质相互作用后所产生的辐射信号与物质组成及结构关系所建立起来的分析方法;光分析法的三个基本过程:(1)能源提供能量;(2)能量与被测物之间的相互作用;(3)产生信号.光分析法的基本特点:(1)所有光分析法均包含三个基本过程;(2)选择性测量,不涉及混合物分离(不同于色谱分析);(3)涉及大量光学元器件。

光谱仪器通常包括五个基本单元:光源;单色器;样品;检测器; 显示与数据处理;2、原子发射光谱分析法:以火焰、电弧、等离子炬等作为光源,使气态原子的外层电子受激发射出特征光谱进行定量分析的方法。

原子发射光谱分析法的特点:(1)可多元素同时检测各元素同时发射各自的特征光谱;(2)分析速度快试样不需处理,同时对几十种元素进行定量分析(光电直读仪);(3)选择性高各元素具有不同的特征光谱;(4)检出限较低10~0.1μg⋅g-1(一般光源);ng⋅g-1(ICP)(5)准确度较高5%~10% (一般光源);〈1%(ICP) ;(6)ICP-AES性能优越线性范围4~6数量级,可测高、中、低不同含量试样;缺点:非金属元素不能检测或灵敏度低.3、原子吸收光谱分析法:利用特殊光源发射出待测元素的共振线,并将溶液中离子转变成气态原子后,测定气态原子对共振线吸收而进行的定量分析方法。

特点:(1)检出限低,10—10~10—14 g;(2) 准确度高,1%~5%;(3)选择性高,一般情况下共存元素不干扰;(4)应用广,可测定70多个元素(各种样品中);局限性:难熔元素、非金属元素测定困难、不能同时多元素测量4、多普勒效应:一个运动着的原子发出的光,如果运动方向离开观察者(接受器),则在观察者看来,其频率较静止原子所发的频率低,反之,高。

5、原子荧光分析法:气态原子吸收特征波长的辐射后,外层电子从基态或低能态跃迁到高能态,在10—8s后跃回基态或低能态时,发射出与吸收波长相同或不同的荧光辐射,在与光源成90度的方向上,测定荧光强度进行定量分析的方法.6、分子荧光分析法:某些物质被紫外光照射激发后,在回到基态的过程中发射出比原激发波长更长的荧光,通过测量荧光强度进行定量分析的方法。

仪器分析知识点总结

仪器分析知识点总结

仪器分析知识点总结一、仪器分析的基本原理1.1 光谱学光谱学是仪器分析中的一种常用分析方法,主要包括紫外-可见吸收光谱、红外光谱、荧光光谱、原子吸收光谱等。

它通过物质在特定波长的光线下产生的吸收、发射、散射等现象来分析物质的成分或性质。

在实际应用中,紫外-可见吸收光谱常用于药物、食品、环境样品的分析;红外光谱常用于有机物的鉴定;荧光光谱常用于生物分子的定量分析;原子吸收光谱常用于金属离子的测定等。

1.2 色谱法色谱法是利用物质在固定相和移动相之间的分配行为,通过在固定相上的运动速度差异分离物质的一种分析方法。

包括气相色谱、液相色谱、超高效液相色谱等。

这些方法在化学、食品、生物等领域广泛应用,如气相色谱常用于有机物的分析;液相色谱常用于生物样品的分离等。

1.3 电化学分析电化学分析是利用电化学原理进行分析的一种方法,主要包括电位法、伏安法、极谱法等。

它通过观察物质在电场中的行为来分析物质的成分或性质。

在实际应用中,电化学分析常用于金属腐蚀、电解制备等领域。

1.4 质谱法质谱法是利用物质在电场中的运动轨迹差异来对物质进行分析的一种方法,主要包括质谱仪、质子共振仪等。

在实际应用中,质谱法常用于有机物的结构鉴定、药物代谢产物的分析等。

1.5 分光光度法分光光度法是利用物质对光的吸收、散射、发射等现象来分析物质的成分或性质的一种方法。

它广泛应用于药物浓度测定、气体成分分析、紫外-可见吸收光谱仪、荧光光谱仪、原子吸收光谱仪等。

1.6 元素分析元素分析是对物质中元素成分进行定量或半定量分析的一种方法。

它主要包括原子吸收光谱、荧光光谱、质谱等。

在实际应用中,元素分析常用于环境、食品、医药等领域的元素含量分析。

1.7 样品前处理技术样品前处理技术是仪器分析中的一种重要过程,它通过溶解、萃取、浓缩、净化等手段对样品进行处理,使之适合于仪器分析。

在实际应用中,样品前处理技术广泛应用于环境样品、生物样品、食品样品等的准备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分子光谱的分类分子吸收光谱转动光谱(远红外光谱)振动光谱(红外光谱)电子光谱(紫外-可见光谱)分子发射光谱电子光谱(分子荧光、磷光)原子光谱的分类原子吸收光谱原子发射光谱光、电、色1色谱法分类气相色谱法高效液相色谱法电化学分析法分类电位分析法电位滴定法伏安法3紫外-可见分光光度法(紫外-可见吸收光谱法):物质分子对紫外-可见光的吸收进行定性、定量及结构分析。

紫外-可见光区分为远紫外(10~200nm)、近紫外(200~360nm)和可见部分(360~760nm);远紫外的吸收测量在真空下进行;通常研究近紫外-可见光围的光谱行为。

第2章紫外-可见分光光度法4§2-1 分子光谱概述1.分子光谱产生M+hν==M*基态激发态E1 E2分子吸收能量后,电子从一个能级跃迁到另一个能级分子部电子能级的跃迁而产生的光谱:紫外-可见光谱5吸收光谱(吸收曲线): 横坐标用波长或频率表示;物质的吸收峰位置对应于分子结构,是定性依据。

纵坐标用光强的参数表示,如透光率、吸光度、吸光系数等,是定量依据。

2.吸收光谱特征63.光吸收定律:朗伯-比尔(Lambert-Beer)定律当一束强度为I0 的平行单色光照射到均匀而非散射的溶液时,光的一部分(强度为Ia)被吸收,一部分(强度为It)透过溶液,一部分(强度为Ir)被器皿表面所反射,则I0 = Ia + It + Ir光的反射损失Ir 主要决定于器皿材料、形状、大小和溶液性质。

在相同条件下,这些因素是固定的,且反射损失的量很小,故Ir 可忽略不计,则:I0 = Ia + It散射:光通过不均匀悬浮颗粒时,部分光束将偏离原来方向而分散到各个方向去。

单色光: 单一频率(波长)的光7透光度(透光率或透射比)(T ,Transmittance ) :透过光强度与入射光强度之比 : T = I / I0吸光度(A, Absorbance ):物质对光的吸收程度,其值为透光度的负对数:注:A 、T 无单位方便起见, 透过光强度 It 用 I 表示8人们对光吸收定律认识,经历了较长历史过程。

1760年,Lambert 提出光吸收程度与溶液厚度b 成正比:b k I I A 'lg==ο1852年,Beer 提出光吸收程度与吸光物质微粒数目(浓度)成正比: c k I I A ''lg ==ο9两个定律合并起来叫Lambert-Beer 定律:abc I I A ==οlg若b 的单位是cm ;c 的单位是g ·L-1时,a 为吸光系数,单位是:若b 的单位是cm ;c 的单位是mol ·L-1时:10e 与a 的关系 :e =M a , M 为物质摩尔质量。

注: Lambert-Beer 定律不仅适用于溶液,也适用于均匀的气体和固体状态的吸光物质,是各类吸收光谱法,如红外光谱法和原子吸收光谱法等的定量分析依据。

11光吸收基本定律: 朗伯-比尔定律意义:当一束平行单色光通过均匀、非散射溶液时,其吸光度与溶液浓度和液层厚度乘积成正比.A=lg(I0/It)=kbc12T -透光率(透射比)(Transmittance )A = lg (I0/It) = lg(1/T) = -lgT = kbc13吸光度A 、透光率T 与浓度c 的关系14当吸光物质浓度为1mol ·L-1, 液池厚1cm 时,一定波长的单色光通过溶液时的吸光度值。

ε是物质本身决定的,是物质吸光能力的量度, 可作为定性分析的参考和估量定量分析方法的灵敏度。

ε<104 低ε104~105 中ε>5×105 高ε物理意义:最常用的形式:A=εbc15非单波长入射光引起的偏离吸收定律仅对单色光的吸收才是正确的。

当入射光是非单色光时,将引起定律的偏离。

消除措施:选择最大吸收波长。

16吸光物质在溶液中发生化学变化引起偏离由于吸光物质变成了不同的存在形式, 对原来最大吸收波长光的吸收能力发生变化,引起对吸收定律偏离。

消除措施:控制适当的显色条件。

对上述反应介质的酸度控制,可消除该影响。

配合物不稳定也会引起偏离配合物越稀,解离度越大。

解离产生的离子在最大吸收波长处吸收较小或无吸收,引起对吸收定律偏离。

消除措施:试液浓缩富集。

17介质不均匀引起的偏离Lambert-Beer定律要求吸光物质的溶液均匀。

如果被测液是胶体溶液、乳浊液或悬浮物质,当入射光通过溶液时,因散射现象而造成损失,使实际测得的吸光度增大,从而偏离Lambert-Beer定律。

故紫外-可见吸光光度法一般仅适用于透明溶液。

A = lg (I0/It)18与紫外-可见吸收光谱有关的电子有3种: 形成单键的σ电子, 形成双键的π电子以及未参与成键的n电子(孤对电子)根据分子轨道理论,这三种电子的能级高低次序为:(σ)< (π)< (n )< (π*)< (σ*)σ、π表示成键分子轨道. n: 非键分子轨道. σ*、π*:反键分子轨道1.电子跃迁类型、能量及所在波长区§2-2 化合物电子光谱的产生19跃迁所需能量次序:σ→σ*> n→σ*>π→π*> n→π*有机化合物分子主要有四种类型的跃迁①σ→σ*跃迁;②n→σ*跃迁;③π→π*跃迁;④n→π*跃迁;受到外来辐射时,处在较低能级的电子跃迁到较高能级。

分子轨道的能级不同,要实现各种不同的跃迁所需要吸收外来辐射的能量也各不相同。

20对于有机化合物, 最有用的吸收光谱是基于π→π*和n→π*跃迁产生的, 实现这两类跃迁所需要的能量相对较小, 其吸收峰波长一般处于大于200nm的近紫外光区, n→π*跃迁还可能在可见光区22①生色团:能导致化合物在紫外-可见光区产生吸收的基团,主要有含不饱和键和未成对电子的基团。

如-C=C-、>C=O、-N=O、-N=N-、-C=N等,相应于π→π*与n→π*跃迁。

相同生色团,λmax相同,但随生色团数目的不同有变,一般是随生色团数增加而波长增长;不同生色团,有不同的λmax,同一化合物中有几个不同生色团时,吸收光谱上有几个吸收峰(但不一定能分开)。

2.常用术语:生(发)色团、助色团23②助色团:本身无吸收,但能使生色团吸收强度和波长发生改变的基团,通常是含有孤对电子的基团。

如:-OH、-NH2、-SH、-X(卤素)等。

孤对电子与生色团中π电子相互作用,使π→π*跃迁能量降低并引起吸收峰位移.E = h V= h c / 入孤对电子(lone pair electrons)或称孤电子对,指不与其他原子结合或共享的成对价电子.24③红移、蓝(紫)移、增色效应和减色效应由于在化合物中引入取代基、或改变溶剂、或引入增敏试剂等,使最大吸收波长移向长波方向为红移;移向短波方向为蓝移。

伴随强度增大或减小为增色效应或减色效应。

253.影响紫外可见光谱的因素π→π*跃迁中,激发态极性大于基态,当使用极性大的溶剂时,由于溶剂与溶质相互作用,激发态π*比基态π的能量下降更多,使得激发态与基态之间的能量差减小,导致吸收光谱λmax红移。

n→π*跃迁中,基态n电子与极性溶剂形成氢键,降低了基态能量,使得激发态与基态之间能量差变大,导致吸收光谱λmax蓝移。

溶剂极性不同引起吸收光谱红移或蓝移--溶剂效应(1)溶剂效应26影响吸收强度和精细结构极性溶剂使精细结构消失,典型的例子是对称四嗪在不同溶剂中的吸收光谱(1)溶剂效应27溶剂的选择原则:(a)溶解样品;(b)在样品吸收的围无吸收;(c)尽量选用非极性溶剂。

28(2)空间效应如果一个共轭有机化合物的分子处于同一平面时,则各个生色团之间的相互作用达到最大,分子的激发能降低,吸收较长波长的光,且强度增大。

二苯乙烯29(3)吸收与结构的关系生色团共轭链越长,吸收红移越多,λ越大;助色团越多,红移越大;30结构示意图§2-3 紫外-可见分光光度计1.基本组成部件(1)光源紫外:氢、氘灯发射160~375nm的连续光。

可见:钨灯或碘钨灯发射320~2500nm的连续光。

氙灯适合于紫外和可见部分,发射250~750nm的连续光。

33(2)单色器由入射狭缝、准光器(透镜或凹面反射镜使入射光成平行光)、色散元件、聚焦元件和出射狭缝组成。

核心部分:色散元件,将复合光色散成单色光色散元件为棱镜和光栅。

棱镜有玻璃和石英两种。

玻璃: 用于350 ~ 3200 nm波长围, 吸收紫外光,只能用于可见光域石英: 185 ~ 4500 nm,用于紫外和可见光域光栅:利用光的衍射与干涉作用,用于紫外和可见光域。

34(3)吸收池紫外及可见光区:石英比色皿可见光区:光学玻璃比色皿注意:不能用手拿光学面;放入试样室时必须用滤纸(或镜头纸)吸干外面的溶液;盛溶液时只装2/3。

(4)信号接收器光电管、光电倍增管。

(5)读出装置数字显示、记录仪、表头等。

352.分光光度计类型①单波长单光束分光光度计:一般分光光度计36②单波长双光束分光光度计:在单色器后采用光束分裂器将光束分为强度相等的两个光束;一束通过参比池,另一束通过样品池。

可以消除光源强度变化带来的误差。

一般自动记录式分光光度计均为双光束37§2-4 分析条件选择一、仪器测量条件误差来源:光源不稳定、实验条件偶然变动、读数不准确等选择适宜的吸光度围(0.15~1.00),使测量结果的误差尽量减小。

通过调节待测溶液浓度,选用适当厚度的吸收池使A落在此区间。

38选择最大吸收波长为入射光波长(最大吸收原则),灵敏度最高。

狭缝宽度直接影响测定灵敏度和校准曲线线性围。

狭缝宽度增大,入射光单色性降低,灵敏度降低,校准曲线偏离朗伯-比耳定律。

39二、显色反应与分析条件选择1 显色反应2 反应条件确定3 测定中干扰及消除40显色反应选择灵敏度高,一般ε>104选择性好显色剂在测定波长处无明显吸收。

对照性好, 显色剂与有色配合物λmax>60 nm反应生成的有色化合物组成恒定,稳定。

显色条件易于控制,重现性好。

M + nR = MRn(R: 显色剂)41反应条件确定(1)显色剂用量M + nR = MRn显色剂用量通过实验确定,作A随显色剂浓度变化曲线,选恒定A值时的显色剂用量。

(2)溶液酸度影响最佳酸度通过实验确定,固定溶液中待测组分与显色剂浓度,改变pH值,测定A与pH关系,找出最适宜pH围。

(R: 显色剂)(3)其它问题显色反应时间、温度、放置时间对配合物稳定性的影响。

三、参比溶液的选择用参比溶液调节透射比为100%(A=0),以消除溶液中其它成分以及吸收池和溶剂对光的吸收所带来误差431、溶剂参比当试样溶液组成简单、共存其它组分很少且对测定波长的光几乎没有吸收时,采用溶剂参比,可消除溶剂、吸收池影响2、试剂参比如显色剂或其它试剂在测定波长有吸收,按显色反应相同条件,只是不加试样,同样加入试剂和溶剂为参比。

相关文档
最新文档