传热学在煤层气自然解吸实验中的应用
煤层气的解吸_吸附机理研究综述_刘曰武

[基金项目] 本研究得到国家重大专项“大型气田及煤层气开发”专项支持,课题编号2009ZX05038001。
[作者简介] 刘曰武,男,研究员,主要从事渗流力学及油气藏工程方面的研究。
煤层气的解吸 吸附机理研究综述刘曰武1 苏中良1 方虹斌2 张钧峰1(1.中国科学院力学研究所 北京100190; 2.同济大学航空航天与力学学院 上海002650) 摘要 通过对国内外制约煤层气开发的因素和能源需求的分析,指出了研究煤层气的解吸吸附机理的意义。
通过分析国内外解吸吸附机理的研究历史和现状,将煤层气的解吸吸附机理归纳综合为单分子层吸附和多分子层吸附两大类;将煤层气的解吸吸附机理模型归纳为五类,即Lang -muir 等温吸附及其扩展模型、BE T 多分子层吸附模型、吸附势理论模型、吸附溶液模型和实验数据拟合分析模型等。
对影响煤层气解吸吸附的因素,如煤层的性质、孔隙性结构、煤层气的组分、压力条件和温度条件等进行了详细的分析说明指出,解吸吸附机理未来研究的重点方向是在考虑目前已认识的复杂因素条件下,以研究煤层气吸附状态和煤层气的解吸动态过程为主,尤其是甲烷与水和煤层中碳分子的结合与分离的方式。
关键词 煤层气 解吸 吸附 机理 模型0 引 言我国是一个煤炭资源大国,煤层气资源也极为丰富[1-2]。
但从目前我国绝大多数煤层气井产量低、产量递减快的状况看,制约我国煤层气开发的主要原因有如下几个方面:(1)我国煤层气资源条件比较复杂。
我国的煤层气资源赋存条件差,虽然煤层含气量较高,但储层特征表现为低压、低渗、低饱和度,解吸速度慢,从而导致煤层气的解吸及运移困难。
(2)适合我国复杂地质特征的钻井、完井、压裂和排采等核心技术还不够完善。
如何扩大解吸体积、提高解吸速度,是未来一段时间要克服的关键问题之一。
(3)目前国内还没有成熟的煤层气开采理论。
美国开采煤层气的成功经验多适合透气性好、含气量高的饱和煤层气藏,而不适合我国煤层气赋存的特点。
煤层气测定方法(解吸法)

煤层气测定方法(解吸法)四川省煤田地质工程勘察设计研究院中华人民共和国煤炭工业部煤层气测定方法(解吸法)一、主题内容与适用范围本标准规定了在煤田地质勘探阶段利用煤芯煤样采用解吸法测定煤层气的方法。
本标准适用于正常钻进的钻孔和井下煤芯中气体的测定。
本标准不适用于严重漏水钻孔、煤层气喷出钻孔和井下倾斜钻孔煤芯中气体的测定,也不适用于岩芯中气体的测定。
二、引用标准GB 474 煤样的制备方法三、煤样的采取和野外煤层气解吸速度的测定(一)采取煤样前的准备工作1、密封罐使用前应洗净、干燥。
检查压垫和密封垫是否可用,必要时予以更换。
检查密封罐的气密性,在300~400kPa下应没有漏气现象。
严禁使用润滑油。
2、解吸仪使用前,应用吸气球提升量管内的水面至零点,关闭螺旋夹放置10min 后,量管内的水面应不下降。
(二)煤样的采取1、使用煤芯采取器(简称煤芯管)提取煤芯,一次取芯长度应不小于0.4m。
在钻具提升过程中,应向钻孔中灌注泥浆,保持充满状态,并应尽量连续进行。
如果因故中途停机,孔深不大于200m时,停顿时间不得超过5min;孔深超过200m时,停顿时间不得超过10min。
2、煤芯提出孔口后,应尽快拆开煤芯管,把采取的煤样装进密封罐。
煤芯在空气中的暴露时间不得超过10min。
3、取出煤芯后,对于柱状煤芯,应采取中间含矸少的完整部分;对于粉状和块状煤芯,应剔出矸石、泥皮和研磨烧焦部分。
不得用水清洗煤样,保持自然状态将其装入密封罐内,装入时不得压实,煤样距罐口约10mm。
4、先将穿刺针头插入罐盖上部的压垫,拧紧罐盖的同时记录煤样装罐的时间。
再将解吸仪排气管与穿刺针头连接,立即打开弹簧夹,同时记录开始解吸时间。
从拧紧罐盖到打开弹簧夹的时间间隔不得超过2min.5、采样时应将有关事项填入附录A表中。
(三)野外煤层气解吸速度的测定1、密封罐1通过排气管与解吸仪相连接后,立即打开弹簧夹,随即有从煤样中泄出的气体进入量管,打开水槽的排水管,用排水集气法将气体收集在量管内。
煤层气等温吸附/解吸模拟实验技术新进展与应用

孜 以求的 目标 。针对 当前煤层 气等温吸附测试主要沿用美 国专利 US 5 0 5 8 4 4 2 / 4 5 2 8 5 5 0 ,采用 I S 一3 0 0 等 温吸附仪 ,存 在 测试 范围小 、破坏样 品原始 结构及无 围压 约束等突 出问题 ,创新研 制煤层 气原位吸 附/ 解吸模拟装置 ,克服 了 目前
力 的影 响大 于压力 的影响。从而证实含气量与埋深关系存在 “ 临界深度 ”,即浅部煤层含气量 随埋深增大而增高 ,在
一
定埋深达到最大值 ,超 过此埋深之后含气量随埋深进一步增大而趋于 降低 。
关键词 :煤 层气 ;原位模拟 ;吸 附特征 ;国产化 中图分类号 :T E l 2 5 文献标识码 :A
b e g i n n i ng o f e x p e r i me n t . Ho w t o g e t t h e r e a l a d s o r p t i o n / d e s or p t i o n d a t a i n t h e i n — s i t u c o n d i t i o n be c o me a c ha l l e n g e f o r t h e CBM l a b o r a t o r y . To o v e r c o me t h e b o t t l e n e c k s e x i s t i n g i n i s o he t r ma l CBM a d s o r p t i o n t e s t ng i wh i c h c u r r e n t l y a d o p t s t h e US5 0 5 8 4 4 2/ 4 5 2 8 5 5 0 p a t e n t nd a I S ・ ・ 3 0 0 i n -
煤层气气驱吸附及解吸规律实验研究_张杰

收稿日期:20120217;改回日期:20120430基金项目:国家重大专项技术“大型油气田及煤层气开发”之“胜利油田薄互层低渗透油田开发示范工程”部分内容(2011ZX05051)作者简介:张杰(1987-),男,2008年毕业于中国石油大学(华东)电气工程及其自动化专业,现为该校油气田开发工程专业在读硕士研究生,主要从事采油工程及油田化学方面的研究工作。
DOI :10.3969/j.issn.1006-6535.2012.06.031煤层气气驱吸附及解吸规律实验研究张杰1,林珊珊1,曲永林2,王荣3,李登峰1(1.中国石油大学(华东),山东青岛266580;2.中油大港油田公司,天津300280;3.中海油田服务股份有限公司,河北廊坊065201)摘要:为研究煤层气的赋存形式和气驱原理,通过实验测量了煤层气注气开采中主要涉及的3种气体CH 4、CO 2和N 2的吸附及解吸量,并利用Langmuir 模型和BET 模型进行实验处理拟合等温曲线,比较3种气体吸附性的强弱和模型的适用性,得出气驱煤层气的机理。
此外,还通过实验研究了注入不同气体后煤岩渗透率的变化情况,定性分析了不同气体驱替煤层气时流量的大小以及不同气体驱替的效果。
研究结果表明,开采煤层气时可利用CO 2和N 2的竞争吸附将煤层气采出,N 2具有增渗作用,CO 2具有减渗作用。
关键词:煤层气;气驱;吸附;解吸;渗透率中图分类号:TE312文献标识码:A文章编号:1006-6535(2012)06-0122-04引言煤层气气驱技术是指将驱替气体注入到深部不可开采的煤层中,同时将储藏在煤层中的煤层气(主要成分为CH 4)置换出来[1]。
该过程不仅减少了温室气体CO 2的排放,同时还大幅度提高了煤层气采收率,因此气驱替煤层气技术越来越受到很多国家的重视[2]。
美国、加拿大、日本、欧盟等纷纷开展研究,并先后进行了不同规模的现场试验[3-5]。
不同温度下煤层气吸附解吸特征的实验研究

西安科技大学硕士学位论文不同温度下煤层气吸附/解吸特征的实验研究姓名:王鹏刚申请学位级别:硕士专业:矿产普查与勘探指导教师:马东民@论文题目:不同温度下煤层气吸附/解吸特征的实验研究专 业:矿产普查与勘探硕 士 生:王鹏刚 (签名) 指导教师:马东民 (签名)摘 要煤层气吸附/解吸机理的研究是煤层气开发技术发展的关键理论。
在长期的等温吸附/解吸实验研究中我们发现,增压吸附与降压解吸过程中,随着压力变化实验对象的自由空间皆伴随温度的变化;吸附过程与解吸过程相同压力平衡点自由空间的温度变化量存在差异。
煤层气的开采现场,基本地质条件、工艺技术、排采制度相同的两口生产井产气能力差别很大。
尤其是不同季节进行压裂作业的垂直井,由于大量的前置液以微小的温度差异进入煤层,相邻两口井产气时间有时相差3月之久。
这些都说明了煤层气吸附/解吸过程中有温度效应。
温度对于煤层气吸附/解吸作用的影响,属于当前煤层气研究的盲区,需要专门来做实验进行分析。
论文通过3个煤样在系列温度点的等温吸附/解吸实验,得到不同阶煤煤样的等温吸附/解吸曲线,利用Langmuir模型拟合吸附实验数据,Weibull模型拟合解吸实验数据,并根据Clausius-Clapeyron方程计算吸附/解吸过程的吸附热,以此分析煤层气吸附/解吸的热效应机制,而后总结了温度对煤层气吸附/解吸的影响。
主要结论为:(1)采用Langmuir模型能够较好的描述等温吸附实验数据,而对于等温解吸过程,Weibull模型是目前最好的模型;(2)增压吸附是一个持续放热的过程,吸附量越大,放出热量越大;解吸作用是非自发的吸热过程,吸收热量小于吸附过程同平衡压力点放出的热量,解吸过程促使储层温度降低,抑制了解吸作用的持续进行;(3)随着温度的升高,解吸率增大,温度升高促进了解吸作用。
在3.5~5Mpa中高压阶段,温度增高比压力降低对解吸作用的影响更敏感。
而此压力范围属于排采的排水阶段,对排采制度的制定十分重要。
煤层气吸附与解吸可逆性实验研究

煤层气吸附与解吸可逆性实验研究谢勇强1,彭文庆2,曾荣1(1.江西省地矿资源勘查开发有限公司,江西南昌330030;2.煤矿安全开采技术湖南省重点实验室,湖南湘潭411201)摘要:以等温吸附与解吸实验为手段,通过对不同变质程度的煤进行吸附/解吸等温线的测定,探讨煤层气吸附与解吸可逆性.实验结果分析发现:低阶煤煤样吸附/解吸曲线出现了明显的滞后环,吸附和解吸过程所回归a(Langmuir 体积)值相差比较大,说明吸附与解吸吻合性差,对甲烷的吸附和解吸表现出非可逆性;中、高级煤吸附与解吸等温线具有很好的重合性,吸附与解吸过程所回归的a(Langmuir 体积)值也比较接近,对甲烷的吸附和解吸表现出可逆性.该现象的发现,为煤层气开采参数的确定具有一定的意义.关键词:煤层气;吸附;解吸;可逆性中图分类号:TD845文献标识码:A文章编号:1674-5876(2010)02-0013-04收稿日期:2010-03-22通信作者:谢勇强(1979-),男,江西萍乡人,硕士,工程师,研究方向:采矿方法研究.E-mail:yongqiangxie@煤层气界普遍认为煤层气的吸附/解吸过程基本可逆,一般以等温吸附曲线来表述开采过程中的煤层气解吸过程,并用吸附等温线来确定煤层气开采参数.考虑到吸附与解吸过程可能会出现的差异,国内外一些学者和专家开展了煤层气吸附/解吸可逆性实验,以探索煤层气吸附/解吸的可逆性.这种实验的过程都是在进行吸附实验完成之后,紧接着进行降压解吸实验.然而,由于目前这种实验尚不规范,导致实验结果相差甚远,以至于得到不同的结论.有人认为煤对甲烷的吸附/解吸过程基本可逆,而有学者认为煤层气的解吸滞后[1-2].本文以西安科技大学AST-1000型煤层气吸附/解吸大样量仿真实验装置为依托,通过对不同煤阶煤样进行等温吸附/解吸实验研究,从煤的变质程度的差异性来探讨煤层气吸附/解吸可逆性.1煤样采集与制备本次实验煤样采自长春晖春、黄陵矿、山西柳林和晋城等矿,共4组煤样.按变质程度由低到高,分别为褐煤、长焰煤,焦煤,无烟煤.利用Leica 公司产M PV-3显微光度计,依据推荐国标GB/T8899-1996测定了煤样的显微组分组成,结果见表1.根据《高压容量法等温吸附实验方法标准编制说明》规定,本等温吸附实验煤样粒度为0.18~0.25mm.煤样制备步骤如下:1)破碎.采用粉碎机,将样品破碎成最大粒度<13mm.2)筛分.为了使煤样破碎到要求的粒度0.18~0.25mm,首先用0.25mm 的标准筛进行筛分,然后将过筛后的煤样颗粒用0.18mm 的标准筛进行筛分,最后将未能通过0.18mm 标准筛的煤样颗粒定为本实验用煤样.2煤的等温吸附与解吸实验实验研究依托西安科技大学AST-1000型煤层气吸附/解吸大样量仿真实验装置.该装置是在吸收国采样地点煤样类别工业分析Ro m ax/%M ad /%A ad /%V daf /%长春晖春HM 13.67.1938.050.40黄陵一号矿CYM 7.70 5.0837.950.61山西柳林JM 1.120.7317.40 1.42山西晋城WYM1.081.088.373.32表1煤样的显微组分组成分析结果Tab.1Maceral composition analysis data of coal samples矿业工程研究Mineral Engineering Research第25卷第2期2010年6月Vol.25No.2Jun.2010际上现有的两家等温吸附仪的优点的基础上研发出的新产品,具有实验精度高、性能稳定、更逼近实际等优点,为本研究创造了试验条件.2.1煤层气吸附/解吸大样量仿真实验装置结构及工作原理等温吸附/解吸实验装置(煤层气吸附/解吸大样量仿真实验装置)其结构及工作原理见图1.整套设备分为主机控制系统、恒温系统、测量计量系统、高压供气系统、真空系统等5大系统.实验分为吸附和解吸两个实验过程.吸附实验时,进行加压-平衡-加压这一吸附循环过程,逐次增高试验压力,可测得每一个压力点P i 下煤样吸附量N i 和克煤可燃物吸附甲烷量Q i ;解吸过程为吸附过程的逆过程,即为减压-平衡-减压循环过程,逐次测得的P i 及N i .2.2等温吸附与解吸实验结果在完成4个煤样的工业分析等基础参数测定后,对4组煤样进行了4次试样的高压等温吸附/解吸试验,t =30℃.实验编号前7位字符代表实验设备型号,后面字符“HM ”、“CYM ”、“JM ”、“WYM ”表示对应的煤样属HM 、CYM 、JM 和WYM.数据整理结果如表2.3煤层气吸附与解吸可逆性分析3.1实验数据结果处理分析根据实验测得的各平衡压力点吸附量和压力(表2):V i =N i ×22.4×1000,利用Langmuir 方程[3-4]:P v =1a p +1ab,求出压力及该压力对应的吸附量间的比值(P i /V i ),绘出P i 、P i /V i 之间的散点图,对这些点进行线性回归,利用最小二乘法求出直线方程及相关系数(R ).直线斜率为1/a,截距为1/ab ,则可以计算出常数a 、b .最终得出吸附/解吸等温曲线的Langmuir 方程表达式.数据处理结果见表3和表4.从表3和表4可以看出:吸附回归的相关系数为0.9506~0.9999,平均为0.9838,偏差波动在0.0368~0.3233cm 3/g,平均为0.1467cm 3/g;解吸回归的相关系数为0.9828~0.9988,平均为0.9926,偏差波动在实验编号采样地点吸附/解吸不同压力点P /MPa 下的吸附量V /(cm 3/g)长春晖春黄陵一号矿山西柳林山西晋城吸附解吸吸附解吸吸附解吸吸附解吸P V P V P V P V P V P V P V P V 00000000000000001.1824.2921.70211.7911.5973.4914.17210.4711.7825.7272.9278.5771.5929.3302.34811.3572.9477.8943.85713.2423.4625.7335.16711.0653.8629.7844.92211.7543.76216.7484.83219.5624.97710.8905.68715.1775.3227.3007.11711.3835.91713.1256.93214.2975.87721.1197.15623.2436.95212.9317.23716.0317.5528.2798.95711.9187.99715.9488.91217.1137.95724.2918.72825.1249.13714.3368.43716.8099.4229.63210.44211.98510.11217.96010.73719.40010.13726.45210.57626.85610.33215.11510.33215.11511.07211.95011.07211.95011.95220.87611.95220.87511.96728.12411.96728.124AST1000-01HMAST1000-02CYMAST1000-03JMAST1000-04WYM表2煤样等温吸附与解吸实验测定结果Tab.2Experimental data ofadsorption-desorption isotherm of methane on coal samples实验编号a b 相关系数R 偏差δAST1000-01HM AST1000-02CYM AST1000-03JM AST1000-04WYM平均22.748518.312438.387640.60240.18810.13060.09140.18640.99900.95060.98550.99990.98380.05670.32330.16990.03680.1467实验编号a b 相关系数R 偏差δAST1000-01HM AST1000-02CYM AST1000-03JM AST1000-04WYM平均17.119413.127140.055842.70961.29210.98260.08640.16330.99050.99970.98280.99750.99260.37650.02540.18180.20420.1970表3煤样高压等温吸附甲烷整理数据及偏差(t =30℃)Tab.3Analysis data of high-pressureadsorption of methane on coal samples (t =30℃)表4煤样高压等温解吸甲烷整理数据及偏差(t =30℃)Tab.4Analysis data of high-pressuredesorption of methane on coal samples (t =30℃)图1等温吸附/解吸实验装备结构示意图Fig.1Schematic diagram of experimental equipment for isothermaladsorption anddesorption0.0254~0.3765cm 3/g 平均为0.1970cm 3/g.可见Langmuir 方程式对吸附和解吸过程拟合都很好.因此,本研究中等温吸附/解吸实验数学模型采用Langmuir 模型来拟合低阶煤吸附甲烷行为及低阶煤煤层气解吸行为是能满足要求的.3.2吸附与解吸可逆性分析根据表3和表4算出的Langmuir 方程参数重新获得曲线,即为回归后的煤样Langmuir 等温吸附/解吸曲线,如图2-图4.从图2-图4中可以看出,低阶煤(HM )煤样吸附/解吸曲线出现了明显的滞后环,对甲烷的吸附和解吸表现出非可逆性,在相同压力下,升压过程(吸附)中对甲烷的吸附量要比降压过程(解吸)中的吸附量低.而中阶煤(JM )和高阶煤(WYM )煤样吸附与解吸等温线却具有很好的重合性.从表3和表4发现,低阶煤煤样吸附和解吸过程所回归a(Langmuir 体积)值相差比较大,达5cm 3/g 以上,说明吸附与解吸吻合性差.而(JM)和(WYM )吸附与解吸数据相接近,所回归的a(Langmuir 体积)值也比较接近,说明了吸附与解吸有良好的吻合性.可见,低阶煤对甲烷的吸附和解吸表现出非可逆性,解吸过程甲烷的吸附量要大于吸附过程中的吸附量,中、高阶煤吸附/解吸过程基本可逆.对于滞后现象的理论分析,已有人员进行了研究,颜肖慈[5]等发现滞后现象与多孔性吸附剂的孔结构有关:微孔、一端封闭的圆柱型或平行板形孔无吸附滞后现象,两端开口或口小内腔大的墨水瓶形状的孔有吸附滞后现象.根据煤的孔隙分布规律,低阶煤的孔隙多以开放孔为主,而中、高阶煤微孔发育明显[6].结合颜肖慈等滞后理论,低阶煤对甲烷的吸附和解吸应表现出非可逆性,中、高阶煤对甲烷的吸附和解吸应表现出可逆性,与本次实验结果相吻合,表明了实验结果与理论分析的一致性.4结论1)煤对甲烷的吸附和解吸等温线符合langmuir 方程.2)低阶煤对甲烷的吸附和解吸表现出非可逆性,在相同压力下,升压过程(吸附)中对甲烷的吸附量要比降压过程(解吸)中的吸附量低,解吸过程甲烷的吸附量要大于吸附过程中的吸附量.3)中、高阶煤吸附与解吸等温线具有很好的重合性,吸附/解吸过程基本可逆.4)低阶煤的吸附与解吸等温线的不重合性说明,开采煤层气作为一个储层气的解吸过程,与以往只简单地利用吸附等温线来确定煤层气开采参数如:“煤层气解吸速度”、“临界解吸压力”和“理论采收率”等是片面的.低阶煤煤层气吸附与解吸的不可逆性表明,吸附曲线不能描述气体解吸过程.参考文献:[1]张遂安,叶建平,唐书恒,等.煤对甲烷气体吸附—解吸机理的可逆性实验研究[J].天然气工业,2005,25(1):44-46.ZHANG Suian,YE Jianping ,TANG Suheng ,et al.Theoretical analysis of coal-methane adsorption/desorption mechanism and its reversibility ExperimentalStudy [J].NaturalGasIndustry .2005,25(1):44-46.[2]Chaback J,Morgan D,Yee D.Sorption irreversibities and mixture图2低阶煤煤样的Langmuir 等温吸附/解吸曲线图(t =30℃)Fig.2Adsorption-desorption Langmuir isotherms of methane on low-rank coal (t =30℃)吸附量V /(c m 3/g )压力P /M PaAST1000-02CYMAST1000-01HM 吸附量V /(c m 3/g )压力P /M Pa图3中阶煤JM 煤样的Langmuir 等温吸附/解吸曲线图(t =30℃)Fig.3Adsorption-desorption Langmuirisotherms of methane on medium-rank coal (t =30℃)图4高阶煤WYM 煤样的Langmuir 等温吸附/解吸曲线图(t =30℃)Fig.4Adsorption-desorption Langmuirisotherms of methane on high-rank coal (t =30℃)吸附量V /(c m 3/g )压力P /MPacompositional behavior during enhanced coal bed methane recovery processes[C]//SPE gas technology symposium.Calgarta,Canada Society of Petroleum Engineers,1996.[3]赵志根,唐修义.对煤吸附甲烷的Langmuir方程的讨论[J].焦作工学院学报(自然科学版),2002(21):1-4.ZHAO Zhigen,TANG Xiuyi.Discussion about Langmuir equation concerning methane adsorption by coal[J].Journal of Jiaozuo Institute of Technology(Natural Science).2002(21):1-4.[4]Harpalani S,Pariti U M.Study of coal sorption isotherm using amulticomponent gas mixture[C]//The1993International coalbed methane symposium,Tuscaloosa Alabama,USA:University of Alabama, 1993.[5]颜肖慈,罗明道.界面化学[M].北京:化学工业出版社,2005.YAN Xiaoci,LUO Mindao.Interface chemistry[M].Beijing:Chemical Industry Press,2005.[6]魏思民.煤阶与煤层含气性关系研究[J].中州煤炭,2009(11):17-19.WEI Simin.Study on relationship between coalrank and content of coalbed methane[J].Zhongzhou Coal,2009(11):17-19.Experimental study on the adsorptionand desorption reversibility of coalbed methaneXIEYongqiang1,PENG Wenqing2,ZENG Rong1(1.Geology and M ineral Exploration of Jiangxi Province Co.,Ltd.,Nanchang330030,China;2.Hunan Provincial Laboratory of Hunan Provincial Key Laboratory of M ine Safety and M ining Technology,Xiangtan411201,China)Abstract:This paper studies coal-methane adsorption-desorption reversibility mainly by taking the adsorption-desorption isotherm experiment as a method and through the determination of different metamorphic grade coal adsorption-desorption isotherms.The research indicates that low-rank coal adsorption-desorption isotherms has a clear hysteresis loop,and relatively large difference between the two isotherms a-value(Langmuir volume)of regression analysis, indicating the low-rank coal displays the non-invertibility to the adsorption-desorption process of methane on low-rank coal;the medium-high rank adsorption-desorption isotherms coal has a good frequency coincidence,and the two isotherms a-value(Langmuir volume)of regression analysis is relatively close,indicating the medium-high rank coal displays the invertibility to the adsorption-desorption process of methane on medium-high rank coal.The discovery of these phenomena,to determine the parameters of coal-methane extraction is of some significance.Key words:CBM(coalbed methane);adsorption;desorption;reversibility。
煤层气等温吸附测试应用

煤层气等温吸附测试应用发布时间:2022-01-05T07:05:37.546Z 来源:《中国科技人才》2021年第23期作者:赵学道[导读] 煤层气是否具有开采价值及设计开采方案的重要指标之一就是等温吸附,同时也是一种计算煤层气储量的关键性参数。
等温吸附仪测试方法改进,对于提高测试工作效率、测试精度,提高测试成功率,准确获取储层含气量参数,科学指导我国煤层气勘查与开发具有重要意义。
本文结合实例对煤层气等温吸附测试应用进行分析。
赵学道新疆维吾尔自治区煤炭煤层气测试研究所(新疆维吾尔自治区煤炭产品质量检测中心)新疆乌鲁木齐 820065摘要:煤层气是否具有开采价值及设计开采方案的重要指标之一就是等温吸附,同时也是一种计算煤层气储量的关键性参数。
等温吸附仪测试方法改进,对于提高测试工作效率、测试精度,提高测试成功率,准确获取储层含气量参数,科学指导我国煤层气勘查与开发具有重要意义。
本文结合实例对煤层气等温吸附测试应用进行分析。
关键词:煤层气;等温吸附测试;原理1高压等温吸附试验样品缸工作原理高压等温吸附缸包括通气盖、缸盖、100目滤网、80目滤网、缸体、缸底、底部固定环、顶部固定环、二级石英砂过滤层、一级石英砂过滤层、120目滤网、通气孔。
使用该高压等温吸附试验样品缸时,装有60~80目煤样的样品缸需用氦气清洗缸体。
清洗时氦气从气路口分别通过120目滤网、二级石英砂、100目滤网、一级过滤石英砂、80目过滤网,最后进入缸体。
清洗后,废气逆过程排出,用氦气重复标定缸体4次,以确定样品缸的体积和煤样的密度。
每次标定气体,按上述程序气体进入和排出。
试验过程中还需用高纯甲烷清洗基准缸,然后充气大于预估平衡压力后,打开基准缸和样品缸的阀门,使气体进入样品缸,使之压力相等后关闭阀门,监测压力随时间变化直至达到平衡。
整个试验压力平衡点从1mPa到大于储层压力,当储层压力小于8mPa时最少需做6个测点;大于8mPa时,测点更多。
煤层气与页岩气吸附解吸的理论再认识

煤层气与页岩气吸附解吸的理论再认识一、本文概述随着全球能源需求的持续增长,煤层气和页岩气作为清洁、高效的能源替代品,正日益受到全球能源行业的关注。
然而,对于这两种非常规天然气的吸附解吸过程,目前学术界仍存在诸多争议和未解之谜。
本文旨在重新审视煤层气和页岩气吸附解吸的理论基础,探讨其吸附机理、影响因素及优化策略,以期为推动煤层气和页岩气的开发利用提供理论支撑和实践指导。
本文首先回顾了煤层气和页岩气吸附解吸研究的发展历程,梳理了国内外相关研究成果和争议点。
在此基础上,文章深入探讨了吸附解吸过程的理论基础,包括吸附机理、热力学和动力学特性等。
同时,文章还分析了影响吸附解吸过程的关键因素,如温度、压力、气体成分、岩石性质等,并探讨了这些因素之间的相互作用机制。
为了更深入地理解吸附解吸过程,本文还通过实验研究,对不同条件下的吸附解吸行为进行了详细观测和分析。
实验结果不仅验证了理论模型的正确性,还为优化煤层气和页岩气开发提供了有益参考。
文章总结了当前研究的不足之处,并对未来研究方向进行了展望。
通过本文的研究,我们期望能够为煤层气和页岩气的吸附解吸理论提供更加清晰的认识,为相关领域的科研和实践工作提供有力支持。
二、煤层气与页岩气吸附解吸的基本理论煤层气和页岩气作为重要的能源资源,其吸附解吸过程研究对于资源开采、产能预测和工程优化具有关键意义。
本节将深入探讨煤层气与页岩气吸附解吸的基本理论,旨在重新认识和理解其吸附解吸机制。
吸附是指气体分子在固体表面集中,形成吸附层的现象。
煤层和页岩中的有机质和无机质表面为气体分子提供了大量的吸附位点。
吸附过程主要受到两个力的影响:范德华力和化学键力。
范德华力是分子间普遍存在的一种弱相互作用力,而化学键力则是气体分子与固体表面原子之间的直接相互作用。
在煤层气和页岩气吸附中,范德华力占据主导地位。
解吸是吸附的逆过程,即气体分子从固体表面脱离并返回到气相中的过程。
解吸过程的发生需要克服吸附质与吸附剂之间的相互作用力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通 过传 热 学 实验 分析 , 出进 行煤 层 气 自然解 吸试验 的 启 示。 得 关键 词 : 煤层 气 ; 自然解吸 ; 导热 ; 热辐射
中图分 类号 :6 4 6 P 2 . 文献 标识 码 : B 文章 编号 :6 1 7 9 2 1 ) 2— 0 7— 3 17 — 4 X(0 0 0 0 7 0
的认 识 和见解 。
l 煤层气 自然解 吸实验
1 1 自然 解 吸法 的基础 理 论 .
图 1 煤层气 自然解吸实验设备
收稿 日期 :09— 8—1 20 0 8
作者简 介: 磊 (9 9 ) 男 , 西西安 人,9 2年毕 业于陕 西广 黑 15 一 , 陕 18 播电视 大学 , 工程师 , 现主要从事煤层气 资源勘探及测试方 面和仪器
第 2期
黑
磊
传热学在煤层气 自然解 吸实验 中的应用
传 热 学 在 煤 层 气 自然 解 吸实 验 中 的应 用
黑 磊
( 煤炭科学研究总 院西安研究 院 , 陕西 西安 705 ) 10 4
摘 要 : 传热 学知 识应 用 于煤层 气 自然解吸 试验 测试 中 , 用预 先设计 好 的 实验过 程及 实验 设备 将 应
堕
导 V 解 吸 罐 外 壁 !銎 解 吸 罐 内 壁 用 。选 择不 同导 热 系数 ( 热 系数一 P C和导 热 系 数一 铝 ) 的解 吸 罐 在 恒 温 水 浴 中进 行 实 验 , 别 在 分 3 ℃ 、0 、5 5 4 ℃ 4 ℃和 5 ℃ 的水 浴进 行 实 验 , O 通过 4次
解 吸 出煤层 气 。煤层 气 运移 机制 一般 分 为初次 运 移
自然 解 吸 法 依 据 的基 础 理 论 是 , 层 气 的赋存 煤
状 态有 吸 附态 、 离态 和水 溶 态三 种状 态 , 以吸附 游 且
态 为 主 ; 且煤 层 同时 具 有 煤 基 、 隙 和 裂 隙 特征 。 而 孔 吸附 态 煤层 气 通 过 解 吸一 扩 散 过程 , 煤基 质 游 离 从 到裂 隙 , 压力 差 的作 用下 , 在 以达西 渗流 方式 向外逸 散( 煤样 装 人密 封罐 之前 释放 的气 体 ) 而煤 层 气 自 ;
1所 示 。
动力和浮力等的合力 。煤层气 自然解吸实验就是模 拟煤层储层的原始状态情况下 的气体 自然解吸所预
测 的煤层 气 含量 的实 验方 法 。煤层 气 自然解 吸 实验 所用 设备 和 过程都 利 用 了传热 学方 面 的知识 。本 文 通过 传热 学 的角度 对 煤层 气 自然解 吸实 验有 个更 新
者 说是 初次 运移 的继 续 。二 次运 移对煤 层 气 的形成 以及 已储 藏 的煤 层气 再分 配起 主要 作 用 。而发 生二 次 运移 的煤层 气 “ 流体 ” 主要 动 力 是 构造 应 力 、 的 水
国开发计划署 资助的“ 中国煤层 气资源开发” 目 项
过程中, 结合 国 内外 的研 究 成 果 建 立 起 国 内 自己 的 煤层 气 自然 解 吸实验 室 。煤 层气 自然 解 吸实验 设备 包 括解 吸罐 、 温水 浴 、 恒 气体 计量 装置 其示 意 图如 图
为 250g温度 传感 器插入解 吸罐 中下 部分 别记 录 0 ; 解 吸罐 内部 温度变 化 。
环 境温度 为 2 . c , 温水 浴温 度 为 3 ℃ , 4 3I 恒 = 5 则
单层 圆筒 壁 : 已知 圆筒 内 、 外半 径 分别 为 r、 r, 内外 表 面温度 均匀 恒定 分 布 且分 别 为 t、 , 采 用 t 若 圆柱坐标 系 ( , ,) r z求解 则成 为沿 半径方 向的一维
O 引言
煤层 气 ( 甲烷 ) 生成 之 后 , 小 部 分通 过 分 子 扩 一 散途 径或裂 隙运移 至 邻 近 大 的煤 层 裂 隙 里 面 , 另 而 大部 分则 以 吸附状 态 保 存 在 煤 分 子 结 构 里 , 部 分 这 煤层 气一般 不 发生运 移 或不 发 生显著 运 移 。只有 当 煤 层 的压力 下 降时 , 煤层 吸 附气 体才 会发 生解 吸 , 解 吸 的气 体在 煤 的孔 隙 之 间发 生 运 移 ; 终 从 煤层 中 最
堕 型 罐内 墼 空气/ 水和储层煤体样品环境。
2 层气 自然解吸实验解吸罐的基本特征就是传
热 学 中单 层 圆筒壁 传热 问题 。
2 1 传 热学 的基本 知识 .
实验的时间及不同材料的内部温度进行测试。实验 过 程 中两种解 吸 罐 材料 分 别装 有 粉 粒 状煤 样 , 量 重
P C材料 和 A V L材料 的 内部 煤 粉 温 度 如 图 3所 示 。 环境 温 度 为 2 .℃ , 温水 浴 温度 为 4 ℃ , P C 43 恒 0 则 V 材 料和 A L材 料 的内部 煤粉 温 度如 图 4所 示 。环 境 温 度为 2 .℃ , 温水 浴温 度 为 4 ℃ , P C材 料 68 恒 5 则 V 和A L材 料 的 内部 煤粉 温度 如 图 5所示 。环境 温度 为 2 .℃ , 温 水 浴 温 度 为 5 ℃ , P C材 料 和 65 恒 0 则 V
开发 方 面 的研 究 。
煤层气 自然解吸实验是利用传热学中导热 、 对 流 、 辐射 三 种形 式对 煤层 储层 的模 拟 实验 的方 法 。 热 12 煤层 气 自然解 吸实验 传热 形 式 . 煤层气 自然 解 吸实 验 传热 的形 式 如 下: 热水
7 8
陕
西
煤
炭
21 0 0年
然 解 吸就是 模 拟这 一过 程 的实验 方 法 。煤 层 自然解
吸就是 采集 煤层 新 鲜 煤 样 装 人 密 封 的 解 吸罐 中 , 直 接 测量 从煤 样 中解 吸 出的样 品体 积 以及气 体解 吸 的 速 度 。煤炭 科学 研究 总 院西 安研 究 院在执 行 由联合
和二次 运移 。初 次运 移 一般 指煤 层气 运移 到储 集 岩 的运移 。煤 层气 进入 储集 岩 以后 的一 切运 移都 统称 为二次 运移 。二 次 运 移 是 接 着初 次运 移 发 生 的 , 或