对流传热实验实验报告
管内强制对流传热膜系数的测定实验报告

管内强制对流传热膜系数的测定实验报告一、实验目的本实验旨在通过实验测定管内强制对流传热膜系数,并掌握传热膜系数的测定方法和技术。
二、实验原理管内强制对流传热是指在管内流体中,由于流体的运动而产生的传热现象。
传热过程中,液体或气体与固体表面接触时,会因为温度差而发生传热。
在强制对流条件下,由于流体的动力作用,会增加固体表面附近的液体或气体的速度,从而增加了固体表面附近的换热系数。
本实验采用垂直放置的管道,在管道内通过水来进行强制对流传热。
通过测量水进出口温度差、水流量以及管道内壁温度差等参数,计算出管内强制对流传热膜系数。
三、实验器材1. 垂直放置的导热试件2. 水泵和水箱3. 流量计和温度计等测试仪器四、实验步骤1. 将导热试件放入垂直放置的试件支架中,并连接好进出水管道。
2. 打开水泵,调整水流量,使其稳定在一定范围内。
3. 测量进口和出口水温,并计算出温度差。
4. 测量导热试件内壁的温度差。
5. 根据测量得到的参数,计算出管内强制对流传热膜系数。
五、实验结果分析通过实验测量和计算,得到了不同条件下的管内强制对流传热膜系数。
根据实验结果可以发现,在相同的流速下,传热系数随着壁温度差的增大而增大。
这是因为在强制对流条件下,液体或气体与固体表面接触时,会因为温度差而发生传热。
当壁温度差增大时,液体或气体与固体表面接触的面积增大,从而增加了换热系数。
六、实验误差分析本实验中可能存在的误差主要来自于以下几个方面:1. 测量仪器误差:如温度计、流量计等仪器精度限制;2. 实验环境误差:如室内温度变化、水泵压力变化等;3. 实验操作误差:如读数不准确、流量控制不稳定等。
七、实验结论本实验通过测量水进出口温度差、水流量以及管道内壁温度差等参数,计算出管内强制对流传热膜系数。
实验结果表明,在相同的流速下,传热系数随着壁温度差的增大而增大。
本实验为管内强制对流传热膜系数的测定提供了一种简单有效的方法和技术。
对流传热系数的测定实验报告

淅江丈禽化学实验报告课程名称:过程工程原理实验甲实验名称:对流传热系数的测定指导教师:___________________专业班级: _____________________ 姓名: ________________________ 学号: ________________________ 同组学生: _____________________实验日期: _____________________实验地点:目录一、实验目的和要求 (2)二、实验流程与装置 (2)三、实验容和原理 (3)1.间壁式传热基本原理 (3)2.空气流呈的测定 (5)3.空气在传热管对流传热系数。
的测定 (6)3. 1牛顿冷却定律法 (6)3. 2近似法 (6)3. 3简易Wilson图解法 (7)4.拟合实验准数方程式 (8)5.传热准数经验式 (8)四、操作方法与实验步骤 (9)五、实验数据处理 (10)1.原始数据: (10)2.数据处理 (10)六、实验结果 (13)七、实验思考 (14)、实验目的和要求1) 掌握空气在传热管对流传热系数的测定方法,了解影响传热系数的 因素和强化传热的途径; 2) 把测得的数据整理成=形式的准数方程,并与教材中公认经验式进行比较;3) 了解温度、加热功率、空气流量的自动控制原理和使用方法。
二、实验流程与装置本实验流程图(横管)如下图1所示,实验装置由蒸汽发生器、孔板 流量计、变频器、套管换热器(强化管和普通管)及温度传感器、只能显 示仪表等构成。
空气-水蒸气换热流程:来自蒸汽发生器的水蒸气进入套管换热器, 与被风机抽进的空气进行换热交换,不凝气或未冷凝蒸汽通过阀门(F3 和F4)排岀,冷凝水经排出阀(F5和F6)排入盛水杯。
空气山风机提供, 流量通过变频器改变风机转速达到自动控制,空气经孔板流量计进入套管 换热器管,热交换后从风机岀口排出。
注意:普通管和强化管的选取:在实验装置上是通过阀门(F1和F2) 进行切换,仪表柜上通过旋钮进行切换,电脑界面上通过鼠标选择,三者 必学统一。
对流传热综合实验

六、思考题
1)实验中冷流体和蒸汽的相对流向对传热效果有何 影响?
2)在计算空气质量流量时所用到的密度值与求雷诺 数时的密度值是否一致?它们分别表示什么状态 下的密度,应在什么条件下进行计算。
3)实验过程中,冷凝水不及时排走,会产生什么影 响?如何及时排走冷凝水?如果采用不同压强的 蒸汽进行实验,对α关联式有何影响?
给热系数的因素和强化传热的途径。
二、基本原理
传热过程达到稳定时
T
Q m1c p1 T1 T2 m2c p2 t2 t1 1 A1 T TW M 2 A2 tW t m
KAtm
TW
tW
t
图 4-1 间壁式传热过程示意图
三、实验装置流程
图一 空气-水蒸气换热综合实验流程图
由实验数据作图拟合曲线,确定常数A及m的值;
3)以 ln Nu/Pr 0.4 为纵坐标, lnRe 为横坐标,
将处理后的实验数据标绘在图上,并与经验式比较
Nu/Pr 0.4 0.023 Re0.8
5)比较普通管和强化管的给热系数的大小; 6)比较列管换热器在冷热介质流量相同的情况下,
并流和逆流时的给热系数的大小。
4)通过不锈钢软管,将蒸汽发生器出气管和装置进 蒸汽接口连接好。打开水汽排空阀,排出上次实 验余留的冷凝水,在整个实验过程中也保持一定 开度并注意开度适中。
5)在通水蒸汽前,也应将蒸汽发生器到实验装置之 间管道中的冷凝水排除,否则夹带冷凝水的蒸汽 会损坏压力表及压力变送器。
6)具体排除冷凝水的方法是:关闭蒸汽进口阀门, 打开冷凝水排空阀,当听到蒸汽通过的响声时关 闭冷凝水排除阀,方可进行下一步实验。
7)开始通入蒸汽时,蒸汽进口阀的开度不可太大, 务必让蒸汽徐徐流入换热器中,使系统由“冷态”
化工原理实验之对流传热实验

化工原理实验之对流传热实验————————————————————————————————作者:————————————————————————————————日期:ﻩ化工原理实验报告之传热实验学院学生姓名专业学号年级二Ο一五 年 十一月一、实验目的1.测定冷空气—热蒸汽在套管换热器中的总传热系数K; 2.测定空气或水在圆直管内强制对流给热系数;3.测定冷空气在不同的流量时,Nu 与Re 之间的关系曲线,拟合准数方程。
二、实验原理(1)冷空气-热蒸汽系统的传热速率方程为m t KA Q ∆=)ln(2121t t t t t m ∆∆∆-∆=∆,11t T t -=∆,22t T t -=∆ )(21t t C V Q p -=ρ式中,Q —单位时间内的传热量,W ;A —热蒸汽与冷空气之间的传热面积,2m ,dl A π=; m t ∆—热蒸汽与冷空气之间的平均温差,℃或K K —总传热系数,)℃/(2⋅m W ;d —换热器内管的内直径,d =20m m l —换热器长度,l =1.3m ;V —冷空气流量,s m /3;pC 、ρ—冷空气密度,3/m kg 空气比热,kg J /;21t t 、—冷空气进出换热器的温度,℃; T —热蒸汽的温度,℃。
实验通过测量热蒸汽的流量V,热蒸汽进、出换热器的温度T 1和T 2 (由于热蒸汽温度恒定,故可直接使用热蒸汽在中间段的温度作为T),冷空气进出换热器的温度t 1和t2,即可测定K 。
(2)热蒸汽与冷空气的传热过程由热蒸汽对壁面的对流传热、间壁的固体热传导和壁面对冷空气的对流传热三种传热组成,其总热阻为:2211111d h d d bd h K m ++=λ 其中,21h h 、—热空气,冷空气的给热系数,)℃/(⋅m W ;21d d d m 、、—内管的内径、内外径的对数平均值、外径,m ; λ—内管材质的导热系数,)℃/(⋅m W 。
在大流量情况下,冷空气在夹套换热器壳程中处于强制湍流状态,h2较大,221d h d 值较小;λ较大,md dλ1值较小,可忽略,即 1h K ≈(3)流体在圆形直管中作强制对流时对管壁的给热系数关联式为n m C Nu Pr Re '=。
对流传热系数实验报告

一、实验目的1. 了解对流传热的基本原理,掌握对流传热系数的测定方法。
2. 掌握牛顿冷却定律的应用,通过实验验证其对流传热系数的计算公式。
3. 分析影响对流传热系数的因素,如流体速度、温度差、流体性质等。
二、实验原理对流传热系数是指单位时间内,单位面积上流体温度差为1℃时,单位面积上传递的热量。
牛顿冷却定律描述了对流传热过程,即:Q = h A (T1 - T2)式中:Q ——传热量(W)h ——对流传热系数(W/(m²·K))A ——传热面积(m²)T1 ——高温流体温度(℃)T2 ——低温流体温度(℃)根据牛顿冷却定律,可以通过实验测量传热量、传热面积、流体温度差,从而计算出对流传热系数。
三、实验仪器与材料1. 套管换热器2. 温度计3. 流量计4. 计时器5. 计算器6. 水和空气四、实验步骤1. 准备实验仪器,连接套管换热器、温度计、流量计等。
2. 在套管换热器内注入水,打开冷却水阀门,调节流量至预定值。
3. 在套管换热器外通入空气,调节风速至预定值。
4. 同时打开加热器和冷却水阀门,使水加热至预定温度,空气冷却至预定温度。
5. 记录开始加热和冷却的时间,观察温度变化。
6. 当温度变化稳定后,记录温度计的读数,计算温度差。
7. 关闭加热器和冷却水阀门,停止实验。
五、实验数据与处理1. 记录实验数据,包括水温度、空气温度、流量、时间等。
2. 根据牛顿冷却定律计算传热量Q:Q = m c ΔT其中,m为水的质量流量(kg/s),c为水的比热容(J/(kg·K)),ΔT为温度差(K)。
3. 计算对流传热系数h:h = Q / (A ΔT)六、实验结果与分析1. 根据实验数据,计算对流传热系数h,并与理论值进行比较。
2. 分析实验结果,探讨影响对流传热系数的因素。
3. 分析实验误差,总结实验经验。
七、结论通过对对流传热系数的测定实验,掌握了对流传热的基本原理和牛顿冷却定律的应用。
对流传热实验报告

一、实验目的1. 理解对流传热的基本原理和影响因素。
2. 掌握对流传热系数的测定方法。
3. 通过实验,验证对流传热理论,并分析实验数据。
二、实验原理对流传热是指流体(如气体或液体)在流动过程中,由于流体各部分之间的温度差异而引起的热量传递。
对流传热系数是描述对流传热能力的一个重要参数,其数值越大,对流传热能力越强。
实验中,采用套管换热器作为对流传热的实验装置,以环隙内流动的饱和水蒸汽加热管内空气。
水蒸汽和空气间的传热过程由三个传热环节组成:水蒸汽在管外壁的冷凝传热,管壁的热传导以及管内空气对管内壁的对流传热。
对流传热系数α可以通过以下公式计算:α = (Q/A) / (ΔT/L)其中,Q为管内传热速率,W;A为管内换热面积,m²;ΔT为管内流体进出口温度差,℃;L为管长,m。
三、实验器材1. 套管换热器:内管为紫铜管,外管为不锈钢管。
2. 水蒸汽发生器:用于产生饱和水蒸汽。
3. 空气压缩机:用于产生压缩空气。
4. 温度计:用于测量流体进出口温度。
5. 流量计:用于测量流体流量。
6. 计时器:用于记录实验时间。
四、实验操作(步骤)1. 将套管换热器安装在实验装置上,连接好水蒸汽发生器和空气压缩机。
2. 调节水蒸汽发生器和空气压缩机的参数,确保实验过程中流体流量稳定。
3. 测量并记录流体进出口温度、流量和管长等参数。
4. 开启水蒸汽发生器和空气压缩机,启动实验装置。
5. 在实验过程中,定时测量并记录流体进出口温度、流量和管长等参数。
6. 停止实验,整理实验数据。
五、数据记录与整理根据实验步骤,记录以下数据:1. 管内径di(m)2. 管长Li(m)3. 冷流体(空气)入口温度t1(℃)4. 冷流体(空气)出口温度t2(℃)5. 热流体(水蒸汽)温度(℃)6. 流量(m³/h)7. 时间(min)根据实验数据,计算对流传热系数α:α = (Q/A) / (ΔT/L)其中,Q为管内传热速率,W;A为管内换热面积,m²;ΔT为管内流体进出口温度差,℃;L为管长,m。
对流传热系数测定实验报告

竭诚为您提供优质文档/双击可除对流传热系数测定实验报告篇一:空气—蒸汽对流给热系数测定实验报告及数据、答案空气—蒸汽对流给热系数测定一、实验目的⒈通过对空气—水蒸气光滑套管换热器的实验研究,掌握对流传热系数α1的测定方法,加深对其概念和影响因素的理解。
并应用线性回归分析方法,确定关联式nu=ARempr0.4中常数A、m的值。
⒉通过对管程内部插有螺纹管的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式nu=bRem中常数b、m的值和强化比nu/nu0,了解强化传热的基本理论和基本方式。
二、实验装置本实验设备由两组黄铜管(其中一组为光滑管,另一组为波纹管)组成平行的两组套管换热器,内管为紫铜材质,外管为不锈钢管,两端用不锈钢法兰固定。
空气由旋涡气泵吹出,由旁路调节阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热器。
管程蒸汽由加热釜发生后自然上升,经支路控制阀选择逆流进入换热器壳程,其冷凝放出热量通过黄铜管壁被传递到管内流动的空气,达到逆流换热的效果。
饱和蒸汽由配套的电加热蒸汽发生器产生。
该实验流程图如图1所示,其主要参数见表1。
表1实验装置结构参数12蒸汽压力空气压力图1空气-水蒸气传热综合实验装置流程图1—光滑套管换热器;2—螺纹管的强化套管换热器;3—蒸汽发生器;4—旋涡气泵;35—旁路调节阀;6—孔板流量计;7、8、9—空气支路控制阀;10、11—蒸汽支路控制阀;12、13—蒸汽放空口;15—放水口;14—液位计;16—加水口;三、实验内容1、光滑管①测定6~8个不同流速下光滑管换热器的对流传热系数α1。
②对α1的实验数据进行线性回归,求关联式nu=ARem 中常数A、m的值。
2、波纹管①测定6~8个不同流速下波纹管换热器的对流传热系数α1。
②对α1的实验数据进行线性回归,求关联式nu=bRem 中常数b、m的值。
四、实验原理1.准数关联影响对流传热的因素很多,根据因次分析得到的对流传热的准数关联为:nu=cRemprngrl式中c、m、n、l为待定参数。
对流传热的实验分析

对流传热的实验分析导言:热传导是物质内部的热量传递方式,而对流传热则是通过流体的运动来传递热量。
对流传热在自然界和工程领域都有广泛的应用。
本文将通过对流传热的实验分析,探讨其机理和影响因素。
一、实验设备和方法在对流传热的实验中,我们通常会使用一个加热器和一个冷却器。
加热器中的流体被加热,然后通过管道流动到冷却器中,从而实现热量的传递。
为了控制实验条件,我们需要测量加热器和冷却器中的温度、流速以及热量的转移率。
二、实验结果和讨论1. 温度分布在实验中,我们可以通过在加热器和冷却器中放置温度传感器来测量温度分布。
实验结果通常显示,在加热器中,温度随着距离加热源的远离而逐渐降低;而在冷却器中,温度随着距离冷却源的接近而逐渐升高。
这是因为加热器中的热量被流体吸收,并随着流动被带到冷却器中。
2. 热传递率实验中,我们可以通过测量加热器和冷却器中的温度差来计算热传递率。
热传递率是指单位时间内传递的热量。
实验结果显示,热传递率与流体的流速成正比。
当流速增加时,热传递率也随之增加。
这是因为流体的流动可以带走更多的热量,加快热量的传递速度。
3. 流体性质实验中,我们可以通过更换不同性质的流体来研究其对对流传热的影响。
实验结果表明,流体的热导率和比热容对对流传热起着重要作用。
热导率越大的流体,其传热能力越强;而比热容越大的流体,其储热能力越强。
因此,在工程应用中,我们可以根据需要选择合适的流体来实现高效的对流传热。
4. 几何形状实验中,我们还可以通过改变加热器和冷却器的几何形状来研究其对对流传热的影响。
实验结果显示,几何形状的改变会影响流体的流动状态,从而影响热量的传递。
例如,增加管道的弯曲会增加流体的阻力,降低热传递率;而增加表面积可以增加热量的传递速度。
结论:通过对流传热的实验分析,我们可以深入了解对流传热的机理和影响因素。
实验结果表明,对流传热是一种高效的热传递方式,其传热能力可以通过流速、流体性质和几何形状等因素进行调控。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三 对流传热实验
一、实验目的
1.掌握套管对流传热系数i α的测定方法,加深对其概念和影响因素的理解,应用线性回归法,确定关联式4.0Pr Re m A Nu =中常数A 、m 的值;
2.掌握对流传热系数i α随雷诺准数的变化规律; 3.掌握列管传热系数Ko 的测定方法。
二、实验原理
㈠ 套管换热器传热系数及其准数关联式的测定
⒈ 对流传热系数i α的测定
在该传热实验中,冷水走内管,热水走外管。
对流传热系数i α可以根据牛顿冷却定律,用实验来测定
i
i
i S t Q ⨯∆=
α (1)
*
式中:i α—管内流体对流传热系数,W/(m 2·℃); Q i —管内传热速率,W ;
S i —管内换热面积,m 2;
t ∆—内壁面与流体间的温差,℃。
t ∆由下式确定: 2
2
1t t T t w +-
=∆ (2) 式中:t 1,t 2 —冷流体的入口、出口温度,℃;
T w —壁面平均温度,℃;
因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,用t w 来表示。
管内换热面积: i i i L d S π= (3) 式中:d i —内管管内径,m ;
L i —传热管测量段的实际长度,m 。
、
由热量衡算式:
)(12t t Cp W Q m m i -= (4)
其中质量流量由下式求得:
3600
m
m m V W ρ=
(5) 式中:m V —冷流体在套管内的平均体积流量,m 3 / h ; m Cp —冷流体的定压比热,kJ / (kg ·℃); m ρ—冷流体的密度,kg /m 3。
m Cp 和m ρ可根据定性温度t m 查得,2
2
1t t t m +=
为冷流体进出口平均温度。
t 1,t 2, T w , m V 可采取一定的测量手段得到。
⒉ 对流传热系数准数关联式的实验确定
流体在管内作强制湍流,被加热状态,准数关联式的形式为
n m A Nu Pr Re =. (6)
~
其中: i i i d Nu λα=
, m m i m d u μρ=Re , m
m
m Cp λμ=Pr
物性数据m λ、m Cp 、m ρ、m μ可根据定性温度t m 查得。
经过计算可知,对于管内被加热的空气,普兰特准数Pr 变化不大,可以认为是常数,则关联式的形式简化为:
4.0Pr Re m A Nu = (7)
这样通过实验确定不同流量下的Re 与Nu ,然后用线性回归方法确定A 和m 的值。
㈡ 列管换热器传热系数的测定
管壳式换热器又称列管式换热器。
是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。
这种换热器结构较简单,操作可靠,可用各种结构材料(主要
是金属材料)制造,能在高温、高压下使用,是目前应用最广的类型。
由壳体、传热管束、管板、折流板(挡板)和管箱等部件组成。
壳体多为圆筒形,内部装有管束,管束两端固定在管板上。
进行换热的冷热两种流体,一种在管内流动,称为管程流体;另一种在管外流动,称为壳程流体。
实验装置采用双管程。
传热系数Ko 用实验来测定
O
S t Q K m i
o ⨯∆=
(1)
式中:Ko —列管传热系数,W/(m 2·℃); Q i —管内传热速率,W ;
S O —管外换热面积,m 2;
{
m t ∆—平均温度差,℃。
m t ∆由下式确定: 逆m m t t ∆=∆ψ (2)
1
22
1122
1ln
t T t T t T t T t m -----=∆)
()(逆 (3) 式中:t 1,t 2 —冷流体的入口、出口温度,℃; T 1,T 2 —热流体的入口、出口温度,℃;
逆m t ∆ —逆流时平均温度差,℃;
ψ—温差校正系数,由R 、P 的查到(课本P 100)。
()
//21/
1112//21=f P R T T P T T T T R T T ψ-==--=
=
-,冷流体的温升
两流体的最初温度差热流体的温降
冷流体的温升
管外换热面积: Lo d n S o o π= (4) 式中:d O —内管管外径,m ;
L O —传热管测量段的实际长度,m 。
)
由热量衡算式:
)(12t t Cp W Q m m i -= (5)
其中质量流量由下式求得:
3600
m
m m V W ρ=
(6) 式中:m V —冷流体在套管内的平均体积流量,m 3 / h ; m Cp —冷流体的定压比热,kJ / (kg ·℃); m ρ—冷流体的密度,kg /m 3。
m Cp 和m ρ可根据定性温度t m 查得,2
2
1t t t m +=
为冷流体进出口平均温度。
t 1,t 2, T 1,T 2, m V 可采取一定的测量手段得到。
三、实验流程和设备主要技术数据
⒈ 设备主要技术数据见表1
表1 实验装置结构参数
⒉实验流程如图1所示。
⒊实验的测量手段
⑴温度的测量
|
冷水热水进出口温度采用热电阻温度计测得。
套管壁温采用热电偶温度计测量。
⑵加热
热水箱内装有2组加热器,热水箱为双层保温设计。
加热方式采用温度控制加热。
图1 水-水传热综合实验装置流程图
四、实验方法及步骤
⒈实验前的准备,检查工作。
⑴向水箱中加满水。
⑵接通电源总闸,设定加热表温度为60o C,启动电加热器开关,开始加热。
关闭热水端转子流量计阀门,启动热水泵,打开转子流量计阀门,选择一个换热器,使热水循环流动。
2. 实验开始.
—
⑴选择套管换热器。
调节热水流量为一定值920L/h。
⑵启动冷水泵用转子流量计调节流量,调好某一流量后稳定3-5分钟后,分别测量冷水的流量,进、出口的温度及壁面温度。
然后,改变流量测量下组数据。
一般从小流量到最大流量之间,要测量4~6组数据。
⑶做完套管换热器的数据后,要进行列管换热器实验。
分别记录热水进出口温度冷水进出口温度。
实验方法同步骤⑵。
⒊实验结束后,依次关闭加热、泵和总电源。
一切复原。
五、实验注意事项
1、检查加热箱中的水位是否在正常范围内。
特别是每次实验结束后,进行下一次实验之前,如果发现水位过低,应及时补给水量。
2、实验管路内部不能有气泡,高位槽一定要有溢流,以保持冷流体流量稳定。
、
表1 套管换热器原始数据及数据整理表
表2 列管换热器原始数据及数据整理表
实验分析一.Nu/—ARe m曲线
通过实验确定不同流量下的
Re与Nu值,并将公式Nu=转换为
Nu/= ARe m,以Nu/为纵坐标,Re
为横坐标做线性回归得右图,并
确定出方程为y=*,由此得出
A=,m=。
二.K
—Re曲线
计算出不同流量下的传热系
数K
0的值,绘出传热系数K
与雷
诺数Re的关系曲线,如右图。
流
体刚进入湍流时,Re值对K
几乎没有影响,随着Re值的不断增大,
传热系数K
明显增大,与Re呈线性关系。
三.
i
—Re曲线
根据实验数据绘出管内对流
传热系数
i
随雷诺数Re的关系曲线,如右图,由图可知,对流传热
系数
i
开始时随着雷诺数Re的增大而增大,几乎呈线性上升,但随
着Re的增大,
i
增长速率逐渐减
小,Re到达一个临界值时,
i
开始减小。