光学零件制造工艺
平面光学元件的加工技术

平面光学元件的加工技术浙江大学光电系曹天宁宁波华光精密仪器公司周柳云光学平面零件包括棱镜、平行平面板、平面反光镜、平晶、光楔、光盘片基、滤光片、波片、倍频器等等。
其大小从φ1mm到φ1000mm,材料主要是光学玻璃,有时是光学晶体,为了达到高精度与高效率,采用技术方法很多,有铣磨、精磨、研磨、抛光、分离器抛光、环抛、水中抛光、单点金刚石飞切(SPDFC)、计算机机控制小工具抛修(CCP) 、离子抛光等等。
从机理上考察,可以归纳为三类基本方法一、范成法形成平面特点是依靠机床的精确运动形成平面包络面,对机床精度要求高.如用筒状金刚石磨轮铣磨平面,按正弦公式当α=0时,R=∞范成了片面(生产上为了排屑排冷却液方便, α有一个小量,表面微凹)。
单点金刚石飞切也是依靠高速旋转的轴与飞刀作直线运动的工作台垂直而范成了平面.工具与工件的加工接触为线接触。
二、轮廓复印法或母板复制法这种复制法与光栅复制法不一样,在复制过程有磨削研磨、抛光过程。
采用精磨模、抛光模(固着磨料抛光模与柏油抛光磨)加工的均属于这一类.工具与工件的接触为面接触。
三、小工具修磨法计算机控制抛光(CCP)离子束抛光与手修属于这一类,逐点抛修,边检边修,精度可以很高,对局部修正非常方便.工具与工件的接触为点接触。
(一) 、铣磨成型光学平面元件我国QM30、PM500、XM260研磨机直到NVG-750THD型双轴超精密平面磨床等大型平面铣磨机利用范成法原理高效铣磨出平面,而且可以采用适当的金属夹具,将角度修磨变为平行平面的铣磨.机床磨轮轴与工件的平行度、轴向经向跳动影响棱镜的角度精度.铣磨成型是光学平面元件毛胚加工的主要技术方法之一。
图一就是PM500铣磨平面的范成运动,图二就是改进的QM30铣削平面的范成运动。
图三是大型的NVG-750THD型双轴超精密平面磨床。
图三. 大型双轴超精密平面磨床(二) 、光学平面的磨削、研磨与抛光重点在于加工出高精度光学表面面型(N、△N),磨削、研磨与抛光的运动形式很多,但其特点是一样的,光学平面精度的获得不主要依靠机床的精度,而主要依靠母板的精度的传递,应该重点研究与把握三个机理。
苏瑛-光学零件制造工艺学

光学零件特种加工工艺:特种加工工艺是按照不同技术要求 对冷加工或热加工之后的光学零件进行特殊加工。主要有光 学零件表面镀膜工艺、刻镀工艺、照相工艺、胶合工艺。 (1)光学零件镀膜工艺:它是在抛光或磨边好的零件表面上 镀一层薄膜,如镀增加透光或反光的膜层或其他用途的膜层。 该技术现在已形成一个薄膜光学技术,应用十分广泛。 (2)刻镀、照相工艺是在光学零件表面上制作各种分划标记 的工艺技术。 (3)胶合是将透镜、平面镜或棱镜按要求用光学胶胶合起来 的工艺。通常是将凸凹透镜胶合在一起来改善系统象差;棱 镜相胶来改变光路等。
图样绘制的要求应按照国家机械制图标准和光学制图标准及图样管理制度的 有关规定执行,一般应符合下列原则:
有关尺寸数据的标注均应符合国家制图标准。工艺图纸一般都要求标注允许 的公差范围,而不标注公差代号。需检验的尺寸、数据必须给出公差。
图样中所标注尺寸或数据有三种表示方法。 公称值:不带公差的名义值。加工中此值不做验收的依据,如透镜图中等焦距和
(2)按应力双折射大小分成三类
(3)按条纹大小分成四类
(4)按气泡大小和多少分成八类六级。
特殊玻璃
光学仪器中常用的特殊玻璃有耐辐射光学玻璃、石英光学玻璃、 微晶玻璃、窗用平板玻璃、硬质玻璃等。 一、耐辐射光学玻璃:在γ射线或高剂量的X射线的作用下,具有一 定的抗辐射性能的光学玻璃。耐辐射光学玻璃牌号的命名,按“无 色光学玻璃”牌号,根据其耐辐射性能的大小来分。 二、光学石英玻璃: 三、微晶玻璃:从原来的玻璃态经过热处理改变成的一种多晶体材 料。它的强度比普通玻璃大8倍;硬度比熔融石英还高,接近淬火 钢;密度低;具有高的热稳定性。 四、吸热玻璃:吸热滤光玻璃在可见光区域内有高的透过率而在红 外区域则大量吸收,对于光源的热辐射具有吸收性能。这种玻璃长 用于照明系统,吸收量随玻璃厚度的增加而增加,常用厚度为3mm。
传统光学加工(第一章粗磨)

磁性装夹是利用电磁吸力将工件固定的一种装夹方 式。透镜的磁性装夹,是将工件先粘在具有一定平 行度要求的金属导磁圆盘上,然后把粘好零件的导 磁圆盘放到铣磨机的磁性工作盘上,并使二者对好 中心,接着,打开磁力开关,将粘有透镜的导磁圆 盘吸住。另外,采用磁性装夹铣磨球面时定中心较 困难,而且粘结上盘下盘和清洗等辅助工序又费工 时,因此,球面铣磨很少采用磁性装夹,它多用于 平面的铣磨中。
(二)粒度磨料的粒度是以颗粒的大小分类的 。我国的磨料粒度号规定,对用筛选法获得 的磨料,粒度号用一英寸长度上有多少个筛 孔数来命名的。
二、磨具 通常采用的磨具有两种,一种是普通磨料制 成的砂轮,另一种是用结合剂固着的金刚石 磨具。 (一)金刚石磨具的结构 1.金刚石层:它是金刚石磨具的工作部分,由 金刚石颗粒和结合剂组成。 2. 过渡层:只含有结合剂,对金刚石层和基体 之间起着连接固结作用。过渡层厚一般为1~ 2mm。
(二)真空装夹的夹具设计
真空装夹是利用真空吸附的作用力,将工件固定在 夹具上。 真空吸附装夹的优点是:操作方便,易于实现自动 化,不仅能单件加工,而且也适用于立式铣磨机上 成盘加工,生产效率高。其缺点是:对工件的直径 公差要求严格,一般要求直径公差在(-0.02)~(0.05 )mm。
(三)磁性装夹的夹具
过大的偏心量将增大磨边的磨削量,甚至造成零 件的报废。造成球面偏心的重要原因是夹具定位 面的偏心。因此在夹具制造中,要特别注意夹具 定位面d与口径D对工件回转袖线的同心度。
§1-7 球面铣磨夹具的设计
一、球面铣磨夹具的设计
在透镜铣磨中,所用的夹具通常有弹性装夹 、真空吸附装夹和磁性装夹。
无论设计和使用哪种夹具,都必须满足以下 要求: 1. 夹具装夹零件必须牢固可靠。如果装夹不 牢,加工零件会产生松劲,这不仅要影响加 工精度,甚至可能损坏零件,同时也容易造 成磨轮的磨损。
光学零件制造工艺学

光学零件制造工艺学光学零件制造工艺学是研究光学元件制造的一门学科,主要涉及到光学元件的设计、加工、装配和检测等方面。
光学零件制造工艺学的发展与应用对于光学仪器的性能和质量有着重要的影响。
光学零件制造工艺学的首要任务是制定合理的工艺流程。
工艺流程是指按照一定的工艺规范和要求,将光学元件从原材料到最终成品的制造过程中的各个环节有机地衔接起来的一种组织形式。
一个合理的工艺流程可以保证光学元件的制造过程高效、稳定和可控,从而提高产品的质量和性能。
在工艺流程中,光学元件的设计是至关重要的一环。
光学元件的设计需要考虑到光学性能、机械性能和工艺性能等方面的要求。
光学性能包括透过率、反射率、折射率等,机械性能包括强度、刚度、稳定性等,工艺性能包括加工难度、装配难度等。
光学元件的设计需要通过光学软件进行模拟和优化,以确保设计的合理性和可行性。
光学零件的加工是制造工艺学的核心内容之一。
光学元件的加工需要使用高精度的加工设备和工艺技术。
常见的光学元件加工方法包括切割、研磨、抛光、镀膜等。
切割是将大块光学材料切割成所需形状和尺寸的小块,研磨是通过磨料对光学元件表面进行加工,抛光是在研磨的基础上进一步提高光学元件的表面质量,镀膜是在光学元件表面镀上一层具有特定光学性能的薄膜。
这些加工方法需要经验丰富的技术人员进行操作,并且需要严格的工艺控制和质量检测。
光学零件的装配是制造工艺学的另一个重要方面。
光学元件的装配需要将不同的光学元件按照设计要求进行组合,形成一个完整的光学系统。
装配过程中需要注意光学元件的定位、对准和固定,以保证光学系统的性能和稳定性。
装配过程中还需要进行调试和校准,以确保光学系统的性能达到设计要求。
光学零件制造工艺学的最后一个环节是检测和测试。
光学元件的检测和测试是为了验证制造过程的可行性和产品的质量。
常见的检测和测试方法包括光学显微镜观察、干涉检测、光谱分析等。
这些方法可以用来检测光学元件的表面形貌、光学性能和机械性能等。
光学零件制造工艺

光学零件制造工艺
光学零件制造工艺是生产高质量光学元件的关键技术。
以下是一些常见的光学零件制造工艺:
1. 切割和磨削:使用砂轮或金刚石刀具将光学材料切割成所需的形状和尺寸。
2. 抛光:通过逐渐减小表面粗糙度,使光学零件的表面达到高精度的光洁度。
3. 镀膜:在光学零件表面沉积一层或多层薄膜,以改善其光学性能,如反射率、透过率等。
4. 胶合:将两个或多个光学零件用胶粘剂粘合在一起,形成复杂的光学系统。
5. 成型:通过热压、注塑等方法将光学材料加工成所需的形状。
6. 检测:使用干涉仪、分光光度计等仪器对光学零件进行精度和性能检测。
这些工艺需要高度的专业知识和精密的设备。
制造过程中的每一个环节都必须严格控制,以确保光学零件的质量和性能符合要求。
随着科技的不断发展,新的制造工艺和技术也在不断涌现,如激光加工、离子束加工等。
这些新技术可以提高生产效率和产品质量,推动光学零件制造工艺的不断进步。
第四章光学零件加工技术

第四章粗磨——第一节研磨的本质
图4—3固着磨料研磨 铣磨时,磨具的主要运动是旋转,磨具和工件的相对运 动产生的切削F可分解成水平Fk和垂直Fn两个部分。如同玻璃 刀划割玻璃,垂直分力Fn使磨料颗粒进入玻璃深处,形成交 错裂纹,裂纹角大约为1550,它的大小不随玻璃牌号变化。
第四章粗磨——第一节研磨的本质
第四章粗磨——第二节铣削加工原理
四.金刚石磨具铣槽或圆弧
为了便于装配固定,如棱镜、平面镜等,或减轻重量等 原因,常需在零件上铣槽或磨圆弧等。现用金刚石磨具代 替手工。
第四章粗磨——第二节铣削加工原理
图4—6铣圆弧
图4—5铣圆弧
图4—7铣槽
第四章粗磨——第三节磨料和磨具
§4—3磨料和磨具 一.磨料:是研磨零件和制造磨具用的材料,是具有一 定硬度和韧性的粉状或粒状物质。是主要辅料之一。磨料 的研磨性能与硬度、韧性和粒度有关。
第四章粗磨——第二节铣削加工原理
二.斜截圆成型球面的证明
图4—5斜截圆的坐标
下面用数学方法来证明斜截圆绕工件轴的回转面为球面。 如图;有二个直角坐标系(XYZ,X’Y’Z’)均以O为坐标原点。 OX’、OZ’分别与OX,OZ夹角为α,OY与OY’重合。其中OZ代表工 件轴线,OZ’代表磨轮轴线。坐标原点O是工件轴与磨轮轴交点, 夹角为α。O’为为斜截圆中心,A为磨轮端面顶点与工件中心接 触处,则OA=R(O为零件曲率半径中心),O’A=ρ(斜截圆半 径),在X’Y’Z’坐标系中,斜截圆方程为
第四章粗磨——第二节铣削加工原理
①金刚石磨轮刃口通过工件顶点; ②磨轮轴与工件轴相交于O点; ③磨轮轴与工件轴夹角为α; ④磨轮轴高速旋转,工件轴低速转动。 这种运动轨迹的包络面就形成球面。 它们的运动原理遵循正弦公式,球面的曲率半径R与夹角 α有关,由图得正弦公式:即
第18章光学零件基本加工工艺规程设计 文档

? 锯切余量;
? 整平余量; ? 表面粗磨余量;
? 表面精磨、抛光余量; ? 定心磨边余量。
? ? 1.2(M n ? M n?1)
Δc
tc
Δj1
tj1
t j2
A
A
图18-1 加工余量的确定
三、各工序余量的计算
? 1.锯切余量与公差
2.研磨、抛光余量与公差
一般可以采用的数据:零件直径小于10mm时,单面余量取0.150.20mm,零件直径大于10mm时,单面余量取0.20-0.25mm。
第二节 加工余量
? 一、基本概念 ? 为了获得所需的零件形状、尺寸 和表面质量,必须从玻璃毛坯上 磨去一定量的光学材料层,此光 学材料层通常称为加工余量。
? 加工余量的种类: ? 线性尺寸余量 ? 角度余量 ? 工序余量 ? 总加工余量
? 根据光学零件加工工序的特点,一般零 件的全部加工余量是由下列余量组合而 成的。
? 确定粗磨余量 ? 确定粗磨完工尺寸 ? 设计粗磨工装 ? 选择粗磨辅助材料 ? 编制粗磨工艺规程
? (六)确定毛坯尺寸并绘制毛坯图
? (七)编制工艺规程,填写工艺卡片
? 设计工艺规程时,要充分发挥现有的生产技 术手段,同时应适当的采用最新的工艺技术。
? 工艺规程一旦确定下来,生产人员必须严格 遵守。当然工艺规程也不是一成不变的,随 着科学技术的发展,到一定时期,工艺规程 必须修改,否则就会阻碍生产的发展。
3.磨外圆与定心磨边余量与公差
焦距小于300mm,偏心差要求不高时: 易偏心零件:
光学零件毛坯的成型

粗退火是为了防止急剧降温造成应力局部集中 而引起的炸裂,以保证毛坯形状的完好性。 精密退火是保证毛坯符合零件所要求的光学性 质的主要工序,它可以消除毛坯压型过程中产 生的内应力和光学不均匀性,以及微量调整毛 坯的光学常数。
升温阶段主要是准确地控制温度。 保温,在退火温度上持续保温是决定毛坯应力消除程度的 重要阶段。 降温分为两个阶段。 第一阶段,在退火温度以下的一个温度范围内,是冷 却过程中产生应力集中的阶段。这个阶段决定了毛坯 的折射率、光学均匀性和内应力消除程度等质量指标。 因此,在第一阶段的降温速度要严格控制,缓慢进行。 第二阶段在第一阶段降温范围以下,在这个温度范围 继续降温,则对毛坯应力影响不大,降温速度可以适 当加快。第二阶段一般采用断电的方式,让电炉自然 降温,降温和出炉温度可按照毛坯尺寸选择。
对块料加热至软化,以便压型。压模也 要加热到相应的温度。
4、防粘处理
在待压型的光学零件表面涂防粘粉或喷洒防 粘液,以防零件压型后与零件粘连。
4. 压型
块料软化后,即可送入压模内压制成型,根 据零件大小压2-3s后,即可退模。
5. 退火
粗退火 防止刚脱模的压型毛坯因急冷而炸裂。 分为草木灰和电炉退火两种。 精密退火 为消除玻璃在成ห้องสมุดไป่ตู้过程中产生内应力和 光学常数的不均匀性而进行的退火处理, 是保证毛坯质量的重要工序。
460
440 400
420±15
410±15 370±15
840±5
830±5 810±5
400~~460
390~~450 360~~420
4.模具的设计、制造、安装
1--上模头;2--模套;3--毛坯;4--下模头;5--固定槽 图7-5压模结构
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章光学零件制造工艺一般知识1.1 光学零件制造工艺的特点及一般过程制作光学零件的常见材料有三大类,即光学玻璃、光学晶体和光学塑料,其中以光学玻璃,特别是无色光学玻璃的使用量最大。
虽然光学零件的加工按行业划分归入机械加工一类,但由于加工对象的材料性质和加工精度要求显著地不同于金属材料,因而加工工艺上也完全不同于金属工艺而具有特殊性。
1.1.1 光学零件的加工精度及其表示光学零件属于高精度零件。
平面零件的加工精度主要有角度和平面面形;球面零件的加工精度要求主要有曲率半径和球面面形。
高精度棱镜的角误差要求达到秒级。
高精度平面面形精度可达到几十分之一到几百分之一波长。
平面零件的平面性和球面零件的球面性统一称为面形要求。
光学车间一般用干涉法计量,用样板叠合观察等厚干涉条纹(俗称看光圈)。
表示面形误差的光圈数符号是N,不规则性(或称局部误差)符号是△N。
除面形精度外,光学零件表面还要有粗糙度要求。
光学加工中各工序的表面粗糙度如表6-1所示。
光学零件抛光表面粗糙度用微观不平十点高度表示为R2=0.025um,用轮廓算术平均偏差表示为R2=0.025um,用符号表示则为0.008,在此基础上,还有表面疵病要求,即对表面亮丝、擦痕、麻点的限制。
1.1.2 光学零件加工的一般工艺过程及特点光学零件加工的工艺过程随加工方式不同而异。
光学零件的加工方式主要有两类:传统(古典)加工工艺和机械化加工工艺,这里我们只介绍传统加工工艺。
传统工艺的特点主要有:(1)使用散粒磨料及通用机床,以轮廓成形法对光学玻璃进行研磨加工。
操作中以松香柏油粘结胶为主进行粘结上盘。
先用金刚砂对零件进行粗磨与精磨,然后使用松香柏油抛光模与抛光粉(主要是氧化铈)对零件进行抛光加工。
影响工艺的因素多而易变,加工精度可变性也大,通常是几个波长数量级。
高精度者可达几百分之一波长数量级。
(2)手工操作量大,工序多,操作人员技术要求高。
对机床精度,工夹磨具要求不那么苛刻,适于多品种,小批量、精度变化大的加工工艺采用。
传统加工工艺过程,以一个透镜为例,先后依次经过以下一些工序:1、毛坯加工。
包括按光学零件图选择合适的块料,切割整平、划分、胶条、滚圆开球面。
开球面是单件进行的。
2、粗磨加工。
使表面粗糙度及球面半径符合细磨要求。
传统工艺中粗磨是单件进行的。
一般采用传统工艺加工的工厂中,粗磨车间往往包括毛坯加工。
3、上盘:粗磨之后,经清洗,将一个个透镜毛坯按同半径组合成盘。
即依靠粘结胶把分散的透镜固定在球形粘结膜上,应注意的是成盘时要使每一个透镜毛坯的被加工面都处于同一半径的球面上。
4、细磨抛光工序。
在加工第一表面时,细磨到抛光过程中一般是不需拆盘的,即一次一盘完成。
操作中,先使用粒度依次变细的三至四道金钢砂将被加工面研磨到抛光要求的表面粗糙度,然后清洗,进行抛光。
抛光是用一定半径的抛光模加抛光粉进行。
一面加工完毕后,涂上保护膜,翻面再进行上盘。
细磨抛光加工第二表面。
5、定心磨边工序。
透镜加工过程中会出现光轴和定位轴偏离(称为偏心)。
定心磨边的任务是消除偏心,并使侧圆柱面径向尺寸达到装配要求。
传统工艺的磨边常在光学定心磨边机上进行。
6、镀膜工序,对表面有透光要求的透镜,要加镀增透膜。
球面反射镜要镀反射膜。
有的还要镀其它性质的薄膜,依使用要求由设计决定。
7、胶合工序。
对成象质量要求较高的镜头,往往采用几块透镜胶合而成。
胶合应在镀膜以后进行。
以上这些工艺过程可简略表示如下:选料——切割——整平——胶条——滚圆——开球面——粗磨球面——上盘——细磨——抛光——下盘;第二面上盘——细磨——抛光——下盘——定心磨边——镀膜1.2 光学工艺安全操作知识光学加工由于精度高,加工对象特殊,必须在专门的光学车间内进行。
因此,除了遵守一般的机械加工规则外,还必须遵守光学加工所特有的安全操作要求。
1.2.1 光学车间的特点在光学零件加工过程中,大多数工序对温度、湿度、尘埃、振动、光照等环境因素是敏感的,特别是高精度零件和特殊零件的加工尤其如此。
因此,光学车间都是封闭形,并要求恒温、恒湿、限制空气流动、人工采光,防尘。
1、温度对光学工艺的影响恒温是光学车间一个明显特点之一。
这里包括恒温温度及波动范围两个问题。
光学车间各工作场所由于要求不同,对恒温温度及其波动范围的要求是各不相同的。
(1)温度对抛光效率与质量的影响由于抛光过程中存在的化学作用随温度升高而加剧,因而升温会提高抛光效率。
但由于古典工艺中采用的抛光模制模用胶、粘结胶等主要由松香和沥青按一定配比制成,一定的配比只在一定的温度下使用。
而且它们对温度的变化较为敏感,温度过低,抛光模具与零件吻合性不好;温度过高,抛光模具抛光工作面变形。
这两者将使加工零件的精度难以保证,具体表现在光圈难以控制和修改。
实践得出:抛光间的温度一般应控制在22℃±2℃为宜。
(2)检验对室温的要求温度的波动直接影响检验精度。
一方面因为精密光学仪器对温度的波动很敏感;另一方面被检零件不恒温时,检具和零件间有温差会直接影响读数精度。
所以,检验室必须恒温,并且也应控制在22℃±2℃范围内。
2、湿度对光学工艺的影响在光学零件加工过程中,凡要求恒温或空调的地方,均因控制湿度所需。
因为,水份蒸发速度直接影响湿度恒定状态。
湿度过低,易起灰尘,零件表表清擦时也易产生静电而吸附灰尘,影响其光洁度。
特殊零件如晶体零件的加工以及光胶工艺等,对湿度的要求尤为严格。
光学加工过程中室内温度一般应控制在60%左右。
3、防尘由于光学零件对表面质量即表面光洁度和表面疵病有极高的要求,所以光学车间的防尘问题也特别突出。
灰尘在抛光时会使零件表面产生道子、划痕、亮丝;在镀膜时,会使膜层出现针孔、斑点、灰雾;在刻划时会引起刻线位置误差、断线等。
灰尘来源主要有:外间空气带入;由工作人员衣物上落下(粒径一般在l一5μm左右,直径小于1μm的灰尘,往往不能依靠自重降落,而长时间悬浮于空气中,影响产品质量);不洁净的材料、辅料、工夹具等带入;生产过程中产生的灰尘(光学车间的净化条件,若按室内含尘的重量浓度要求,应控制在毫克/米3的数量级。
胶合室的要求更严,一般以颗粒浓度作为要求,达到粒数/升的数量级)。
1.2.2 光学生产安全操作规则由于光学车间的特殊性和光学零件加工的高精度要求,学生进入光学车间实习时,必须遵守以下安全技术及操作规则:1、进入光学车间,特别是进入细磨、抛光、检验、磨边、胶合、镀膜、刻划等工作间时,应穿白色工作服,戴工作帽,穿专用鞋子或干净拖鞋,以防止将室外灰尘带入光学车间;2、在操作过程中禁止用手指直接触摸光学表面,需要拿起光学零件时,手指也只能接触光学零件的侧面或非工作面。
因为手指上留有汗渍、各种有机酸、盐类等对光学表面有害物质,它们往往会使光学零件表面受到侵蚀。
如果不小心触摸后,必须立即用脱脂纱布或脱脂棉花蘸上酒精、乙醚混合液擦拭干净;3、为保持光学车间的恒温条件,不能在一个工作场所聚集过量人员,致使周围气温上升。
门窗也不能随意打开;4、开机前,须先检查机床设备、工夹具是否完好。
发现电机有异常现象或其它机械毛病时,应立即拉开电闸或停机检查。
安装、拆卸零件和夹具时,机床主轴必须完全停止转动;5、为了清洗光学零件和其它工作需要,光学车间常常使用或临时存放多种易燃物质,如溶剂汽油、无水酒精、乙醚等。
因此光学车间必须严格注意防火,加热设备必须远离上述物质。
为了防火,同时也为了空气卫生,光学车间内严格禁止吸烟;6、在加工过程中,粗砂禁止带入细砂,细砂禁止带入抛光区,因此在换砂以后,在磨砂完毕进入抛光前,必须对工件、工夹具、工作台等进行彻底清洗,以防砂子带入使工件表面出划痕、亮丝,破坏光洁度;7、在上盘、下盘,或其它需要加热光学零件情况时,不可使零件急热急冷。
加热时应注意零件升高的温度必须控制在材料的退火温度以下。
由于电炉表面温度已接近或超过许多材料的退火温度,所以不能将光学零件直接放置在电炉盘上加热,必须垫上衬垫;8、在未了解实习所用机床及仪器设备的操作规范前,不允许擅自开动机床,试看试用有关的仪器设备。
也不允许操作不在实习范围内的仪器与设备,以免造成损坏和人身不安全事故。
1.3 光学零件和光学零件图光学零件是光学制造最后完成的目标,光学零件图是加工和检验的依据,所以在加工之前必须熟悉光学零件图及相应的技术指标、符号、尺寸等的含义。
1.3.1光学零件及有关术语、符号光学工艺使用的图纸,通常有光学零件图、胶合部件图、工序图(毛坯图、粗磨图、抛光图等).其中光学零件图规定了加工时所必须的全部资料,包括外形尺寸,材料、技术要求及其它需说明的各项内容如图(1—11)、图(1—12)、图(1—13)所示。
其它工艺图纸均按光学零件图画出,标注各工序完工后的尺寸和检验要求。
绘制光学零件工艺图样的一般原则是:光学零件的光轴用点划线表示,一般水平放置,光线方向应自左向右,零件一般对称于光轴放置,圆零件只画出沿光轴剖开的剖面图。
图纸左上角的表格依次列出对玻璃的要求和对零件的加工要求,包括面形精度,表面质量等.零件的外形尺寸,有关技术要求在图上注明或在图纸下方用文字或符号注明。
常用符号、术语说明如下:N 光圈数符号。
表示被检的零件表面和样板标准表面曲率半径偏差时产生的干涉条纹数(通称光圈)数目;ΔN 光圈局部误差符号,表示表面形状的局部误差;ΔR 样板精度等级符号.即样板曲率半径实际值对名义值的偏差量符号;B(P) 光学零件表面疵病符号,也称为光洁度。
光学零件工作表面的粗糙度一般都要求达到R1=0.025μm,旧标准为V14。
在此基础上还需限制表面上存在的亮丝、擦痕、麻点,应与机械加工中的光洁度概念区分开。
C(X) 透镜偏心差符号,亦称透镜的中心偏差符号。
用透镜表面的球心对透镜定位轴的偏离量表示;π尖塔差符号。
表示反射棱镜的棱向误差;θ平行差符号。
玻璃平板两表面间的不平行度;S 屋脊棱镜双角差符号。
屋脊棱镜屋脊角有偏差时造成的双象差的程度;d 透镜中心厚度;φ透镜的口径;镀膜符号:④为增透膜,②为增反镜;Δnd 玻璃材料折射率允许误差,包括对标准值的允差和同一批玻璃中的一致性允差。
Δ(n F—n C) 色散允差,与Δn d一样同样包括二项:光学均匀性:玻璃内因折射率渐变造成的不均匀程度,影响零件的鉴别率,以鉴别率表示;双折射:玻璃存在应力时呈现各向异性,产生双折射现象,以双折射光程差表示;纹:玻璃中的化学不均匀区,因折射率不同于主体而出现丝状或层状的疵病,块料玻璃有从三个方向检查的,也有二个或者一个方向检验的;气泡:玻璃体内残留气泡程度,有大小与个数两项指标。
1.4 光学零件的加工余量1.4.1 加工余量的基本概念在光学零件加工过程中,为了从玻璃毛坯获得所需要零件的形状、尺寸,表面必须预留一定量的玻璃层,这一定量的玻璃层就称为加工余量。