高三一轮8-4
高三二轮复习选填满分“8+4+4”小题强化训练第5练(原卷及答案)(新高考专用)

高三二轮复习选填满分“8+4+4”小题强化训练(5)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设R U =,已知两个非空集合M ,N 满足∅=⋂N C M U ,则()A.RM N ⋂=B.M N⊆C.N M⊆D.RM N ⋃=2.已知,,R a b c ∈,那么下列命题中正确的是()A.若a b >,则22ac bc >B.若a bc c>,则a b >C.若a b >且0ab <,则11a b>D.若22a b >,则11a b<3.函数2()()log xxf x e e x -=+的图象大致是()A. B.C. D.4.欧拉公式i e cos isin (i x x x =+为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,已知i a e 为纯虚数,则复数sin211ia ++在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限5.良渚遗址位于浙江省杭州市余杭区瓶窑镇、良渚街道境内.1936年浙江省立西湖博物馆的施昕更先生首先在浙江省杭州市良渚镇一带发现.这里的巨型城址,面积近630万平方米,包括古城、水坝和多处高等级建筑.国际学术界曾长期认为中华文明只始于距今3500年前后的殷商时期,2019年7月6日,中国良渚古城遗址被列入世界遗产名录,这意味着中国文明起源形成于距今五千年前,终于得到了国际承认!2010年,考古学家对良渚古城水利系统中一条水坝的建筑材料(草裏泥)上提取的草茎遗存进行碳14年代学检测,检测出碳14的残留量约为初始量的55.2%.已知经过x 年后,碳14的残余量(1)(,0,01;0)x y k p k k p x =-∈><<R ,碳14的半衰期为5730年,则以此推断此水坝大概的建成年代是().(参考数据:2log 0.5520.8573≈-)A.公元前2893年B.公元前2903年C.公元前2913年D.公元前2923年6.已知12,F F 为椭圆1C :2222111x y a b +=(110>>a b )与双曲线2C :2222221x y a b -=(220,0a b >>)的公共焦点,点M 是它们的一个公共点,且123F MF π∠=,12,e e 分别为1C ,2C 的离心率,则12e e 的最小值为()A.2C.2D.37.三棱锥P ABC-的所有顶点都在球O 的球面上.棱锥P ABC-的各棱长为:2PA =,3,4,5,PB PC AB BC AC =====,则球O 的表面积为()A.28πB.29πC.30πD.31π8.已知0.40.7e ,eln1.4,0.98ab c ===,则,,a b c 的大小关系是()A.a c b >>B.b a c>>C.b c a>>D.c a b>>二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.千百年来,我国劳动人民在生产实践中根据云的形状、走向、速度、厚度、颜色等的变化,总结了丰富的“看云识天气”的经验,并将这些经验编成谚语,如“天上钩钩云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同学为了验证“日落云里走,雨在半夜后”,随机观察了他所在地区的100天中的“日落云里走”的情况和后半夜天气情况,得到如下数据,后半夜天气情况“日落云里走”的情况下雨未下雨总计出现25530未出现254570总计5050100并计算得到219.05χ≈,则小波对该地区天气的判断正确的是()A.后半夜下雨的概率约为12B.未出现“日落云里走”时,后半夜下雨的概率约为59C.有99%的把握认为“‘日落云里走’是否出现”与“后半夜是否下雨”有关D.若出现“日落云里走”,则后半夜有99%的可能会下雨10.如图的形状出现在南宋数学家杨辉所著的《详解九章算法·商功》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,….设第n 层有n a 个球,从上往下n 层球的总数为n S ,则()A.535S =B.1n n na a +-=C.1(1)2n n n n S S -+-=,2n ≥ D.1231001111200101a a a a ++++= 11.已知函数()()()sin 0,f x x ωϕωϕ=+>∈R 在区间75,126ππ⎛⎫⎪⎝⎭上单调,且满足73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭有下列结论正确的有()A.203f π⎛⎫=⎪⎝⎭B.若()56f x f x π⎛⎫-=⎪⎝⎭,则函数()f x 的最小正周期为π;C.关于x 的方程()1f x =在区间[0,2)π上最多有4个不相等的实数解D.若函数()f x 在区间213,36ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,则ω的取值范围为8,33⎛⎤ ⎥⎝⎦12.已知正方体1111ABCD A B C D -的棱长为2,动点F 在正方形11CDD C 内,则()A.若1C F ⊥平面1A CF ,则点F 的位置唯一B.若1//B F 平面1A BD ,则1B F 不可能垂直1CD C.若()112BF BC BD =+,则三棱锥11-F B CC 的外接球表面积为4πD.若点E 为BC 中点,则三棱锥11A AB E -的体积是三棱锥1-A FA B 体积的一半三、填空题:本题共4小题,每小题5分,多空题,第一空2分,第二空3分,共20分.13.若随机变量1~,3X B n ⎛⎫ ⎪⎝⎭,且()*N E X ∈,写出一个符合条件的n =___________.14.九龙壁是中国古代建筑的特色,是帝王贵族出入的宫殿或者王府的正门对面,是权力的象征,做工十分精美,艺术和历史价值很高.九龙壁中九条蟠龙各居神态,正中间即第五条为正居之龙,两侧分别是降沉之龙和升腾之龙间隔排开,其中升腾之龙位居阳位,即第1,3,7,9位,沉降之龙位居2,4,6,8位.某工匠自己雕刻一九龙壁模型,为了增加模型的种类但又不改变升腾之龙居阳位和沉降之龙的位置,只能调换四条升腾之龙的相对位置和四条沉降之龙的相对位置,则不同的雕刻模型有______种(用数字作答).15.定义在()0,∞+上的函数()f x 满足:对()12,0,x x ∀∈+∞,且12x x ≠,都有()()2112120x f x x f x x x ->-成立,且()24f =,则不等式()2f x x>的解集为__________.16.已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,ADE V 的周长是13,则DE =_____.高三二轮复习选填满分“8+4+4”小题强化训练(5)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设R U =,已知两个非空集合M ,N 满足∅=⋂N C M U ,则()A.R M N ⋂=B.M N⊆C.N M ⊆D.RM N ⋃=【答案】B【解析】根据题意,作出如下图韦恩图:满足∅=⋂N C M U ,即M N ⊆.故选:B.2.已知,,R a b c ∈,那么下列命题中正确的是()A.若a b >,则22ac bc >B.若a bc c>,则a b >C.若a b >且0ab <,则11a b>D.若22a b >,则11a b<【答案】C【解析】A .若a b >,当0c =时,22ac bc =,所以选项A 不成立;B .若a bc c>,当0c <时,则a b <,所以选项B 不成立;C .因为0ab <,将a b >两边同除以ab ,则11a b>,所以选项C 成立;D .如果2,1,a b ==-满足22a b >,但是11a b>,所以选项D 不成立.故选:C.3.函数2()()log xxf x e e x -=+的图象大致是()A. B.C. D.【答案】C【解析】22()()log ()log ()xx x x f x ee x e e xf x ---=+-=+=,()f x 为偶函数,排除AD ,又01x <<时,()0f x <,排除B .故选:C .4.欧拉公式i e cos isin (i x x x =+为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,已知i a e 为纯虚数,则复数sin211ia ++在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】因为i e cos isin x x x =+,所以i e cos isin a a a =+,因为i a e 为纯虚数,所以cos 0a =,sin 0a ≠,故sin 22sin cos 0a a a ==,所以()()sin2111i 1i 11i 1i 1i 1i 1i 222a +--====-+++-,则复数sin211i a ++在复平面内对应的点为11,22⎛⎫- ⎪⎝⎭,则其在第四象限,故选:D.5.良渚遗址位于浙江省杭州市余杭区瓶窑镇、良渚街道境内.1936年浙江省立西湖博物馆的施昕更先生首先在浙江省杭州市良渚镇一带发现.这里的巨型城址,面积近630万平方米,包括古城、水坝和多处高等级建筑.国际学术界曾长期认为中华文明只始于距今3500年前后的殷商时期,2019年7月6日,中国良渚古城遗址被列入世界遗产名录,这意味着中国文明起源形成于距今五千年前,终于得到了国际承认!2010年,考古学家对良渚古城水利系统中一条水坝的建筑材料(草裏泥)上提取的草茎遗存进行碳14年代学检测,检测出碳14的残留量约为初始量的55.2%.已知经过x 年后,碳14的残余量(1)(,0,01;0)x y k p k k p x =-∈><<R ,碳14的半衰期为5730年,则以此推断此水坝大概的建成年代是().(参考数据:2log 0.5520.8573≈-)A.公元前2893年B.公元前2903年C.公元前2913年D.公元前2923年【答案】B【解析】 碳14的半衰期为5730年,∴1573057305730111(1)(1)222x k k p p y k ⎛⎫⎛⎫=-⇒-=⇒= ⎪⎪⎝⎭⎝⎭,当55.2%y k =时,5730155.2%2x k k ⎛⎫= ⎪⎝⎭,1222log 0.552log 0.552,5730log 0.55249125730xx ∴==-=-≈, 2010年之前的4912年是公元前2902年,∴以此推断此水坝大概的建成年代是公元前2903年.故选:B.6.已知12,F F 为椭圆1C :2222111x y a b +=(110>>a b )与双曲线2C :2222221x y a b -=(220,0a b >>)的公共焦点,点M 是它们的一个公共点,且123F MF π∠=,12,e e 分别为1C ,2C 的离心率,则12e e 的最小值为()A.2C.2D.3【答案】A【解析】设椭圆1C 、双曲线2C 的共同半焦距为c ,由椭圆、双曲线对称性不妨令点M 在第一象限,由椭圆、双曲线定义知:1212||||MF MF a +=,且212||||2MF MF a -=,则有112||MF a a =+,212||MF a a =-,在12F MF △中,由余弦定理得:22212121212||||||2||||cos F F MF MF MF MF F MF =+-∠,即222121212124()()2()()cos3c a a a a a a a a π=++--+-,整理得:2221243c a a =+,于是得2212222212123134a a c c e e e e =+=+≥=,当且仅当221213e e =,即21e =时取“=”,从而有12≥e e ,所以12e e.故选:A7.三棱锥P ABC -的所有顶点都在球O 的球面上.棱锥P ABC -的各棱长为:2PA =,3,4,5,PB PC AB BC AC =====O 的表面积为()A.28πB.29πC.30πD.31π【答案】B【解析】由题意知:222PB PC BC +=,222PA PC AC +=,222PA PB AB +=,∴,,PA PB PC 两两垂直,即P ABC -为直三棱锥,∴若Rt PBC △的外接圆半径为r ,则522BC r ==,又PA ⊥面PBC ,∴外接球心O 到PA 的距离为52r =,故外接球半径2R ==,∴外接球表面积2429S R ππ==.故选:B.8.已知0.40.7e ,eln1.4,0.98a b c ===,则,,a b c 的大小关系是()A.a c b >>B.b a c >>C.b c a>>D.c a b>>【答案】A【解析】构造()1=ln e f x x x -,0x >,则()11=ef x x '-,当0e x <<时,()0f x '>,当e x >时,()0f x '<,所以()1=ln ef x x x -在0e x <<上单调递增,在e x >上单调递减,所以()()e =lne 10f x f ≤-=,故ln 1ex x ≤,当且仅当e x =时等号成立,因为20x >,所以222222(2)2ln 2ln ln ln2e e 2e 2e ex x x x x x x x x ≤⇒≤⇒≤⇒≤=,当2x =时,等号成立,当0.7x =时,220.98ln1.4(0.7)eln1.40.98e e<⨯=⇒<,所以b c <构造()1=e x g x x --,则()1e 1=x g x -'-,当1x >时,()0g x '>,当1x <时,()0g x '<,所以()1=ex g x x --在1x >单调递增,在1x <上单调递减,故()()10g x g ≥=,所以1e x x -≥,当且仅当1x =时,等号成立,故121e e 2x x x x --≥⇒≥,当且仅当0.5x =时,等号成立,令0.7x =,则0.40.4e 1.40.7e 0.98>⇒>,所以a c >,综上:a c b >>,故选:A二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.千百年来,我国劳动人民在生产实践中根据云的形状、走向、速度、厚度、颜色等的变化,总结了丰富的“看云识天气”的经验,并将这些经验编成谚语,如“天上钩钩云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同学为了验证“日落云里走,雨在半夜后”,随机观察了他所在地区的100天中的“日落云里走”的情况和后半夜天气情况,得到如下数据,后半夜天气情况“日落云里走”的情况下雨未下雨总计出现25530未出现254570总计5050100并计算得到219.05χ≈,则小波对该地区天气的判断正确的是()A.后半夜下雨的概率约为1 2B.未出现“日落云里走”时,后半夜下雨的概率约为5 9C.有99%的把握认为“‘日落云里走’是否出现”与“后半夜是否下雨”有关D.若出现“日落云里走”,则后半夜有99%的可能会下雨【答案】AC【解析】对A,把频率看作概率,可得后半夜下雨的概率约为5011002=,故A判断正确:对B,未出现“日落云里走”时,后半夜下雨的概率约为255254514=+,故B判断错误;对C,由219.05 6.635χ≈>,知有99%的把握认为“‘日落云里走’是否出现”与“后半夜是否下雨”有关,故C判断正确;易知D判断错误.故选:AC10.如图的形状出现在南宋数学家杨辉所著的《详解九章算法·商功》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,….设第n层有n a个球,从上往下n层球的总数为n S,则()A.535S =B.1n n na a +-=C.1(1)2n n n n S S -+-=,2n ≥ D.1231001111200101a a a a ++++= 【答案】ACD【解析】因为11a =,212a a -=,323a a -=,……,1n n a a n --=,以上n 个式子累加可得:(1)1232n n n a n +=++++=,所以512345136101535S a a a a a =++++=++++=,故选项A 正确;由递推关系可知:11n n a a n +-=+,故选项B 不正确;当2n ≥,1(1)2n n n n n S S a -+-==,故选项C 正确;因为12112(1)1n a n n n n ⎛⎫==- ⎪++⎝⎭,所以12100111111112122223100101a a a ⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭120021101101⎛⎫=-= ⎪⎝⎭,故选项D 正确;故选:ACD.11.已知函数()()()sin 0,f x x ωϕωϕ=+>∈R 在区间75,126ππ⎛⎫⎪⎝⎭上单调,且满足73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭有下列结论正确的有()A.203f π⎛⎫=⎪⎝⎭B.若()56f x f x π⎛⎫-= ⎪⎝⎭,则函数()f x 的最小正周期为π;C.关于x 的方程()1f x =在区间[0,2)π上最多有4个不相等的实数解D.若函数()f x 在区间213,36ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,则ω的取值范围为8,33⎛⎤⎥⎝⎦【答案】ABD【解析】A,∵7375,124126ππππ⎛⎫⎛⎫⊆ ⎪ ⎪⎝⎭⎝⎭,∴()f x 在73,124ππ⎛⎫⎪⎝⎭上单调,又73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,73212423πππ+=,∴203f π⎛⎫=⎪⎝⎭,故A 正确;B,区间75,126ππ⎛⎫⎪⎝⎭右端点56x π=关于23x π=的对称点为2x π=,∵203f π⎛⎫= ⎪⎝⎭,f (x )在75,126ππ⎛⎫ ⎪⎝⎭上单调,∴根据正弦函数图像特征可知()f x 在5,26ππ⎛⎫⎪⎝⎭上单调,∴512(62322T T ππππω-==⋅ 为()f x 的最小正周期),即ω 3,又0ω>,∴03ω< .若()56f x f x π⎛⎫-= ⎪⎝⎭,则()f x 的图象关于直线512x π=对称,结合203f π⎛⎫=⎪⎝⎭,得()252121312442k k T k ππππω++-===⋅∈Z ,即()42k k ω=+∈Z ,故k =0,2,T ωπ==,故B 正确.C,由03ω< ,得23T π,∴()f x 在区间[)0,2π上最多有3个完整的周期,而()1f x =在1个完整周期内只有1个解,故关于x 的方程()1f x =在区间[)0,2π上最多有3个不相等的实数解,故C 错误.D,由203f π⎛⎫=⎪⎝⎭知,23π是函数()f x 在区间23π⎡⎢⎣,136π⎫⎪⎭上的第1个零点,而()f x 在区间213,36ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,则13252632T T ππ<- ,结合2T πω=,得81033ω< ,又03ω< ,∴ω的取值范围为8,33⎛⎤⎥⎝⎦,故D 正确.故选:ABD.12.已知正方体1111ABCD A B C D -的棱长为2,动点F 在正方形11CDD C 内,则()A.若1C F ⊥平面1A CF ,则点F 的位置唯一B.若1//B F 平面1A BD ,则1B F 不可能垂直1CD C.若()112BF BC BD =+,则三棱锥11-F B CC 的外接球表面积为4πD.若点E 为BC 中点,则三棱锥11A AB E -的体积是三棱锥1-A FA B 体积的一半【答案】AD【解析】如图,以D 为原点分别以DA 、DC 、1DD 为x 轴、y 轴、z 轴建立空间直角坐标系:则()2,0,0A ,()2,2,0B ,()0,2,0C ,()0,0,0D ,()12,0,2A ,()12,2,2B ,()10,2,2C ,()10,0,2D ,由于动点F 在正方形11CDD C 内,可设()0,,F m n ,其中02m <<,02n <<,选项A:若1C F ⊥平面1A CF ,则11C F A C ⊥ ,1C F CF ⊥.由于()10,2,2C F m n =-- ,()12,2,2A C =-- ,()0,2,CF m n =-,则()()()()222220220m n m n n ⎧⨯---=⎪⎨-+-=⎪⎩,解得:11m n =⎧⎨=⎩或22m n =⎧⎨=⎩(舍去),此时()0,1,1F ,即点F 的位置唯一,故选项A 正确;选项B:()10,2,2A B =- ,()2,2,0BD =--,设平面1A BD 的一个法向量为(),,n x y z =r.则220220y z x y -=⎧⎨--=⎩,令1y =,得1x =-,1z =,故()1,1,1n =-,而()12,2,2B F m n =--- ,若1B F ∥平面1A BD ,则10B F n ⋅=,则2220m n +-+-=,即2m n +=,所以()0,,2F m m -,此时()12,2,B F m m =---,而()10,2,2CD =- ,所以()112022244B F CD m m m ⋅=-⨯-⨯--⨯=-+,当1m =时,440m -+=,此时110B F CD ⋅= ,则11B F CD ⊥.故选项B 不正确;选项C:由于()112BF BC BD =+,则F 为1CD 的中点,此时()0,1,1F ,设三棱锥的11-F B CC 的外接球的球心为(),,O x y z ,则11OC OB OC OF OC OC⎧=⎪=⎨⎪=⎩,即()()()()()()()()()()2222222222222222222222211222x y z x y z x y z x y z x y z x y z ⎧+-+=-+-+-⎪⎪+-+=+-+-⎨⎪+-+=+-+-⎪⎩,解得:121x y z =⎧⎪=⎨⎪=⎩,所以()1,2,1O ,则三棱锥的11-F B CC的外接球的半径为R OC ==,所以三棱锥的11-F B CC 的外接球表面积为22448R πππ=⨯=,故选项C 不正确;选项D:点E 为BC 中点,由正方体可知BC ⊥平面11A ABB ,则11111111111222132323A AB E E AA B V V AA A B BE --==⨯⋅⋅=⨯⨯⨯=111111111422232323A FAB F AA B V V AA A B BC --⋅==⨯⨯⋅=⨯⨯⨯⨯=则三棱锥11A AB E -的体积是三棱锥1-A FA B 体积的一半.故选项D 正确.故选:AD三、填空题:本题共4小题,每小题5分,多空题,第一空2分,第二空3分,共20分.13.若随机变量1~,3X B n ⎛⎫ ⎪⎝⎭,且()*N E X ∈,写出一个符合条件的n =___________.【答案】3(答案不唯一)【解析】因为随机变量1~,3X B n ⎛⎫ ⎪⎝⎭,所以()*1N 3E X n =∈,所以一个符合条件的3n =,故答案为:3(答案不唯一)14.九龙壁是中国古代建筑的特色,是帝王贵族出入的宫殿或者王府的正门对面,是权力的象征,做工十分精美,艺术和历史价值很高.九龙壁中九条蟠龙各居神态,正中间即第五条为正居之龙,两侧分别是降沉之龙和升腾之龙间隔排开,其中升腾之龙位居阳位,即第1,3,7,9位,沉降之龙位居2,4,6,8位.某工匠自己雕刻一九龙壁模型,为了增加模型的种类但又不改变升腾之龙居阳位和沉降之龙的位置,只能调换四条升腾之龙的相对位置和四条沉降之龙的相对位置,则不同的雕刻模型有______种(用数字作答).【答案】576【解析】分步完成:第一步调换四条升腾之龙的相对位置,第二步调换四条沉降之龙的相对位置,方法数为4444576A A =.故答案为:576.15.定义在()0,∞+上的函数()f x 满足:对()12,0,x x ∀∈+∞,且12x x ≠,都有()()2112120x f x x f x x x ->-成立,且()24f =,则不等式()2f x x>的解集为__________.【答案】()2,+∞【解析】令()()f xg x x=,因为对()120,x x ∀∈+∞、,且12x x ≠,都有()()2112120x f x x f x x x ->-成立,不妨设120x x <<,则120x x -<,故()()21120x f x x f x -<,则()()1212f x f x x x <,即()()12g x g x <,所以()g x 在()0,∞+上单调递增,又因为()24f =,所以()()2222f g ==,故()2f x x>可化为()()2g x g >,所以由()g x 的单调性可得2x >,即不等式()2f x x>的解集为()2,+∞.故答案为:()2,+∞16.已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,ADE V 的周长是13,则DE =_____.【答案】6【解析】如图,连接122,,AF DF EF ,因为C 的离心率为12,所以12c a =,即2a c =,所以22223b a c c =-=,因为12122AF AF a c F F ====,所以12AF F △为等边三角形,又2DE AF ⊥,所以直线DE 为线段2AF 的垂直平分线,所以2AD DF =,2AE EF =,则ADE V 的周长为22||||||||AD AE DE DF EF DE ++=++2211DF EF DF EF =+++134134a a ==⇒=,138c ∴=,而1230EF F ︒∠=,所以直线DE 的方程为3)3y x c =+,代入椭圆C 的方程2222143x y c c +=,得22138320x cx c +-=,设()11,D x y ,()22,E x y ,则21212832,1313c c x x x x +=-=-,所以48613cDE==,故答案为:6.。
2021高三统考北师大版数学一轮学案:第8章第5讲 直线、平面垂直的判定及性质 Word版含解析

姓名,年级:时间:第5讲直线、平面垂直的判定及性质基础知识整合1.直线与平面垂直(1)直线与平面垂直的定义如果一条直线l与平面α内的错误!任意一条直线都垂直,就说直线l与平面α互相垂直.(2)直线与平面垂直的判定定理文字语言图形语言符号语言判定定理一条直线与一个平面内的错误!两条相交直线都垂直,则该直线与此平面垂直⇒l⊥α(3)直线与平面垂直的性质定理文字语言图形语言符号语言性质定理垂直于同一个平面的两条直线错误!平行⇒a∥b2.平面与平面垂直(1)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是错误!直二面角,就说这两个平面互相垂直.(2)平面与平面垂直的判定定理文字语言图形语言符号语言判定定理一个平面过另一个平面的错误!垂线,则这两个平面垂直⇒α⊥β(3)平面与平面垂直的性质定理文字语言图形语言符号语言性质定理两个平面垂直,则一个平面内垂直于错误!交线的直线与另一个平面垂直⇒l⊥α3.直线与平面所成的角(1)定义:平面的一条直线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.(2)线面角θ的范围:θ∈[0°,90°].4.二面角的有关概念(1)二面角:从一条直线出发的错误!两个半平面所组成的图形叫做二面角.(2)二面角的平面角:过二面角棱上的任一点,在两个半平面内分别作与棱错误!垂直的射线,则两射线所成的角叫做二面角的平面角.直线与平面垂直的五个结论(1)若一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意一条直线.(2)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(3)垂直于同一条直线的两个平面平行.(4)过一点有且只有一条直线与已知平面垂直.(5)过一点有且只有一个平面与已知直线垂直.1.设α,β是两个不同的平面,l,m是两条不同的直线,且l ⊂α,m⊂β,下列结论正确的是( )A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m答案A解析根据线面垂直的判定定理知A正确;当α⊥β,l⊂α,m⊂β时,l与m可能平行、相交或异面,故B错误;当l∥β,l⊂α时,α与β可能平行,也可能相交,故C错误;当α∥β,l⊂α,m⊂β时,l与m可能平行,也可能异面,故D错误.故选A.2.(2019·浙江杭州模拟)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则( )A.m∥l B.m∥nC.n⊥l D.m⊥n答案C解析∵α∩β=l,∴l⊂β,∵n⊥β,∴n⊥l.故选C.3.(2019·广东五校诊断考试)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若m⊥α,m∥n,n⊂β,则α⊥βC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若α∥β,m⊂α,n⊂β,则m∥n答案B解析A项,若α⊥β,m⊂α,n⊂β,则m∥n或m,n相交或m,n为异面直线,故不正确;C项,若m⊥n,m⊂α,n⊂β,则α,β有可能相交但不垂直,故不正确;D项,若α∥β,m⊂α,n⊂β,则m,n有可能是异面直线,故不正确,故选B.4.若a,b,c是三条不同的直线,α,β是两个不同的平面,则a ⊥b的一个充分不必要条件是( )A.a⊥c,b⊥c B.α⊥β,a⊂α,b⊂βC.a⊥α,b∥αD.a⊥α,b⊥α答案C解析对于A,B,直线a,b可能是平行直线,相交直线,也可能是异面直线;对于C,在平面α内存在c∥b,因为a⊥α,所以a⊥c,故a⊥b;对于D,一定能推出a∥b.故选C.5.(2019·江西南昌模拟)如图,在四面体ABCD中,已知AB⊥AC,BD⊥AC,那么D在平面ABC内的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部答案A解析由AB⊥AC,BD⊥AC,AB∩BD=B,则AC⊥平面ABD,而AC ⊂平面ABC,则平面ABC⊥平面ABD,因此D在平面ABC内的射影H必在平面ABC与平面ABD的交线AB上,故选A.6.(2019·沈阳模拟)已知P为△ABC所在平面外一点,且PA,PB,PC两两垂直,则下列命题:①PA⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC。
高三二轮复习选填满分“8+4+4”小题强化训练第4练(解析版)(新高考专用)

高三二轮复习选填满分“8+4+4”小题强化训练(4)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|320}A x x x =-+-≤,3{|log (2)1}B x x =+<,则A B = ()A.∅B.{1x x ≤或}2x ≥C.{}1x x <D.{}21x x -<<【答案】D【解析】()()22320,32120x x x x x x -+-≤-+=--≥,解得1x ≤或2x ≥,所以{|1A x x =≤或}2x ≥.由3log y x =在()0,∞+上递增,且()33log 21log 3x +<=,所以023,21x x <+<-<<,所以{}|21B x x =-<<,所以{}21A B x x ⋂=-<<,故选:D 2.若复数312iz =-(i 为虚数单位),则复数z 在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】由题意可知:()()3112i 2i 21i 2i 2i 2i 2i 555z --=====--++-,所以复数z 在复平面上对应的点为21,55⎛⎫- ⎪⎝⎭.位于第四象限.故选:D.3.下列函数中,最小值为4的是()A.4y x x =+B.()4sin 0πsin y x x x=+<<C.e 4e x x y -=+D.y =【答案】C【解析】A 项,4y x x=+没有最值,故A 项错误;B 项,令sin t x =,则01t <≤,4y t t=+,由于函数在(]0,1上是减函数,所以min ()(1)5f x f ==,故B 项错误;C 项,4e 4e e 4e x x x x y -=+=+≥=,当且仅当4e e x x =,即e 2x =时,等号成立,所以函数e 4e x x y -=+的最小值为4,故C 项正确;D 项,y =≥,当且仅当==时,等号成立,所以函数y =+的最小值为,故D 项错误.故选:C.4.若函数()2f x +为偶函数,对任意的[12,2,+)x x ∈∞,且12x x ≠,都有()()()12120x x f x f x ⎡⎤--<⎣⎦,则()A.()()212log 60log 0.2f f f ⎛⎫<< ⎪⎝⎭B.()()122log 0.20log 6f f f ⎛⎫<< ⎪⎝⎭C.()()122log 0.2log 60f f f ⎛⎫<< ⎪⎝⎭D.()()2120log 6log 0.2f f f ⎛⎫<< ⎪⎝⎭【答案】D【解析】由题意知函数()2f x +为偶函数,故函数()f x 关于直线=2x 对称,由对任意的[12,2,+)x x ∈∞,且12x x ≠,都有()()()12120x x f x f x ⎡⎤--<⎣⎦,可知函数()f x 在[2,+)x ∈∞时单调递减,而()()1220(4),log 0.52log f f f f ⎛⎫== ⎪⎝⎭,因为2252<log log 64<<,故()()2120(4)log 6log 0.2f f f f ⎛⎫=<< ⎪⎝⎭,故选:D5.已知某电子产品电池充满时的电量为3000毫安时,且在待机状态下有两种不同的耗电模式可供选择.模式A :电量呈线性衰减,每小时耗电300毫安时;模式B :电量呈指数衰减,即:从当前时刻算起,t 小时后的电量为当前电量的12t 倍.现使该电子产品处于满电量待机状态时开启A 模式,并在m 小时后切换为B 模式,若使其在待机10小时后有超过5%的电量,则m 的取值范围是()A.(5,6)B.(6,7)C.(7,8)D.(8,9)【答案】D【解析】由题意可设,模式A 的函数关系为:y =-300t +3000,模式B 的函数关系为:y =p ⋅12t ,其中p 为初始电量,在模式A 下使用m 小时,其电量为3000-300m ,在模式B 下使用10-m 小时,则可得到(3000-300m )⋅1210-m >3000⋅5%,可化为2m -10(10-m )>12,令x =10-m ,可得2-x ⋅x >12,即2x -1<x ,可结合图形得到1<x <2,即1<10-m <2,解得8<m <9,即m ∈(8,9),故答案选D.6.已知正项等比数列{}n a 满足2022202120202a a a =+,若215log a +是2log m a 和2log n a 的等差中项,则9n mmn+的最小值为()A.43B.138C.85D.3421【答案】A【解析】正项等比数列{}n a 满足2022202120202a a a =+,所以22q q =+,且0q >,解得2q =,又因为215log a +是2log m a 和2log n a 的等差中项,所以()212225log log log m n a a a +=+,得102222121log (2)log (2)m n a a +-=,即12m n +=,()9119191410101212123n m m n m n mn m n n m ⎛+⎛⎫⎛⎫=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当39n m ==时,等号成立.故选:A.7.《九章算术》中记载,堑堵是底面为直角三角形的直三棱柱,阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵111ABC A B C -中,AC BC ⊥,12AA =,当阳马11B ACC A -体积的最大值为43时,堑堵111ABC A B C -的外接球的体积为()A.4π3B.π3C.32π3【答案】B【解析】由题意易得BC ⊥平面11ACC A ,所以()11222112113333B ACC A V BC AC AA BC AC BC AC AB -=⋅⋅=⋅≤+=,当且仅当AC BC =时等号成立,又阳马11B ACC A -体积的最大值为43,所以2AB =,所以堑堵111ABC A B C -的外接球的半径R =所以外接球的体积343V r π==,故选:B8.已知ln 22ln a a =,ln 33ln b b =,ln 55ln c c =,且(),,0,e ∈a b c 则()A.c <a <b B.a <c <b C.b <a <c D.b <c <a【答案】A 【解析】由已知得ln 2ln 2a a =,ln 3ln 3b b=,ln ln 55c c =,令()()()ln 0e ,=∈x f x x x ,()21ln xf x x -'=,可得()f x 在()0e ,∈x 上单调递增,在()e ,+∈∞x 上单调递减,()()25lnln 5ln 23205210-=-=<f c f a ,且(),0,e ∈a c ,所以c a <,()()8lnln 2ln 390236-=-=<f a f b ,且(),0,e ∈a b ,所以a b <,所以c a b <<.故选:A.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.已知()831f x x x ⎛⎫=- ⎪⎝⎭,则()A.()f x 的展开式中的常数项是56B.()f x 的展开式中的各项系数之和为0C.()f x 的展开式中的二项式系数最大值是70D.()f x 的展开式中不含4x 的项【答案】BC【解析】二项展开式通项公式为382441881()(1)rr rr r rr T C x C x x --+⎛⎫=-=- ⎪⎝⎭,2440r -=,6r =,常数项为6678(1)28T C =-=,A 错;2444r -=,=5r ,第6项是含4x 的项,D 错;令1x =得(1)0f =所有项系数和,B 正确;8n =,因此二项式系数的最大值为4870C =,C 正确.故选:BC.10.已知某物体作简谐运动,位移函数为()2sin()(0,)2f t t t πϕϕ=+><,且4()23f π=-,则下列说法正确的是()A.该简谐运动的初相为6πB.函数()f t 在区间0,2π⎛⎫⎪⎝⎭上单调递增C.若[0,]2t π∈,则(),2[]1f t ∈D.若对于任意12,0t t >,12t t ≠,都有12()()f t f t =,则12()2f t t +=【答案】ACD【解析】因为()2sin()(0,)2f t t t πϕϕ=+><,且4()23f π=-,所以422sin 3πϕ⎛⎫-=+⎪⎝⎭,即432,32k k Z ππϕπ+=+∈,所以2,6k k Z πϕπ=+∈,因为2πϕ<,所以6π=ϕ所以()2sin 6f t t π⎛⎫=+⎪⎝⎭,所以对于A 选项,简谐运动的初相为6π,故正确;对于B 选项,函数()f t 在区间0,3π⎛⎫ ⎪⎝⎭上单调递增,,32ππ⎛⎫⎪⎝⎭上单调递减,故错误;对于C 选项,当0,2t π⎡⎤∈⎢⎥⎣⎦时,2,663t πππ⎡⎤+∈⎢⎥⎣⎦,所以sin sin sin 662t πππ⎛⎫≤+≤ ⎪⎝⎭,即1sin 126t π⎛⎫≤+≤ ⎪⎝⎭,所以(),2[]1f t ∈,故正确;对于D 选项,对于任意12,0t t >,12t t ≠,都有12()()f t f t =,则12,2t t k k Z ππ+=+∈,所以12()2f t t +=,故正确.故选:ACD11.已知正三棱锥S ABC -的底面边长为6,侧棱长为则下列说法中正确的有()A.侧棱SA 与底面ABC 所成的角为4πB.侧面SAB 与底面ABC 所成角的正切值为C.正三棱锥S ABC -外接球的表面积为64πD.正三棱锥S ABC -1【答案】BC【解析】若,E F 分别是,BC AB 的中点,连接,AE SE ,易知AES ∠为侧棱SA 与底面ABC 所成角,由题设,SE =,AE =,SA =,则1cos2AES ∠==,∴3AES π∠=,故A 错误;若O 是底面中心,易知:SO ⊥面ABC ,连接OF 、SF ,则侧面SAB 与底面ABC 所成角为SFO ∠,又6SO =,OF =,则tan SFO ∠=B 正确.若外接球的半径为R ,则R ==,解得4R =,∴正三棱锥S ABC -外接球的表面积为2464R ππ=,故C 正确.由题设易知:S ABC V -=,若内切球的半径为r ,则()3SABSACSBCABCr SSS S+++=,又SABSAC SBCSSS===ABCS=,则93)2r ==,故D 错误.故选:BC12.关于函数()sin xf x e x =+,(),x ππ∈-.下列说法正确的是()A.()f x 在()()0,0f 处的切线方程为210x y -+=B.()f x 有两个零点C.()f x 有两个极值点D.()f x 存在唯一极小值点0x ,且()010f x -<<【答案】ABD【解析】()sin xf x e x =+,()00sin 01f e =+=,()cos xf x e x '=+,()00cos02f e '=+=,切线方程为()120y x -=-,即210x y -+=,故A 正确;()sin x f x e x ''=-⎡⎤⎣⎦,当0x >时,()0sin 110x x f x e x e e ''=≥-->-=⎡⎤⎣⎦,当π0x -<≤时,sin 0x ≤,0x e >,∴()sin 0x f x e x ''=>⎡⎤⎣⎦-,∴(),x ππ∈-时,()0f x ''>⎡⎤⎣⎦,∴()cos xf x e x '=+单调递增,32430422f e e --⎛⎫'-=-<-< ⎪⎝⎭ππ,2002f e -⎛⎫'-=-> ⎪⎝⎭ππ,在(),ππ-内,()cos xf x e x '=+存在唯一的零点0x ,且03,42x ππ⎛⎫∈-- ⎪⎝⎭,且在()0,x x π∈-内,()0f x '<,()f x 单调递减;()0,x x π∈,()0f x '>,()f x 单调递增,∴0x 为极值点,且为极小值点.由()000cos 0x f x e x '=+=,∴()00000sin sin cos xf x e x x x =+=-,∵03,42x ππ⎛⎫∈-- ⎪⎝⎭,∴00001sin 0,1cos 0,sin cos x x x x -<<-<<<,∴001sin cos 0x x -<-<,∴()f x 有唯一的极值点,且为极小值点0x ,且()010f x -<<,故C 错误,D 正确;又∵()()ππ0,sin 0f ef e e ππππ--=>=+=>,结合函数()f x 的单调性可知∴()f x 有两个零点,故B 正确;故选:ABD.三、填空题:本题共4小题,每小题5分,多空题,第一空2分,第二空3分,共20分.13.已知随机变量ξ服从正态分布()2,N μσ,若函数()()1f x P x x ξ=≤≤+为偶函数,则μ=_______.【答案】C【解析】因为函数()f x 为偶函数,则()()f x f x -=,即()()11P x x P x x ξξ-≤≤-+=≤≤+,所以,1122x x μ-++==.故答案为:1214.为调查新冠疫苗的接种情况,需从5名志愿者中选取3人到3个社区进行走访调查,每个社区一人.若甲乙两人至少有一人入选,则不同的选派方法有_____________.【答案】54【解析】①若甲乙两人恰有一人入选,志愿者有12236C C =种选法,再分配到3个社区,有336A =种方案,故由分步乘法计数原理知,共有6636⨯=种选派方法;②若甲乙两人都入选,志愿者有21233C C =种选法,再分配到3个社区,有336A =种方案,故由分步乘法计数原理知,共有1863=⨯种选派方法综上,由分类加法计数原理知,共有361854+=种选派方法.故答案为:54.15.数列{}n a 的各项均为正数,其前n 项和n S 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭.则n a =__________.【答案】【解析】由1111112a S a a ⎛⎫==+ ⎪⎝⎭,得111a S ==.当n>1时,由112n n n S a a ⎛⎫=+ ⎪⎝⎭①1112n n n n S a a a -⎛⎫⇒+=+ ⎪⎝⎭1112n n nS a a -⎛⎫⇒=-+ ⎪⎝⎭.②①+②得11n n n S S a -+=.③又1n n n S S a --=,④③⨯④得2211n n S S --=.则{}2n S 成等差数列,2n S n =,n S =.于是,1n n n a S S -=-=当1n =时,也满足上式.综上,n a =.故答案为16.椭圆的光学性质,从椭圆一个焦点发出的光,经过椭圆反射后,反射光线都汇聚到椭圆的另一个焦点上.已知椭圆C :()2221024x y b b+=<<,1F ,2F 为其左、右焦点.M 是C 上的动点,点(N ,若1MN MF +的最大值为6.动直线l 为此椭圆C 的切线,右焦点2F 关于直线l 的对称点()11,P x y ,113424S x y =+-,则:(1)椭圆C 的离心率为___________;(2)S 的取值范围为___________.【答案】12[]7,47【解析】根据椭圆定义得:122MF MF a +=,所以12222MN MF MN MF a NF a +=-+≤+,因为1MN MF +的最大值为6,因为2a =,所以22NF =2=,解得1c =,所以离心率为12c a =.右焦点()21,0F 关于直线的对称点()11,P x y ,设切点为A ,由椭圆的光学性质可得:P ,A ,1F 三点共线,所以111224FP F A AP F A AF a =+=+==,即点()11,P x y 的轨迹是以()1,0-为圆心,半径为4的圆,圆心()1,0-到直线34240x y +-=275=,则圆上的点到直线34240x y +-=的距离最小值277455-=,最大值2747455+=,所以点()11,P x y 到直线34240x y +-=的距离为:1134245x y +-,所以113424S x y =+-表示点()11,P x y 到直线34240x y +-=的距离的5倍,则1174734245,555S x y ⎡⎤=+-∈⨯⨯⎢⎥⎣⎦,即[]7,47S ∈.故答案为:12,[]7,47.。
2022届高三一轮复习生物:专题8生态系统及其稳定性

必修3 稳态与环境 444314专题8 生态系统及其稳定性一、生态系统的结构和功能:光、热、水、空气、无机盐等生产者:通过将太阳能转化成化学能储存在中组成成分消费者:加快物质循环、植物的传粉、种子的传播结构分解者:将动植物的遗体和动物的排遗物分解成无机物营养结构(、)生态系统进行、的渠道功能:【真题演练】1、“葛(葛藤)之覃兮,施与中谷(山谷),维叶萋萋。
黄鸟于飞,集于灌木,其鸣喈喈”(节选自《诗经·葛覃》)。
诗句中描写的美丽景象构成了一个A.黄鸟种群 B.生物群落C.自然生态系统 D.农业生态系统2、“小荷才露尖尖角,早有蜻蜓立上头”“争渡,争渡,惊起一滩鸥鹭” ……这些诗句描绘了荷塘的生动景致。
下列叙述正确的是A.荷塘中的动物、植物和微生物共同构成完整的生态系统B.采用五点取样法能精确调查荷塘中蜻蜓目昆虫的种类数C.挺水的莲、浮水的睡莲及沉水的水草体现出群落的垂直结构D.影响荷塘中“鸥鹭”等鸟类分布的主要因素是光照和人类活动3、辽宁省盘锦市的蛤蜊岗是由河流入海冲积而成的具有潮间带特征的水下钱滩,也是我国北方地区滩涂贝类的重要产地之一,其中的底栖动物在物质循环和能量流动中具有重要作用。
科研人员利用样方法对底栖动物的物种丰富度进行了调查结果表明该地底栖动物主要包括滤食性的双壳类、碎屑食性的多毛类和肉食性的虾蟹类等。
下列有关叙述正确的是A.本次调查的采样地点应选择底栖动物集中分布的区域B.底栖动物中既有消费者,又有分解者C.蛤蜊岗所有的底栖动物构成了一个生物群落D.蛤蜊岗生物多样性的直接价值大于间接价值(基石)二、能量流动1、概念:生态系统中能量的、、和的过程2、过程3、特点①在生态系统中,能量流动只能从第一营养级流向第二营养级,在依次流向后面的各个营养级,不可逆转,也不能循环流动。
②易错点1、任何生态系统都需要不断得到来自系统外的能量补充,以便维持生态系统的正常功能。
如果一个生态系统在一段较长时期内没有能量(太阳能或化学能)输入,这个生态系统就会崩溃。
2023年新高考数学一轮复习8-6 空间向量及其运算和空间位置关系(知识点讲解)含详解

专题8.6 空间向量及其运算和空间位置关系(知识点讲解)【知识框架】【核心素养】1.考查空间向量的概念及运算,凸显数学抽象、逻辑推理、数学运算、直观想象的核心素养.2.考查空间向量的应用,凸显逻辑推理、数学运算、直观想象的核心素养.【知识点展示】1.平行(共线)向量与共面向量2①a∥b时,θ=__0或π__,θ=__0__时,a与b同向;θ=__π__时,a与b反向.②a ⊥b ⇔θ=__π2__⇔a ·b =0.③θ为锐角时,a ·b __>__0,但a ·b >0时,θ可能为__0__;θ为钝角时,a ·b __<__0,但a ·b <0时,θ可能为__π__.④|a ·b |≤|a |·|b |,特别地,当θ=__0__时,a ·b =|a |·|b |,当θ=__π__时,a ·b =-|a |·|b |.⑤对于实数a 、b 、c ,若ab =ac ,a ≠0,则b =c ;对于向量a 、b 、c ,若a ·b =a ·c ,a ≠0,却推不出b =c ,只能得出__a ⊥(b -c )__.⑥a ·b =0⇒/ a =0或b =0,a =0时,一定有a ·b =__0__.⑦不为零的三个实数a 、b 、c ,有(ab )c =a (bc )成立,但对于三个向量a 、b 、c ,(a ·b )c __≠__a (b ·c ),因为a ·b 是一个实数,(a ·b )c 是与c 共线的向量,而a (b ·c )是与a 共线的向量,a 与c 却不一定共线. 3.空间向量基本定理(1)如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =__x a +y b +z c __.(2)如果三个向量a 、b 、c 不共面,那么所有空间向量组成的集合就是{p|p =x a +y b +z c ,x ,y ,z ∈R },这个集合可看作是由向量a 、b 、c 生成的,我们把{__a ,b ,c __}叫做空间的一个基底,a 、b 、c 都叫做__基向量__,空间任何三个__不共面__的向量都可构成空间的一个基底,同一(相等)向量在不同基底下的坐标__不同__,在同一基底下的坐标__相同__. 4.空间向量的正交分解及其坐标表示设e 1、e 2、e 3为有公共起点O 的三个两两垂直的单位向量(我们称它们为单位正交基底).以e 1、e 2、e 3的公共起点O 为原点,分别以__e 1,e 2,e 3__的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz .对于空间任意一个向量p 一定可以把它平移,使它的__起点__与原点O 重合,得到向量OP →=p ,由空间向量基本定理可知,存在有序实数组{x ,y ,z },使得p =x e 1+y e 2+z e 3.我们把x 、y 、z 称作向量p 在单位正交基底e 1、e 2、e 3下的坐标,记作p = (x ,y ,z ). 5.用向量描述空间平行关系设空间两条直线l 、m 的方向向量分别为a =(a 1,a 2,a 3)、b =(b 1,b 2,b 3),两个平面α,β的法向量分别为u =(u 1,u 2,u 3),v =(v 1,v 2,v 3),则有如下结论:6. 用向量证明空间中的垂直关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 7.共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R),a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量).【常考题型剖析】题型一:空间向量的运算例1.(2023·全国·高三专题练习)如图所示,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若AB a =,AD b =,1AA c =,则BM =( )A .1122a b c -+B .1122a b c ++C .1122a b c --+D .1122-++a b c例2. (2022·全国·高三专题练习)如图,OABC 是四面体,G 是ABC 的重心,1G 是OG 上一点,且14OG OG =,则( )A .1111666OG OA OB OC =++B .1OG =111121212OA OB OC ++ C .1OG =111181818OA OB OC ++ D .1OG =111888OA OB OC ++例3.(安徽·高考真题(理))在正四面体O -ABC 中,,,OA a OB b OC c ===,D 为BC 的中点,E 为AD 的中点,则OE =______________(用,,a b c 表示). 【方法技巧】用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来. 题型二:共线(共面)向量定理的应用例4.(2023·全国·高三专题练习)以下四组向量在同一平面的是( ) A .()1,1,0、()0,1,1、()1,0,1 B .()3,0,0、()1,1,2、()2,2,4 C .()1,2,3、()1,3,2、()2,3,1D .()1,0,0、()0,0,2、()0,3,0例5.(2022·广西桂林·模拟预测(文))如图,已知正方体ABCD -A 1B 1C 1D 1的中心为O ,则下列结论中①OA +OD 与OA 1+OD 1是一对相反向量;②OB -OC 1与OC -OB 1是一对相反向量;③OA 1+OB 1+OC 1+OD 1与OD +OC +OB +OA 是一对相反向量; ④OC -OA 与OC 1-OA 1是一对相反向量. 正确结论的个数为( ) A .1B .2C .3D .4例6.(2020·全国·高三专题练习)已知O 、A 、B 、C 、D 、E 、F 、G 、H 为空间的9个点(如图所示),并且OE kOA =,OF kOB =,OH kOD =,AC AD mAB =+,EG EH mEF =+.求证:(1)A 、B 、C 、D 四点共面,E 、F 、G 、H 四点共面; (2)//AC EG . 【总结提升】证明三点共线和空间四点共面的方法比较题型三:空间向量数量积及其应用例7.(广东·高考真题(理))已知向量()1,0,1a =-,则下列向量中与a 成60的是( ) A .()1,1,0-B .()1,1,0-C .()0,1,1-D .()1,0,1-例8.(2022·全国·高三专题练习)如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB a =,AD b =,c AP =.(1)试用a ,b ,c 表示向量BM ;(2)求BM 的长.例9. (2020·全国·高三专题练习)已知向量(2,1,2)a =-,(1,0,1)c =-,若向量b 同时满足下列三个条件:①1a b ⋅=-;①3b =;①b 与c 垂直.(1)求2a c +的模; (2)求向量b 的坐标. 【总结提升】空间向量数量积的应用题型四:利用空间向量证明平行例10.(2021·全国·高三专题练习)如图,在四面体ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证://BD 平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任意一点O ,有()14OM OA OB OC OD =+++. 例11.(2020·全国·高三专题练习(理))如图所示,平面P AD ①平面ABCD ,ABCD 为正方形,①P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:(1)PB //平面EFG ; (2)平面EFG //平面PBC . 【规律方法】利用空间向量证明平行的方法 1.线线平行:证明两直线的方向向量共线2.线面平行:①证明该直线的方向向量与平面的某一法向量垂直;②证明直线的方向向量与平面内某直线的方向向量平行3.面面平行:①证明两平面的法向量为共线向量;②转化为线面平行、线线平行问题 题型五:利用空间向量证明垂直例12.(2022·河南·宝丰县第一高级中学模拟预测(文))如图,O ,1O 是圆柱底面的圆心,1AA ,1BB ,1CC均为圆柱的母线,AB 是底面直径,E 为1AA 的中点.已知4AB =,BC =(1)证明:1AC BC ⊥;(2)若1AC BE ⊥,求该圆柱的体积.例13.(2022·全国·高三专题练习)已知正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1上的动点.(1)求证:A 1E ⊥BD ;(2)若平面A 1BD ⊥平面EBD ,试确定E 点的位置.例14.(2020·全国·高三专题练习)直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC ∠=︒,E 、F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证:(1)//EF 平面11AAC C ;(2)线段AC 上是否存在一点G ,使面EFG ⊥面11AAC C .若存在,求出AG 的长;若不存在,请说明理由. 【规律方法】利用空间向量证明垂直的方法1.线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零2.线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示3.面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示专题8.6 空间向量及其运算和空间位置关系(知识点讲解)【知识框架】【核心素养】1.考查空间向量的概念及运算,凸显数学抽象、逻辑推理、数学运算、直观想象的核心素养.2.考查空间向量的应用,凸显逻辑推理、数学运算、直观想象的核心素养.【知识点展示】1.平行(共线)向量与共面向量2①a∥b时,θ=__0或π__,θ=__0__时,a与b同向;θ=__π__时,a与b反向.②a ⊥b ⇔θ=__π2__⇔a ·b =0.③θ为锐角时,a ·b __>__0,但a ·b >0时,θ可能为__0__;θ为钝角时,a ·b __<__0,但a ·b <0时,θ可能为__π__.④|a ·b |≤|a |·|b |,特别地,当θ=__0__时,a ·b =|a |·|b |,当θ=__π__时,a ·b =-|a |·|b |.⑤对于实数a 、b 、c ,若ab =ac ,a ≠0,则b =c ;对于向量a 、b 、c ,若a ·b =a ·c ,a ≠0,却推不出b =c ,只能得出__a ⊥(b -c )__.⑥a ·b =0⇒/ a =0或b =0,a =0时,一定有a ·b =__0__.⑦不为零的三个实数a 、b 、c ,有(ab )c =a (bc )成立,但对于三个向量a 、b 、c ,(a ·b )c __≠__a (b ·c ),因为a ·b 是一个实数,(a ·b )c 是与c 共线的向量,而a (b ·c )是与a 共线的向量,a 与c 却不一定共线. 3.空间向量基本定理(1)如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =__x a +y b +z c __.(2)如果三个向量a 、b 、c 不共面,那么所有空间向量组成的集合就是{p|p =x a +y b +z c ,x ,y ,z ∈R },这个集合可看作是由向量a 、b 、c 生成的,我们把{__a ,b ,c __}叫做空间的一个基底,a 、b 、c 都叫做__基向量__,空间任何三个__不共面__的向量都可构成空间的一个基底,同一(相等)向量在不同基底下的坐标__不同__,在同一基底下的坐标__相同__. 4.空间向量的正交分解及其坐标表示设e 1、e 2、e 3为有公共起点O 的三个两两垂直的单位向量(我们称它们为单位正交基底).以e 1、e 2、e 3的公共起点O 为原点,分别以__e 1,e 2,e 3__的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz .对于空间任意一个向量p 一定可以把它平移,使它的__起点__与原点O 重合,得到向量OP →=p ,由空间向量基本定理可知,存在有序实数组{x ,y ,z },使得p =x e 1+y e 2+z e 3.我们把x 、y 、z 称作向量p 在单位正交基底e 1、e 2、e 3下的坐标,记作p = (x ,y ,z ). 5.用向量描述空间平行关系设空间两条直线l 、m 的方向向量分别为a =(a 1,a 2,a 3)、b =(b 1,b 2,b 3),两个平面α,β的法向量分别为u =(u 1,u 2,u 3),v =(v 1,v 2,v 3),则有如下结论:6. 用向量证明空间中的垂直关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 7.共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R),a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量).【常考题型剖析】题型一:空间向量的运算例1.(2023·全国·高三专题练习)如图所示,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若AB a =,AD b =,1AA c =,则BM =( )A .1122a b c -+B .1122a b c ++C .1122a b c --+D .1122-++a b c【答案】D 【解析】 【分析】根据空间向量的运算法则和空间向量基本定理相关知识求解即可. 【详解】由题意得,()()1111111111121222112BM BB B D AA A D A B AA AD A b c B a =+=+--+=+-=+.故选:D例2. (2022·全国·高三专题练习)如图,OABC 是四面体,G 是ABC 的重心,1G 是OG 上一点,且14OG OG =,则( )A .1111666OG OA OB OC =++B .1OG =111121212OA OB OC ++ C .1OG =111181818OA OB OC ++ D .1OG =111888OA OB OC ++【答案】B 【解析】 【分析】利用向量加法减法的几何意义并依据空间向量基本定理去求向量1OG 【详解】连接AG 并延长交BC 于N ,连接ON ,由G 是ABC 的重心,可得23AG AN =,()12ON OB OC =+ 则()()2221112=3332333AG AN ON OA OB OC OA OB OC OA ⎡⎤=-=+-=+-⎢⎥⎣⎦ 则()1111112444333OG OG OA AG OA OB OC OA ⎛⎫==+=++- ⎪⎝⎭111121212OA OB OC =++故选:B例3.(安徽·高考真题(理))在正四面体O -ABC 中,,,OA a OB b OC c ===,D 为BC 的中点,E 为AD 的中点,则OE =______________(用,,a b c 表示).【答案】111244a b c ++【解析】 【详解】因为在四面体O ABC -中,,,,OA a OB b OC c D ===为BC 的中点,E 为AD 的中点,()1222OA OD O OE A OD ∴=+=+()111222a OB OC =+⨯+()1111124244a b c a b c =++=++ ,故答案为111244a b c ++. 【方法技巧】用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来. 题型二:共线(共面)向量定理的应用例4.(2023·全国·高三专题练习)以下四组向量在同一平面的是( ) A .()1,1,0、()0,1,1、()1,0,1 B .()3,0,0、()1,1,2、()2,2,4 C .()1,2,3、()1,3,2、()2,3,1 D .()1,0,0、()0,0,2、()0,3,0【答案】B 【解析】 【分析】利用共面向量的基本定理逐项判断可得出合适的选项. 【详解】对于A 选项,设()()()1,1,00,1,11,0,1m n =+,所以,110n m m n =⎧⎪=⎨⎪+=⎩,无解;对于B 选项,因为()()()2,2,403,0,021,1,2=⋅+,故B 选项中的三个向量共面;对于C 选项,设()()()1,2,31,3,22,3,1x y =+,所以,2133223x y x y x y +=⎧⎪+=⎨⎪+=⎩,无解;对于D 选项,设()()()1,0,00,0,20,3,0a b =+,所以,013020b a =⎧⎪=⎨⎪=⎩,矛盾.故选:B.例5.(2022·广西桂林·模拟预测(文))如图,已知正方体ABCD -A 1B 1C 1D 1的中心为O ,则下列结论中①OA +OD 与OA 1+OD 1是一对相反向量;②OB -OC 1与OC -OB 1是一对相反向量;③OA 1+OB 1+OC 1+OD 1与OD +OC +OB +OA 是一对相反向量; ④OC -OA 与OC 1-OA 1是一对相反向量. 正确结论的个数为( ) A .1 B .2C .3D .4【答案】A 【解析】 【分析】由向量的加减运算对各个选项进行检验即可. 【详解】设E,F 分别为AD 和A 1D 1的中点,①OA +2OD OE =与1OA +12OD OF =不是一对相反向量,错误; ②OB -11OC C B =与OC -11OB B C =不是一对相反向量,错误;③OA 1+OB 1+OC 1+()1OD OC OD OA OB OC OD OA OB =----=-+++是一对相反向量,正确; ④OC -OA AC =与OC 1-111OA AC =不是一对相反向量,是相等向量,错误. 即正确结论的个数为1个故选:A例6.(2020·全国·高三专题练习)已知O 、A 、B 、C 、D 、E 、F 、G 、H 为空间的9个点(如图所示),并且OE kOA =,OF kOB =,OH kOD =,AC AD mAB =+,EG EH mEF =+.求证:(1)A、B、C、D四点共面,E、F、G、H四点共面;AC EG.(2)//【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)证明出AC、AB、AD为共面向量,结合AC、AB、AD有公共点可证得A、B、C、D四点共面,同理可证得E、F、G、H四点共面;AC EG.(2)证得EG k AC=,再由EG和AC无公共点可证得//【详解】(1)因为AC AD mAB=+,所以,AC、AB、AD为共面向量,因为AC、AB、AD有公共点A,故A、B、C、D四点共面,因为EG EH mEF=+,则EG、EH、EF为共面向量,因为EG、EH、EF有公共点E,故E、F、G、H四点共面;(2)OE kOA=,=,OF kOB=,OH kOD()EG EH mEF OH OE m OF OE=+=-+-()()()=-+-=+=+=,//k OD OA km OB OA k AD kmAB k AD mAB k AC∴,AC EGAC EG.因为AC、EG无公共点,故//【总结提升】证明三点共线和空间四点共面的方法比较题型三:空间向量数量积及其应用例7.(广东·高考真题(理))已知向量()1,0,1a =-,则下列向量中与a 成60的是( ) A .()1,1,0- B .()1,1,0- C .()0,1,1- D .()1,0,1-【答案】B 【解析】 【详解】试题分析:对于A 选项中的向量()11,0,1a =-,11111cos ,22a a a a a a ⋅-〈〉===-⋅⋅,则1,120a a 〈〉=;对于B 选项中的向量()21,1,0a =-,22211cos ,22a a a a a a ⋅〈〉===⋅,则2,60a a 〈〉=;对于C 选项中的向量()30,1,1a =-,2321cos ,22a a a a a a ⋅-〈〉===-⋅,则2,120a a 〈〉=;对于D 选项中的向量()41,0,1a =-,此时4a a =-,两向量的夹角为180.故选B.例8.(2022·全国·高三专题练习)如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB a =,AD b =,c AP=.(1)试用a ,b ,c 表示向量BM ; (2)求BM 的长.【答案】(1)111222a b c -++;(2)2【解析】 【分析】(1)将AD BC =,BP AP AB =-代入1()2BM BC BP =+中化简即可得到答案;(2)利用22||BM BM =,结合向量数量积运算律计算即可. 【详解】(1)M 是PC 的中点,1()2BM BC BP ∴=+.AD BC =,BP AP AB =-,1[()]2BM AD AP AB ∴=+-,结合AB a =,AD b =,c AP =,得1111[()]2222BM b c a a b c =+-=-++.(2)1AB AD ==,2PA =, ||||1a b ∴==,||2c =.AB AD ⊥,60PAB PAD ∠=∠=︒, 0a b ∴⋅=,21cos601a c b c ⋅=⋅=⨯⨯︒=.由(1)知111222BM a b c =-++,()2222211112222224BM a b c a b c a b a c b c ⎛⎫∴=-++=++-⋅-⋅+⋅⎪⎝⎭13(114022)42=⨯++--+=,6||2BM ∴=即BM 例9. (2020·全国·高三专题练习)已知向量(2,1,2)a =-,(1,0,1)c =-,若向量b 同时满足下列三个条件:①1a b ⋅=-;①3b =;①b 与c 垂直. (1)求2a c +的模;(2)求向量b 的坐标. 【答案】(1)1;(2)(2,1,2)b =-或(2,1,2)b =---. 【解析】 【分析】(1)求出2a c +的坐标,即可求出2a c +的模;(2)设(,,)b x y z =,则由题可知22222190x y z x y z x z +-=-⎧⎪++=⎨⎪-+=⎩,解出即可得出.【详解】解:(1)∵()2,1,2a =-,()1,0,1c =-, ∴()20,1,0a c +=, 所以21a c += ;(2)设(),,b x y z =,则由题可知222221,9,0,x y z x y z x z +-=-⎧⎪++=⎨⎪-+=⎩解得2,1,2,x y z =⎧⎪=-⎨⎪=⎩或2,1,2,x y z =-⎧⎪=-⎨⎪=-⎩ 所以()2,1,2b =-或()2,1,2b =---. 【总结提升】空间向量数量积的应用题型四:利用空间向量证明平行例10.(2021·全国·高三专题练习)如图,在四面体ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证://BD 平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任意一点O ,有()14OM OA OB OC OD =+++. 【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析 【解析】 【分析】(1)根据题意得出EF HG =可证;(2)通过证明//HE BD 可得;(3)可得四边形EFGH 为平行四边形,M 为EG 中点,即可证明. 【详解】(1)E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点, 12EF AC ∴=,12HG AC =,EF HG ∴=,又E ,F ,G ,H 四点不共线,故E ,F ,G ,H 四点共面; (2)E ,H 分别是AB ,AD 的中点, 12HE DB ∴=,//HE DB ∴,//HE BD ∴, HE ⊂平面EFGH ,BD ⊄平面EFGH ,∴//BD 平面EFGH ;(3)由(1)知四边形EFGH 为平行四边形,M ∴为EG 中点, E ,G 分别是AB ,CD 的中点, 11111()()()()22224OM OE OG OA OB OC OD OA OB OC OD ⎡⎤∴=+=+++=+++⎢⎥⎣⎦. 例11.(2020·全国·高三专题练习(理))如图所示,平面P AD ①平面ABCD ,ABCD 为正方形,①P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:(1)PB //平面EFG ;(2)平面EFG //平面PBC .【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)平面P AD ⊥平面ABCD ,且ABCD 为正方形,构建空间直角坐标系A -xyz ,并确定A ,B ,C ,D ,P ,E ,F ,G 的坐标,法一:求得(0,1,0),(1,2,1)EF EG ==-,即可确定平面EFG 的一个法向量n ,又0PB n ⋅=有n PB ⊥,则 PB //平面EFG 得证; 法二:由(2,0,2)PB =-,(0,1,0)FE =-,(1,1,1)FG =-,可知22PB FE FG =+,根据向量共面定理即有PB ,FE 与FG 共面,进而可证PB //平面EFG ;(2)由(1)有(0,1,0),(0,2,0)EF BC ==即2BC EF =,可得BC //EF ,根据线面平行的判定有EF //平面PBC ,GF //平面PBC ,结合面面平行的判定即可证平面EFG //平面PBC .【详解】(1)因为平面P AD ⊥平面ABCD ,且ABCD 为正方形,所以AB ,AP ,AD 两两垂直.以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0). 法一:(0,1,0),(1,2,1)EF EG ==- 设平面EFG 的法向量为(,,)n x y z =,则00n EF n EG ⎧⋅=⎨⋅=⎩,即020y x y z =⎧⎨+-=⎩,令z =1,则(1,0,1)n =为平面EFG 的一个法向量, ∵(2,0,2)PB =-,∴0PB n ⋅=,所以n PB ⊥, ∵PB ⊄平面EFG , ∴PB //平面EFG .法二:(2,0,2)PB =-,(0,1,0)FE =-,(1,1,1)FG =-. 设PB sFE tFG =+,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),所以202t t s t =⎧⎪-=⎨⎪-=-⎩解得s =t =2.∴22PB FE FG =+,又FE 与FG 不共线,所以PB ,FE 与FG 共面.∵PB ⊄平面EFG ,∴PB ∥平面EFG .(2)由(1)知:(0,1,0),(0,2,0)EF BC ==,∴2BC EF =,所以BC //EF .又EF ⊄平面PBC ,BC ⊂平面PBC ,所以EF //平面PBC ,同理可证GF //PC ,从而得出GF //平面PBC .又EF ∩GF =F ,EF ⊂平面EFG ,GF ⊂平面EFG ,∴平面EFG //平面PBC .【规律方法】利用空间向量证明平行的方法1.线线平行:证明两直线的方向向量共线2.线面平行:①证明该直线的方向向量与平面的某一法向量垂直;②证明直线的方向向量与平面内某直线的方向向量平行3.面面平行:①证明两平面的法向量为共线向量;②转化为线面平行、线线平行问题题型五:利用空间向量证明垂直例12.(2022·河南·宝丰县第一高级中学模拟预测(文))如图,O ,1O 是圆柱底面的圆心,1AA ,1BB ,1CC均为圆柱的母线,AB 是底面直径,E 为1AA 的中点.已知4AB =,BC =(1)证明:1AC BC ⊥;(2)若1AC BE ⊥,求该圆柱的体积.【答案】(1)见解析(2)【解析】【分析】(1)通过线面垂直证明线线垂直(2)建立空间直角坐标系,根据垂直条件解出圆柱的高(1)连结AC ,可知AC BC ⊥1CC ⊥平面ABC 1CC BC ∴⊥1CC AC C =BC ∴⊥平面1ACC1BC AC ∴⊥(2)如图,以C 为原点,1,,CA CB CC 所在直线分别为,,x y z 轴建立空间直角坐标系设圆柱的高为h可得1(2,0,0),(0,0,),(2,0,)2h A B C h E1(2,0,),(2,)2h AC h BE =-=-由题意得21402h AC BE ⋅=-+=,解得h =故圆柱的体积2V πr h ==例13.(2022·全国·高三专题练习)已知正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1上的动点.(1)求证:A 1E ⊥BD ;(2)若平面A 1BD ⊥平面EBD ,试确定E 点的位置.【答案】(1)证明见解析;(2)E 为CC 1的中点.【解析】【分析】以D 为原点,DA 、DC 、DD 1为x ,y ,z 轴,建立空间直角坐标系.(1)计算10A E BD →→⋅=即可证明;(2)求出面A 1BD 与面EBD 的法向量,根据法向量垂直计算即可.【详解】以D 为坐标原点,以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图,设正方体的棱长为a ,则A (a ,0,0),B (a ,a ,0),C (0,a ,0),A 1(a ,0,a ),C 1(0,a ,a ).设E (0,a ,e )(0≤e ≤a ).(1)1A E →=(-a ,a ,e -a ),BD →=(-a ,-a ,0),1A E BD →→⋅=a 2-a 2+(e -a )·0=0, ∴1A E BD →→⊥,即A 1E ⊥BD ;(2)设平面A 1BD ,平面EBD 的法向量分别为1n →=(x 1,y 1,z 1),2n →=(x 2,y 2,z 2).∵DB →=(a ,a ,0),1DA →=(a ,0,a ),DE →=(0,a ,e )∴10n DB →→⋅=, 110n DA →→⋅=, 20n DB →→⋅=,10n DE →→⋅=. ∴11110,0,ax ay ax az +=⎧⎨+=⎩, 22220,0.ax ay ay ez +=⎧⎨+=⎩ 取x 1=x 2=1,得1n →=(1,-1,-1),2n →=(1,-1,a e).由平面A 1BD ⊥平面EBD 得1n →⊥2n →. ∴2-a e=0,即e =2a . ∴当E 为CC 1的中点时,平面A 1BD ⊥平面EBD .例14.(2020·全国·高三专题练习)直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC ∠=︒,E 、F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证:(1)//EF 平面11AAC C ;(2)线段AC 上是否存在一点G ,使面EFG ⊥面11AAC C .若存在,求出AG 的长;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,AG =【解析】【分析】(1)以1A 为原点,11A D ,11A B ,1A A 分别为,,x y z 轴建立空间直角坐标系:根据向量的坐标可得11113EF A A AC =-+,由此可证//EF 平面11AAC C ; (2)将问题转化为线段AC 上是否存在一点G ,使EG AC ⊥,则问题不难求解.【详解】(1)如图所示:以1A 为原点,11A D ,11A B ,1A A 分别为,,x y z 轴建立空间直角坐标系:则1(0,0,0)A ,1(0,2,0)B ,1(2,2,0)C ,设(0,0,)A a ,则4(0,,)3E a ,2(,2,0)3F , 所以22(,,)33EF a =-,1(0,0,)A A a =,11(2,2,0)AC =, 因为11113EF A A AC =-+,所以EF ,1A A ,11AC 共面,又EF 不在平面11AAC C 内, 所以//EF 平面11AAC C(2)线段AC 上存在一点G ,使面EFG ⊥面11AAC C ,且3AG =,证明如下:在三角形AGE 中,由余弦定理得EG ===, 所以222AG EG AE +=,即EG AG ⊥,又1A A ⊥平面ABCD ,EG ⊂平面ABCD ,、所以1A A EG ⊥,而1AG A A A ⋂=,所以EG ⊥平面11AAC C ,因为EG ⊂平面EFG ,所以EFG ⊥面11AAC C ,【规律方法】利用空间向量证明垂直的方法1.线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零2.线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示3.面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示。
高三一轮总复习高效讲义第8章第6节抛物线课件

[思维升华] 求抛物线标准方程的方法 (1)定义法:若题目已给出抛物线的方程(含有未知数 p),那么只需求出 p 即可. (2)待定系数法:若题目未给出抛物线的方程,对于焦点在 x 轴上的抛物线的标准方 程可设为 y2=ax(a≠0),焦点在 y 轴上的抛物线的标准方程可设为 x2=ay(a≠0),a 的正 负由题设来定.这样就减少了不必要的讨论.
由抛物线的定义可知,点 P 到准线 l 的距离等于点 P 到焦点 F 的距离,
∴点 P 到直线 l 的距离与点 P 到直线 3x+4y+7=0 的距离之和的最小值为点 F(1,
0)到直线 3x+4y+7=0 的距离,即
|3+7| 32+42
=2.
答案:(1)B (2)2
[思维引申] (换条件)本例(1)中的 B 点坐标改为(3,4),则|PB|+|PF|的最小值为 ________.
解析:因为抛物线 C 顶点在原点,焦点在 y 轴上,故设抛物线方程为 x2=my, 又抛物线过点(2,1),所以 22=m,即 m=4,所以抛物线方程为 x2=4y. 答案:x2=4y
4.过抛物线 y2=4x 的焦点作直线交抛物线于 A(x1,y1),B(x2,y2)两点,如果 x1+ x2=6,则|AB|=________.
考点 3 抛物线的几何性质[典例引领]
【例 3】 (1)已知抛物线 y2=2px(p>0)的准线经过点(-1,1),则该抛物线的焦点
坐标为( )
A.(-1,0)
B.(1,0)
C.(0,-1)
D.(0,1)
(2)已知直线 l 过抛物线 C 的焦点,且与 C 的对称轴垂直,l 与 C 交于 A,B 两点,
因此焦点坐标为0,-4 . 答案:D
2.已知点1,1 在抛物线 C:y2=2pxp>0 上,则 C 的焦点到其准线的距离为( )
高三一轮复习资料 第八单元 生命活动的调节 课时1 人体的内环境与稳态

第八单元 生命活动的调节1人体的内环境与稳态课程内容:稳态的生理意义(Ⅱ)。
考点1细胞生活的环境对应学生用书P1471.体液的组成及内环境成分之间的关系(1)由细胞外液构成的液体环境叫作⑦ 内环境 。
(2)⑧ 血浆 是血细胞直接生活的环境。
(3)⑨ 组织液 是体内绝大多数细胞直接生活的环境。
(4)组织液、淋巴的成分和含量与血浆相近,但又不完全相同,最主要的差别在于血浆中含有较多的⑩ 蛋白质 ,而组织液和淋巴中含量很少。
2.内环境的理化性质 (1)渗透压渗透压的大小取决于单位体积溶液中溶质微粒的数目,具体如下表:溶质微粒数量 对水的吸引力 渗透压高低越多 越大 越高 越少 越小 越低血浆渗透压的大小主要与无机盐、蛋白质 的含量有关。
细胞外液渗透压的90%以上来源于Na +和Cl - 。
(2)酸碱度正常人的血浆近中性,pH 为7.35~7.45。
血浆的pH 之所以能够保持稳定,与它含有 HC O 3-、HP O 42- 等离子有关。
(3)温度人体细胞外液的温度一般维持在37 ℃左右,其重要意义是维持酶的正常活性。
3.内环境的作用及参与系统 (1)作用:内环境 是细胞与外界环境进行物质交换的媒介;内环境是细胞生存的直接环境。
(2)参与系统:与消化系统、循环系统、呼吸系统和泌尿系统 等四大系统有直接关系,与其他系统也有关系,通过机体各器官、系统的分工合作,协调统一而实现。
1.组织液是体内所有细胞直接生活的环境。
(×) 解析 组织液是体内绝大多数细胞直接生活的环境,血细胞的生活环境是血浆,而不是组织液。
2.在组成人体的体液中,细胞外液的量要多于细胞内液。
(×)解析 细胞外液存在于细胞外,约占体液的1/3,细胞内液存在于细胞内,约占体液的2/3,所以细胞外液的量少于细胞内液的量。
3.NaCl 中Na +参与血浆渗透压的形成,而Cl -不参与。
(×) 解析 血浆渗透压的大小主要与无机盐、蛋白质的含量有关。
2020届高三英语一轮复习课件+练习 (8)

[动词及系表结构型] 对……做出决定 想要(做)……
3. give up
放弃
基础自主梳理
4. take risks/a risk 冒险
5. get into
陷入;染上(坏习惯)
6.find a cure for 找到治疗……的方法
7.ban sb from doing sth禁止某人干某事
8.have an effect on/upon 对……有影响;对……起作用,产生效果
地
基础自主梳理
33. mental adj.精神的;智力的→ mentally adv.精神上;智力上 34. abnormal adj.畸形的;异常的→normal adj.正常的 35. breathless adj.气喘吁吁的;屏息的→breath n.气息;呼吸→ breathe v.
喘气;呼吸
基础自主梳理
22. relaxation n.放松;松弛→relax v. 使放松→ relaxed adj.轻松的→ relaxing adj.使人放松的
23. chemist n.药剂师;化学家→chemistry n.化学→ chemical adj.化学的 24. effect n.结果;效力→ effective adj.有效的 25. comprehension n.理解(力)→comprehend vt.理解;领会 26. survival n.幸存;幸存者→survive v.活下来→ survivor n.幸存者 27. judgement n.看法;判决;判断→judge v.判断;审判 n.法官;裁判
基础自主梳理
16. male adj.男性的;雄性的 n.男人;雄性动(植)物 17. female adj.女性的;雌性的 n.雌性动(植)物;女人 18. awkward adj.局促不安的;笨拙的;令人尴尬的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工具
第八章 水溶液中的离子平衡
栏目导引
解析:
根据题给的Ksp 数据可知,碘化银的溶解度远
小于氯化银,故在KI溶液中,氯化银能转化为碘化银沉淀而
溶解,即D项正确。 答案: D
工具
第八章 水溶液中的离子平衡
栏目导引
3.有关AgCl沉淀的溶解平衡的说法中,不正确的是 ( )
A.AgCl沉淀生成和沉淀溶解不断进行,但速率相等
工具
第八章 水溶液中的离子平衡
栏目导引
解析:
对于溶解平衡 BaSO4(s) 2 + (aq)+SO42 - Ba
+
(aq), 加入 Na2SO4 溶液, 平衡向左移动, c(Ba2 )减小, c(SO42
-
)增大, 所以溶液中 c(Ba2 )<c(SO42 ), 仍为饱和溶液, c(Ba2 )· c(SO42 )=Ksp。
+ - + - + -
+
-
工具
第八章 水溶液中的离子平衡
栏目导引
提示:
(1)不同。①式表示难溶电解质AgCl在水溶液
中的溶解平衡方程式;②式表示强电解质AgCl在水溶液中的
电离方程式。 (2)Ag+与Cl-反应生成AgCl沉淀达到一定程度也会处于 溶解平衡状态,所以溶液中仍然会有Ag + 和Cl- ,只不过其 浓度很小。
第4讲
难溶电解质的溶解平衡
工具
第八章 水溶液中的离子平衡
栏目导引
复习目标
考向分析 近几年来,高考对本讲内容的
1.了解难溶电解
质的沉淀溶解平 衡。 2.了解沉淀溶解 平衡的应用及沉
考查一直较“热”,主要考点 有三个:一是考查溶解平衡的
建立和平衡的移动;二是结合
图象,考查溶度积的应用及其 影响因素;三是沉淀反应在生 产、科研、环保中的应用。
工具
第八章 水溶液中的离子平衡
栏目导引
(2)已知Ca5(PO4)3F(s)的溶解度比上面的矿化产物更小,
质地更坚硬。请用离子方程式表示,当牙膏中配有氟化物添
加剂后能防止龋齿的原因是_________________________。 (3)根据以上原理,请你提出一种其他促进矿化的方法: __________________。
n+ m [c(Am-)]n Ksp= [c(M )] ·
+ -
2.影响因素:只受 温度 影响。
工具
第八章 水溶液中的离子平衡
栏目导引
3.溶度积规则 某难溶电解质的溶液中任一情况下有关离子浓度的乘积 Qc(离子积)与Ksp的关系
工具
第八章 水溶液中的离子平衡
栏目导引
[开放探究1] (1)①AgCl(s) (aq)+Cl (aq); Ag ②AgCl===Ag +Cl 。 ①②两方程式所表示的意义相同吗? (2)Ag 与Cl 按等物质的量之比反应生成AgCl沉淀,该 反应完成后,溶液中有无Ag 、Cl 存在?
- +
+F-===Ca5(PO4)3F↓,产生了质地更坚硬的固体物质,使牙受
+
到保护。从 Ca5(PO4)3OH 在唾液中的平衡可以看出,加入 Ca2 或加入 PO43-都可促进矿化。
答案:
(1)生成的有机酸能中和 OH :H +OH ===H2O
-
+
-
使平衡向脱矿方向移动 (2)5Ca2++3PO43-+F-===Ca5(PO4)3F↓ (3)加 Ca2+或加 PO43-等
工具
第八章 水溶液中的离子平衡
栏目导引
三、沉淀溶解平衡的应用 1.沉淀的生成
(1)调节pH法
如除去NH4Cl溶解中的FeCl3 杂质,可加入氨水调节pH 至7~8,离子方程式为: Fe3++3NH3·H2O===Fe(OH)3↓+3NH4+ (2)沉淀剂法 如 用 H2S 沉 淀 Cu2
+
。
, 离 子 方 程 式
- + -
答案:
B
工具
第八章 水溶液中的离子平衡
栏目导引
4.要使工业废水中的重金属离子Pb2+ 沉淀,可用硫酸 盐、碳酸盐、硫化物等作沉淀剂,已知Pb2+与这些离子形成 的化合物的溶解度如下: 化合物 溶解度/g PbSO4 PbCO3 PbS
1.03×10-4
1.81×10-7
1.84×10-14 )
淀转化的本质。
工具
第八章 水溶液中的离子平衡
栏目导引
◎ 判断下列说法是否正确: 1.(2010·江苏高考T10-C)常温下,向饱和Na2CO3溶液 中加少量BaSO4粉末,过滤,向洗净的沉淀中加稀盐酸,有
气泡产生,说明常温下Ksp(BaCO3)<Ksp(BaSO4)(
)
2.(2010·天津高考T4 -C)25 ℃时,AgCl在同浓度的
- - + - + -
)降低,平衡右移。
第八章 水溶液中的离子平衡
栏目导引
工具
1.在 BaSO4 饱和溶 液中 , 加 入 Na2SO4(s),达平 衡 时 ( )
A.c(Ba2+)=c(SO42-)
B.c(Ba2+)=c(SO42-)=[Ksp(BaSO4)]1/2 C.c(Ba2+)≠c(SO42-),c(Ba2+)·c(SO42-)=Ksp(BaSO4) D.c(Ba2+)≠c(SO42-),c(Ba2+)·c(SO42-)≠Ksp(BaSO4)
由上述数据可知,选用的沉淀剂最好是(
A.硫化物 C.碳酸盐 B.硫酸盐 D.以上沉淀均可
工具
第八章 水溶液中的离子平衡
栏目导引
解析:
以PbSO4 、PbCO3 、PbS的溶解度看,PbS溶
解度最小,溶解度越小,沉淀效果越好。 答案: A
工具
第八章 水溶液中的离子平衡
栏目导引
5.牙齿表面由一层硬的、组成为 Ca5(PO4)3OH 的物质 保护着,它在唾液中存在下列平衡: 脱矿 Ca5(PO4)3OH(固) 2++3PO43-+OH- 5Ca 矿化 (1)进食后,细菌和酶作用于食物,产生有机酸,这时牙 齿就会受到腐蚀,其原因是___________________________ _______________________________________________ _________________________。
工具
第八章 水溶液中的离子平衡
栏目导引
(3)沉淀转化的规律:一般说来, 溶解度小的沉淀转化成 溶解度更小 的沉淀容易实现。
(4)应用:锅炉除垢、矿物转化等。
工具
第八章 水溶液中的离子平衡
栏目导引
[开放探究2]
用平衡移动的原理解释,为什么BaSO4不
溶于水也不溶于稀硝酸,而BaCO3不溶于水,但能溶于稀硝
工具
速率相等的
第八章 水溶液中的离子平衡
栏目导引
3.表达式 若用“AnBm”表示难溶电解质的化学式,则溶解平衡的
AnBm(s) m+(aq)+Bn-(aq) 。 A 表达式为:
工具
第八章 水溶液中的离子平衡
栏目导引
二、沉淀溶解平衡常数——溶度积 1.表达式 对于溶解平衡MmAn(s) n (aq)+nAm (aq) mM
工具
第八章 水溶液中的离子平衡
栏目导引
解析: 根据题意, 牙齿表面有一层硬的物质存在如下平衡: 脱矿 Ca5(PO4)3OH(固) 2++3PO43-+OH-,进食后产生有机 5Ca 矿化 酸,电离出 H+与 OH-结合生成 H2O,破坏上述平衡使其向脱矿 方向移动,牙齿受到腐蚀。当用含氟牙膏刷牙时,5Ca2 +3PO43
+
)和 c(OH-)都增大,平衡向左移动,由于温度不变,Ksp 不变,
所以当 c(Ca2+)和 c(OH-)减小至与原平衡相等时达到新的平衡, c(Ca2+)、c(OH-)未变,pH 不变[但 n(Ca2+)、n(OH-)减小了, Ca(OH)2 的量增大了];给溶液加热, 、Ca(OH)2 的溶解度随温度 升高而减小,所以又会有少量 Ca(OH)2 析出,c(OH-)减小,pH 减小;加入 Na2CO3 溶液,部分 Ca(OH)2 转化为 CaCO3,固体质 量增加;加入 NaOH(s),平衡左移,Ca(OH)2 固体质量增加。
工具
第八章 水溶液中的离子平衡
栏目导引
一、难溶电解质的溶解平衡的建立和移动 (教师可根据实际情况确定例题) 1. 把 Ca(OH)2 放入蒸馏水中,一段时间后达到平衡: Ca(OH)2(s) 2+(aq)+2OH-(aq)。 Ca 下列说法正确的是( )
工具
第八章 水溶液中的离子平衡
栏目导引
A.恒温下向溶液中加入CaO,溶液的pH升高 B.给溶液加热,溶液的pH升高
CaCl2和NaCl溶液中的溶解度相同(
工具
)
栏目导引
第八章 水溶液中的离子平衡
3.(2010·北京高考T11-A)自然界地表层原生铜的硫化 物经氧化、淋滤作用后变成CuSO4溶液,向地下深层渗透, 遇到难溶的ZnS或PbS,慢慢转变为铜蓝(CuS)。则CuS的溶 解度大于PbS的溶解度( )
4.(2009·天津高考T4 -D)在Na2S溶液中加入AgCl固
2+ + 为: Cu +H2S===CuS↓+2H 。
工具
第八章 水溶液中的离子平衡
栏目导引
2.沉淀的溶解 (1)酸溶解:用离子方程式表示难溶于水的CaCO3可溶于
+ 2+ 盐酸 CaCO3+2H ===Ca +CO2↑+H2O 。
(2) 盐 溶 解 : 用 离 子 方 程 表 示 Mg(OH)2 溶 于 NH4Cl 溶
体,溶液中c(S2-)下降(
)
5.(2009·浙江高考T10-B)25 ℃时,在Mg(OH)2的悬浊
液中加入少量的NH4Cl固体,c(Mg2+)增大(
)