高中椭圆练习题(有答案_必 会基础题!)
高中数学椭圆练习题及答案

高中数学椭圆练习题及答案椭圆是数学的重要考点,考生要加以重视。
今天,店铺为大家整理了高中数学椭圆练习题及答案。
高中数学椭圆练习题一、选择题2.已知焦点在x轴上的椭圆的离心率为,且它的长轴长等于圆C:x2+y2-2x-15=0的半径,则椭圆的标准方程是( )(A)+=1 (B)+=1(C)+y2=1 (D)+=13.(2013·安康模拟)若m是2和8的等比中项,则圆锥曲线x2+=1的离心率是( )(A) (B) (C)或 (D)或4.已知椭圆:+=1(0b>0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若∠F1PF2=60°,则椭圆的离心率为( )(A) (B) (C) (D)6.(能力挑战题)以F1(-1,0),F2(1,0)为焦点且与直线x-y+3=0有公共点的椭圆中,离心率最大的椭圆方程是( )(A)+=1 (B)+=1(C)+=1 (D)+=1高中数学椭圆练习题二、填空题7.在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x 轴上,离心率为.过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么C的方程为.8.已知点P是椭圆16x2+25y2=400上一点,且在x轴上方,F1,F2分别是椭圆的左、右焦点,直线PF2的斜率为-4,则△PF1F2的面积是.9.分别过椭圆+=1(a>b>0)的左、右焦点F1,F2所作的两条互相垂直的直线l1, l2的交点在此椭圆的内部,则此椭圆的离心率的取值范围是.高中数学椭圆练习题三、解答题10.(2013·西安模拟)在平面直角坐标系中,已知曲线C上任意一点P 到两个定点F1(-,0)和F2(,0)的距离之和为4.(1)求曲线C的方程.(2)设过(0,-2)的直线l与曲线C交于A,B两点,以线段AB为直径作圆.试问:该圆能否经过坐标原点?若能,请写出此时直线l的方程,并证明你的结论;若不能,请说明理由.11.(2013·渭南模拟)已知椭圆C:+=1(a>b>0)的右顶点A为抛物线y2=8x的焦点,上顶点为B,离心率为.(1)求椭圆C的方程.(2)过点(0,)且斜率为k的直线l与椭圆C相交于P,Q两点,若线段PQ的中点横坐标是-,求直线l的方程.12.(能力挑战题)已知点P是圆F1:(x+)2+y2=16上任意一点,点F2与点F1关于原点对称.线段PF2的中垂线与PF1交于M点.(1)求点M的轨迹C的方程.(2)设轨迹C与x轴的两个左右交点分别为A,B,点K是轨迹C上异于A,B的任意一点,KH⊥x轴,H为垂足,延长HK到点Q使得|HK|=|KQ|,连接AQ并延长交过B且垂直于x轴的直线l于点D,N为DB的中点.试判断直线QN与以AB为直径的圆O的位置关系.高中数学椭圆练习题答案1.【解析】选B.由题意得2a=2b,即a=b.又a2=b2+c2,所以有b=c,∴a=c,得离心率e=.2.【解析】选A.圆C的方程可化为(x-1)2+y2=16.知其半径r=4,∴长轴长2a=4,∴a=2.又e==,∴c=1,b2=a2-c2=4-1=3,∴椭圆的标准方程为+=1.3.【解析】选C.因为m是2和8的等比中项,所以m2=16,所以m=±4.当m=4时,圆锥曲线为椭圆x2+=1,离心率为,当m=-4时,圆锥曲线为双曲线x2-=1,离心率为,综上选C.4.【解析】选D.由题意知a=2,所以|BF2|+|AF2|+|AB|=4a=8.因为|BF2|+|AF2|的最大值为5,所以|AB|的最小值为3,当且仅当AB⊥x 轴时,取得最小值,此时A(-c,),B(-c,-),代入椭圆方程得+=1.又c2=a2-b2=4-b2,所以+=1,即1-+=1,所以=,解得b2=3,所以b=,选D.5.【解析】选 B.由题意知点P的坐标为(-c,)或(-c,-),因为∠F1PF2=60°,那么=,∴2ac=b2,这样根据a,b,c的关系式化简得到结论为.6.【思路点拨】由于c=1,所以只需长轴最小,即公共点P,使得|PF1|+|PF2|最小时的椭圆方程.【解析】选C.由于c=1,所以离心率最大即为长轴最小.点F1(-1,0)关于直线x-y+3=0的对称点为F′(-3,2),设点P为直线与椭圆的公共点,则2a=|PF1|+|PF2|=|PF′|+|PF2|≥|F′F2|=2.取等号时离心率取最大值,此时椭圆方程为+=1.7.【解析】根据椭圆焦点在x轴上,可设椭圆方程为+=1(a>b>0).∵e=,∴=.根据△ABF2的周长为16得4a=16,因此a=4,b=2,所以椭圆方程为+=1.答案:+=18.【解析】由已知F1(-3,0),F2(3,0),所以直线PF2的方程为y=-4(x-3),代入16x2+25y2=400,整理得76x2-450x+650=0,解得:x=或x=(因为x<3,故舍去),又点P(x,y)在椭圆上,且在x轴上方,得16×()2+25y2=400,解得y=2,∴=|F1F2|·y=×6×2=6.答案:69.【思路点拨】关键是由l1, l2的交点在此椭圆的内部,得到a,b,c 间的关系,进而求得离心率e的取值范围.【解析】由已知得交点P在以F1F2为直径的圆x2+y2=c2上. 又点P在椭圆内部,所以有c20,∴k2>,………………②则x1+x2=,x1·x2=,代入①,得(1+k2)·-2k·+4=0.即k2=4,∴k=2或k=-2,满足②式.所以,存在直线l,其方程为y=2x-2或y=-2x-2.11.【解析】(1)抛物线y2=8x的焦点为A(2,0),依题意可知a=2. 因为离心率e==,所以c=.故b2=a2-c2=1,所以椭圆C的方程为:+y2=1.(2)直线l:y=kx+,由消去y可得(4k2+1)x2+8kx+4=0,因为直线l与椭圆C相交于P,Q,所以Δ=(8k)2-4(4k2+1)×4>0,解得|k|>.又x1+x2=,x1x2=,设P(x1,y1),Q(x2,y2),PQ中点M(x0,y0),因为线段PQ的中点横坐标是-,所以x0===-,解得k=1或k=,因为|k|>,所以k=1,因此所求直线l:y=x+.12.【解析】(1)由题意得,F1(-,0),F2(,0),圆F1的半径为4,且|MF2|=|MP|,从而|MF1|+|MF2|=|MF1|+|MP|=4>|F1F2|=2,∴点M的轨迹是以F1,F2为焦点的椭圆,其中长轴2a=4,焦距2c=2, 则短半轴b===1,椭圆方程为:+ y2=1.(2)设K(x0,y0),则+=1.∵|HK|=|KQ|,∴Q(x0,2y0),∴OQ==2,∴Q点在以O为圆心,2为半径的圆上,即Q点在以AB为直径的圆O上.又A(-2,0),∴直线AQ的方程为y=(x+2).令x=2,得D(2,).又B(2,0),N为DB的中点,∴N(2,).∴=(x0,2y0),=(x0-2,).∴·=x0(x0-2)+2y0·=x0(x0-2)+=x0(x0-2)+=x0(x0-2)+x0(2-x0)=0,∴⊥,∴直线QN与以AB为直径的圆O相切.。
椭圆经典例题(带答案-适用于基础性巩固)

椭圆标准方程典型例题(参考答案)例1 已知椭圆06322=-+m y mx 的一个焦点为(0,2)求m 的值.解:方程变形为12622=+my x .因为焦点在y 轴上,所以62>m ,解得3>m . 又2=c ,所以2262=-m ,5=m 适合.故5=m .例2 已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆的标准方程. 解:当焦点在x 轴上时,设其方程为()012222>>=+b a by a x .由椭圆过点()03,P ,知10922=+b a .又b a 3=,代入得12=b ,92=a ,故椭圆的方程为1922=+y x . 当焦点在y 轴上时,设其方程为()012222>>=+b a bx a y .由椭圆过点()03,P ,知10922=+ba .又b a 3=,联立解得812=a ,92=b ,故椭圆的方程为198122=+x y . 例3 ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x . (2)设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ① 由题意有⎪⎪⎩⎪⎪⎨⎧='='33y y x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).例4 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和352,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程. 解:设两焦点为1F 、2F ,且3541=PF ,3522=PF .从椭圆定义知52221=+=PF PF a .即5=a . 从21PF PF >知2PF 垂直焦点所在的对称轴,所以在12FPF Rt ∆中,21sin 1221==∠PF PF F PF ,可求出621π=∠F PF ,3526cos21=⋅=πPF c ,从而310222=-=c a b .∴所求椭圆方程为1103522=+y x 或1510322=+y x . 例5 已知椭圆方程()012222>>=+b a by a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ∆的面积(用a 、b 、α表示).解:如图,设()y x P ,,由椭圆的对称性,不妨设()y x P ,,由椭圆的对称性,不妨设P 在第一象限.由余弦定理知: 221F F 2221PF PF +=12PF -·224cos c PF =α.①由椭圆定义知: a PF PF 221=+ ②,则-①②2得 αcos 12221+=⋅b PF PF . 故αsin 212121PF PF S PF F ⋅=∆ ααsin cos 12212+=b 2tan 2αb =. 例6 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程. 解:如图所示,设动圆P 和定圆B 内切于点M .动点P 到两定点,即定点()03,-A 和定圆圆心()03,B 距离之和恰好等于定圆半径, 即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ,B 为两焦点,半长轴为4,半短轴长为73422=-=b 的椭圆的方程:171622=+y x . 例7 已知椭圆1222=+y x ,(1)求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在直线的方程; (2)求斜率为2的平行弦的中点轨迹方程; (3)过()12,A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k , 求线段PQ 中点M 的轨迹方程.解:设弦两端点分别为()11y x M ,,()22y x N ,,线段MN 的中点()y x R ,,则⎪⎪⎩⎪⎪⎨⎧=+=+=+=+④,③,②,①,y y y x x x y x y x 222222212122222121①-②得()()()()022*******=-++-+y y y y x x x x . 由题意知21x x ≠,则上式两端同除以21x x -,有()()0221212121=-+++x x y y y y x x ,将③④代入得022121=--+x x y y yx .⑤(1)将21=x ,21=y 代入⑤,得212121-=--x x y y ,故所求直线方程为: 0342=-+y x . ⑥ 将⑥代入椭圆方程2222=+y x 得041662=--y y ,0416436>⨯⨯-=∆符合题意,0342=-+y x 为所求. (2)将22121=--x x y y 代入⑤得所求轨迹方程为: 04=+y x .(椭圆内部分)(3)将212121--=--x y x x y y 代入⑤得所求轨迹方程为: 022222=--+y x y x .(椭圆内部分)(4)由①+②得 :()2222212221=+++y y x x , ⑦, 将③④平方并整理得 212222124x x x x x -=+, ⑧, 212222124y y y y y -=+, ⑨将⑧⑨代入⑦得:()224424212212=-+-y y y x x x , ⑩ 再将212121x x y y -=代入⑩式得: 221242212212=⎪⎭⎫ ⎝⎛--+-x x y x x x , 即 12122=+y x . 例8 已知椭圆1422=+y x 及直线m x y +=.(1)当m 为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为5102,求直线的方程. 解:(1)把直线方程m x y +=代入椭圆方程1422=+y x 得 ()1422=++m x x , 即012522=-++m mx x .()()020*********≥+-=-⨯⨯-=∆m m m ,解得2525≤≤-m . (2)设直线与椭圆的两个交点的横坐标为1x ,2x ,由(1)得5221m x x -=+,51221-=m x x .根据弦长公式得 :51025145211222=-⨯-⎪⎭⎫⎝⎛-⋅+m m .解得0=m .方程为x y =. 例9 以椭圆131222=+y x 的焦点为焦点,过直线09=+-y x l :上一点M 作椭圆,要使所作椭圆的长轴最短,点M 应在何处?并求出此时的椭圆方程.解:如图所示,椭圆131222=+y x 的焦点为()031,-F ,()032,F . 点1F 关于直线09=+-y x l :的对称点F 的坐标为(-9,6),直线2FF 的方程为032=-+y x . 解方程组⎩⎨⎧=+-=-+09032y x y x 得交点M 的坐标为(-5,4).此时21MF MF +最小.所求椭圆的长轴:562221==+=FF MF MF a ,∴53=a ,又3=c ,∴()3635322222=-=-=c a b .因此,所求椭圆的方程为1364522=+y x . 例10 已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范围. 解:由⎪⎩⎪⎨⎧-≠-<-<-,35,03,05k k k k 得53<<k ,且4≠k .∴满足条件的k 的取值范围是53<<k ,且4≠k .例11 已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围.解:方程可化为1cos 1sin 122=+ααy x .因为焦点在y 轴上,所以0sin 1cos 1>>-αα. 因此0sin >α且1tan -<α从而)43,2(ππα∈. 例12 求中心在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆方程.解:设所求椭圆方程为122=+ny mx (0>m ,0>n ).由)2,3(-A 和)1,32(-B 两点在椭圆上可得⎪⎩⎪⎨⎧=⋅+-⋅=-⋅+⋅,11)32(,1)2()3(2222n m n m 即⎩⎨⎧=+=+,112,143n m n m 所以151=m ,51=n .故所求的椭圆方程为151522=+y x . 例13 知圆122=+y x ,从这个圆上任意一点P 向y 轴作垂线段,求线段中点M 的轨迹. 解:设点M 的坐标为),(y x ,点P 的坐标为),(00y x ,则2x x =,0y y =. 因为),(00y x P 在圆122=+y x 上,所以12020=+y x .将x x 20=,y y =0代入方程12020=+y x 得1422=+y x .所以点M 的轨迹是一个椭圆1422=+y x . 例14 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长.解:(法1)利用直线与椭圆相交的弦长公式求解.2121x x k AB -+=]4))[(1(212212x x x x k -++=.因为6=a ,3=b ,所以33=c .因为焦点在x 轴上,所以椭圆方程为193622=+y x ,左焦点)0,33(-F ,从而直线方程为93+=x y . 由直线方程与椭圆方程联立得:0836372132=⨯++x x .设1x ,2x 为方程两根,所以1337221-=+x x ,1383621⨯=x x ,3=k , 从而1348]4))[(1(1212212212=-++=-+=x x x x k x x k AB . (法2)利用椭圆的定义及余弦定理求解.由题意可知椭圆方程为193622=+y x ,设m AF =1,n BF =1,则m AF -=122,n BF -=122. 在21F AF ∆中,3cos22112212122πF F AF F F AF AF -+=,即21362336)12(22⋅⋅⋅-⋅+=-m m m ; 所以346-=m .同理在21F BF ∆中,用余弦定理得346+=n ,所以1348=+=n m AB .(法3)利用焦半径求解.先根据直线与椭圆联立的方程0836372132=⨯++x x 求出方程的两根1x ,2x ,它们分别是A ,B 的横坐标. 再根据焦半径11ex a AF +=,21ex a BF +=,从而求出11BF AF AB +=.例15 椭圆192522=+y x 上的点M 到焦点1F 的距离为2,N 为1MF 的中点,则ON (O 为坐标原点)的值为A .4 B .2 C .8 D .23解:如图所示,设椭圆的另一个焦点为2F ,由椭圆第一定义得10221==+a MF MF ,所以82101012=-=-=MF MF ,又因为ON 为21F MF ∆的中位线,所以4212==MF ON ,故答案为A . 例16 在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程.解:以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设),(y x P .则⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-.1,21,2cy c x yc x y∴⎪⎪⎩⎪⎪⎨⎧===233435c c y cx 且即)32,325(P ∴⎪⎪⎩⎪⎪⎨⎧=-=+,43,134********b a b a 得⎪⎩⎪⎨⎧==.3,41522b a∴所求椭圆方程为1315422=+y x例17 已知)2,4(P 是直线l 被椭圆193622=+y x 所截得的线段的中点,求直线l 的方程. 解:方法一:设所求直线方程为)4(2-=-x k y .代入椭圆方程,整理得036)24(4)24(8)14(222=--+--+k x k k x k ①设直线与椭圆的交点为),(11y x A ,),(22y x B ,则1x 、2x 是①的两根,∴14)24(8221+-=+k k k x x∵)2,4(P 为AB 中点,∴14)24(424221+-=+=k k k x x ,21-=k .∴所求直线方程为082=-+y x . 方法二:设直线与椭圆交点),(11y x A ,),(22y x B .∵)2,4(P 为AB 中点,∴821=+x x ,421=+y y . 又∵A ,B 在椭圆上,∴3642121=+y x ,3642222=+y x 两式相减得0)(4)(22212221=-+-y y x x , 即0))((4))((21212121=-++-+y y y y x x x x .∴21)(4)(21212121-=++-=--y y x x x x y y .∴直线方程为082=-+y x .方法三:设所求直线与椭圆的一个交点为),(y x A ,另一个交点)4,8(y x B --.∵A 、B 在椭圆上,∴36422=+y x ①。
高二数学--椭圆训练试卷(含答案)

高二数学椭圆一.选择题1.椭圆ax2+by2=1与直线y=1﹣x交于A、B两点,过原点与线段AB中点的直线的斜率为,则的值为()A.B.C.D.2.已知方程表示焦点在y轴上的椭圆,则实数k的取值范围是()A.B.(1,+∞)C.(1,2)D.3.椭圆x2+4y2=1的离心率为()A.B.C.D.4.椭圆+=1的右焦点到直线y=x的距离是()A.B.C.1D.5.以两条坐标轴为对称轴的椭圆过点P(,﹣4)和Q(﹣,3),则此椭圆的方程是()A.+y2=1 B.x2+=1C.+y2=1或x2+=1D.以上均不对6.已知P为椭圆+=1上的点,F1、F2为其两焦点,则使∠F1PF2=90°的点P有()A.4个B.2个C.1个D.0个7.椭圆4x2+9y2=1的焦点坐标是()A.(±,0)B.(0,±)C.(±,0)D.(±,0)8.若椭圆2kx2+ky2=1的一个焦点坐标是(0,4),则实数k的值为()A.B.﹣C.D.﹣9.已知椭圆上的一点P到椭圆一个焦点的距离为3,则P到另一焦点距离为()A.9B.7C.5D.3二.填空题(共6小题)10.(2009•湖北模拟)如图Rt△ABC中,AB=AC=1,以点C为一个焦点作一个椭圆,使这个椭圆的另一个焦点在AB边上,且这个椭圆过A、B两点,则这个椭圆的焦距长为_________.11.若P是椭圆+=1上任意一点,F1、F2是焦点,则∠F1PF2的最大值为_________.12.F1、F2是椭圆+=1的两个焦点,P是椭圆上一点,则|PF1|•|PF2|有最_________值为_________.13.经过两点P1(),P2(0,)的椭圆的标准方程_________.14.已知焦距为8,离心率为0.8,则椭圆的标准方程为_________.15.点P在椭圆+=1上,F1,F2是椭圆的焦点,若PF1⊥PF2,则点P的坐标是_________.三.解答题(共5小题)16.已知椭圆的中心在坐标原点,焦点在x轴上,离心率为,且过点(1,2),求椭圆的标准方程.17.已知中心在原点,长轴在x轴上的椭圆的两焦点间的距离为,若椭圆被直线x+y+1=0截得的弦的中点的横坐标为﹣,求椭圆的方程.18.已知椭圆的焦点在x轴上,离心率为,且过点P(1,),求该椭圆的方程.19.求适合下列条件的椭圆的标准方程:(1)焦点在x轴上,a=6,e=;(2)焦点在y轴上,c=3,e=.20.已知椭圆两焦点的坐标分别是(﹣2,0),(2,0),并且经过点(2,),求椭圆方程.21.已知:△ABC的一边长BC=6,周长为16,求顶点A的轨迹方程.参考答案与试题解析一.选择题(共9小题)1.(2015•兴国县一模)椭圆ax2+by2=1与直线y=1﹣x交于A、B两点,过原点与线段AB中点的直线的斜率为,则的值为()A.B.C.D.考点:椭圆的简单性质.专题:综合题.分析:联立椭圆方程与直线方程,得ax2+b(1﹣x)2=1,(a+b)x2﹣2bx+b﹣1=0,A(x1,y1),B(x2,y2),由韦达定理得AB中点坐标:(),AB中点与原点连线的斜率k===.解答:解:联立椭圆方程与直线方程,得ax2+b(1﹣x)2=1,(a+b)x2﹣2bx+b﹣1=0,A(x1,y1),B(x2,y2),,y1+y2=1﹣x1+1﹣x2=2﹣=,AB中点坐标:(),AB中点与原点连线的斜率k===.故选A.点评:本题考查直线和圆锥曲线的经综合运用,解题时要认真审题,仔细解答,注意合理地进行等价转化.2.(2012•香洲区模拟)已知方程表示焦点在y轴上的椭圆,则实数k的取值范围是()A.B.(1,+∞)C.(1,2)D.考点:椭圆的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据椭圆的标准方程,得焦点在y轴上的椭圆方程中,x2、y2的分母均为正数,且y2的分母较大,由此建立关于k的不等式组,解之即得实数k的取值范围.解答:解:∵方程表示焦点在y轴上的椭圆,∴,解之得1<k<2实数k的取值范围是(1,2)故选:C点评:本题给出标准方程表示焦点在y轴上的椭圆,求参数k的取值范围,着重考查了椭圆的标准方程的概念,属于基础题.3.(2007•安徽)椭圆x2+4y2=1的离心率为()A.B.C.D.考点:椭圆的简单性质.专题:综合题.分析:把椭圆的方程化为标准方程后,找出a与b的值,然后根据a2=b2+c2求出c的值,利用离心率公式e=,把a与c的值代入即可求出值.解答:解:把椭圆方程化为标准方程得:x2+=1,得到a=1,b=,则c==,所以椭圆的离心率e==.故选A点评:此题考查学生掌握椭圆的离心率的求法,灵活运用椭圆的简单性质化简求值,是一道综合题.4.(2006•东城区二模)椭圆+=1的右焦点到直线y=x的距离是()A.B.C.1D.考点:椭圆的简单性质;点到直线的距离公式.专题:计算题.分析:根据题意,可得右焦点F(1,0),由点到直线的距离公式,计算可得答案.解答:解:根据题意,可得右焦点F(1,0),y=x可化为y﹣x=0,则d==,故选B.点评:本题考查椭圆的性质以及点到直线的距离的计算,注意公式的准确记忆.5.以两条坐标轴为对称轴的椭圆过点P(,﹣4)和Q(﹣,3),则此椭圆的方程是()A.+y2=1 B.x2+=1C.+y2=1或x2+=1D.以上均不对考点:椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:设经过两点P(,﹣4)和Q(﹣,3),的椭圆标准方程为mx2+ny2=1(m>0,n>0,m≠n),利用待定系数法能求出椭圆方程.解答:解:设经过两点P(,﹣4)和Q(﹣,3),的椭圆标准方程为mx2+ny2=1(m>0,n>0,m≠n),代入A、B得,,解得m=1,n=,∴所求椭圆方程为x2+=1.故选:B.点评:本题考查椭圆标准方程的求法,是中档题,解题时要认真审题,注意椭圆简单性质的合理运用.6.已知P为椭圆+=1上的点,F1、F2为其两焦点,则使∠F1PF2=90°的点P有()A.4个B.2个C.1个D.0个考点:椭圆的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:根据椭圆的标准方程,得出a、b、c的值,由∠F1PF2=90°得出点P在以F1F2为直径的圆(除F1、F2),且r<b,得出圆在椭圆内,点P不存在.解答:解:∵椭圆+=1中,a=4,b=2,∴c==2;∴焦点F1(﹣2,0),F2(2,0);又∵∠F1PF2=90°,∴点P在以F1F2为直径的圆x2+y2=4上(除F1、F2),又∵r=2<2=b,∴圆被椭圆内含,点P不存在.点评:本题考查了椭圆的标准方程与圆的标准方程的应用问题,解题时应灵活利用∠F1PF2=90°,是基础题.7.椭圆4x2+9y2=1的焦点坐标是()A.(±,0)B.(0,±)C.(±,0)D.(±,0)考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:把椭圆方程化为标准方程,再利用c=即可得出.解答:解:椭圆4x2+9y2=1化为,∴a2=,b2=,∴c==∴椭圆的焦点坐标为(±,0).故选:C.点评:熟练掌握椭圆的标准方程及其性质是解题的关键.8.若椭圆2kx2+ky2=1的一个焦点坐标是(0,4),则实数k的值为()A.B.﹣C.D.﹣考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由椭圆的焦点坐标为(0,4)可得k>0,化椭圆方程为标准式,求出c,再由c=4得答案.解答:解:由2kx2+ky2=1,得,∵椭圆2kx2+ky2=1的一个焦点坐标是(0,4),∴,,则,.∴,解得.故选:C.点评:本题考查了椭圆的简单几何性质,考查了椭圆的标准方程,是基础题.9.已知椭圆上的一点P到椭圆一个焦点的距离为3,则P到另一焦点距离为()A.9B.7C.5D.3考点:椭圆的简单性质;椭圆的定义.专题:综合题.分析:由椭圆方程找出a的值,根据椭圆的定义可知椭圆上的点到两焦点的距离之和为常数2a,把a的值代入即可求出常数的值得到P到两焦点的距离之和,由P到一个焦点的距离为3,求出P到另一焦点的距离即可.解答:解:由椭圆,得a=5,则2a=10,且点P到椭圆一焦点的距离为3,由定义得点P到另一焦点的距离为2a﹣3=10﹣3=7.故选B点评:此题考查学生掌握椭圆的定义及简单的性质,是一道中档题.二.填空题(共6小题)10.(2009•湖北模拟)如图Rt△ABC中,AB=AC=1,以点C为一个焦点作一个椭圆,使这个椭圆的另一个焦点在AB边上,且这个椭圆过A、B两点,则这个椭圆的焦距长为.考点:椭圆的简单性质.专题:计算题.分析:设另一焦点为D,则可再Rt△ABC中,根据勾股定理求得BC,进而根据椭圆的定义知AC+AB+BC=4a求得a.再利用AC+AD=2a求得AD最后在Rt△ACD中根据勾股定理求得CD,得到答案.解答:解析:设另一焦点为D,∵Rt△ABC中,AB=AC=1,∴BC=∵AC+AD=2a,AC+AB+BC=1+1+=4a,∴a=又∵AC=1,∴AD=.在Rt△ACD中焦距CD==.故答案为:.点评:本题主要考查了椭圆的简单性质和解三角形的应用.要理解好椭圆的定义和椭圆中短轴,长轴和焦距的关系.11.若P是椭圆+=1上任意一点,F1、F2是焦点,则∠F1PF2的最大值为.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:先根据椭圆方程求得a和b的大小,进而利用椭圆的基本性质,确定最大角的位置,求出∠F1PF2的最大值.解答:解:根据椭圆的方程可知:+=1,∴a=2,b=,c=1,由椭圆的对称性可知,∠F1PF2的最大时,P在短轴端点,此时△F1PF2是正三角形,∴∠F1PF2的最大值为.故答案为:.点评:本题主要考查了椭圆的应用.当P点在短轴的端点时∠F1PF2值最大,这个结论可以记住它.在做选择题和填空题的时候直接拿来解决这一类的问题.12.F1、F2是椭圆+=1的两个焦点,P是椭圆上一点,则|PF1|•|PF2|有最大值为16.考点:椭圆的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:运用椭圆的定义,可得|PF1|+|PF2|=2a=8,再由基本不等式,即可求得|PF1|•|PF2|的最大值.解答:解:椭圆+=1的a=4,则|PF1|+|PF2|=2a=8,则|PF1|•|PF2|≤()2=16,当且仅当|PF1|=|PF2|=4,则|PF1|•|PF2|有最大值,且为16.故答案为:大,16点评:本题考查椭圆的定义和性质,考查基本不等式的运用:求最值,考查运算能力,属于基础题.13.经过两点P1(),P2(0,)的椭圆的标准方程=1.考点:椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:设椭圆方程为mx2+ny2=1(m>0,n>0,m≠n),把两点P1(),P2(0,)代入,能求出结果.解答:解L:设椭圆方程为mx2+ny2=1(m>0,n>0,m≠n)把两点P1(),P2(0,)代入,得:,解得m=5,n=4,∴椭圆方程为5x2+4y2=1,即=1.故答案为:=1.点评:本题考查椭圆的标准方程的求法,是基础题,解题时要认真审题,注意椭圆性质的合理运用.14.已知焦距为8,离心率为0.8,则椭圆的标准方程为,或.考点:椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:由椭圆的焦距是8,离心率0.8,先求出a=5,c=4,b,由此能求出椭圆的标准方程.解答:解:∵椭圆的焦距是8,离心率0.6,∴,解得a=5,c=4,b2=25﹣16=9,∴椭圆的标准方程为,或.故答案为:,或.点评:本题考查椭圆的标准方程的求法,是基础题,解题时要避免丢解.15.点P在椭圆+=1上,F1,F2是椭圆的焦点,若PF1⊥PF2,则点P的坐标是(3,4),(3,﹣4),(﹣3,4),(﹣3,﹣4).考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由椭圆方程求出椭圆的焦点坐标,根据PF1⊥PF2得=0,与椭圆方程联立解得即可.解答:解:由椭圆+=1,得F1(﹣5,0),F2(5,0)设P(x,y),=0,①即(x+5)(x﹣5)+y2=0因为P在椭圆上,所以+=1,②两式联立可得x=±3,∴P(3,4),P(3,﹣4),P(﹣3,4),P(﹣3,﹣4)故答案为:P(3,4),P(3,﹣4),P(﹣3,4),P(﹣3,﹣4).点评:本题主要考查了椭圆的几何性质,向量的应用.三.解答题(共5小题)16.已知椭圆的中心在坐标原点,焦点在x轴上,离心率为,且过点(1,2),求椭圆的标准方程.考点:椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:先假设椭圆的方程,再利用的椭圆C的离心率为,且过点(1,2),即可求得椭圆C的方程.解答:解:设椭圆方程为,椭圆的半焦距为c,∵椭圆C的离心率为,∴,∴,①∵椭圆过点(1,2),∴②由①②解得:b2=,a2=49∴椭圆C的方程为.点评:本题重点考查椭圆的标准方程,考查椭圆的性质,解题的关键是待定系数法.17.已知中心在原点,长轴在x轴上的椭圆的两焦点间的距离为,若椭圆被直线x+y+1=0截得的弦的中点的横坐标为﹣,求椭圆的方程.考点:椭圆的标准方程.分析:首先,设椭圆的标准方程为:=1 (a>b>0),然后,设出直线与椭圆的两个交点坐标,然后,将这两个交点坐标代入椭圆方程,两个方程相减,得到关于a,b的一个方程,再结合给定的a,c的关系式,求解即可.解答:解:设椭圆的标准方程为:=1(a>b>0),∵椭圆被直线x+y+1=0截得的弦的中点的横坐标是﹣,∴弦的中点的纵坐标是﹣,设椭圆与直线x+y+1=0的两个交点为P(x1,y1),Q(x2,y2).则有+=1 ①+=1 ②①﹣②,化简得+=0 ③x1+x2=2×(﹣)=﹣,y1+y2=2×()=﹣,且=﹣1,∴由③得a2=2b2,又由题意2c=,有c=,则可求得c2==b2,a2=,∴椭圆的标准方程为:+=1.点评:本题重点考查了椭圆的几何性质、标准方程、直线与椭圆的位置关系等知识,属于中档题,涉及到弦的中点问题,处理思路是“设而不求”的思想.18.已知椭圆的焦点在x轴上,离心率为,且过点P(1,),求该椭圆的方程.考点:椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:设椭圆方程为(a>b>0),由已知得,由此能求出椭圆方程.解答:解:设椭圆方程为(a>b>0),由已知得,解得,b2=1,∴椭圆方程为.点评:本题考查椭圆方程的求法,是基础题,解题时要认真审题,注意椭圆性质的合理运用.19.求适合下列条件的椭圆的标准方程:(1)焦点在x轴上,a=6,e=;(2)焦点在y轴上,c=3,e=.考点:椭圆的标准方程.专题:计算题;圆锥曲线的定义、性质与方程.分析:(1)由离心率公式,求得c,再由a,b,c的关系,求得b,即可得到椭圆方程;(2)由离心率公式,求得a,再由a,b,c的关系,求得b,即可得到椭圆方程.解答:解:(1)a=6,e=,即,解得c=2,b2=a2﹣c2=32,则椭圆的标准方程为:=1;(2)c=3,e=,即,解得,a=5,b2=a2﹣c2=25﹣9=16.则椭圆的标准方程为:=1.点评:本题考查椭圆的性质和方程,考查运算能力,属于基础题.20.已知椭圆两焦点的坐标分别是(﹣2,0),(2,0),并且经过点(2,),求椭圆方程.考点:椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析: 直接根据焦点的坐标设出椭圆的方程,再根据点的坐标求出结果. 解答: 解:椭圆两焦点的坐标分别是(﹣2,0),(2,0), 所以:设椭圆的方程为:由于:椭圆经过点(2,), 则:, 且a 2=b 2+4, 则:, 解得:. 椭圆方程为:.点评: 本题考查的知识要点:椭圆方程的求法,属于基础题型.21. 以BC 边为x 轴,BC 线段的中垂线为y 轴建立直角坐标系,则A 点的轨迹是椭圆,其方程为:116y 25x 22=+。
椭圆练习题及答案

椭圆练习题及答案椭圆练习题及答案椭圆是数学中一种重要的几何形状,它在实际生活中有着广泛的应用。
本文将为大家提供一些椭圆的练习题,并给出相应的答案。
通过这些练习题,希望读者能够更好地理解和掌握椭圆的性质和运用。
1. 练习题一:给定椭圆的长轴长度为8,短轴长度为6,求椭圆的离心率。
解答:椭圆的离心率定义为离心距与长轴长度之比,其中离心距为焦点到椭圆上任意一点的距离。
由于椭圆的离心距等于长轴长度的一半,所以离心率为1/2。
2. 练习题二:已知椭圆的焦点F1和F2的坐标分别为(-3,0)和(3,0),离心率为2/3,求椭圆的方程。
解答:设椭圆的焦点为F1(-c,0)和F2(c,0),离心率为e,则椭圆的方程为(x+c)^2+y^2=(x-c)^2+y^2=e^2(x^2+y^2)。
代入已知条件,可得到方程为(x+3)^2+y^2=(x-3)^2+y^2=(4/9)(x^2+y^2)。
3. 练习题三:已知椭圆的焦点F1和F2的坐标分别为(0,-4)和(0,4),离心率为1/2,求椭圆的方程。
解答:设椭圆的焦点为F1(0,-c)和F2(0,c),离心率为e,则椭圆的方程为x^2+(y+c)^2=x^2+(y-c)^2=e^2(x^2+y^2)。
代入已知条件,可得到方程为x^2+(y+4)^2=x^2+(y-4)^2=(1/4)(x^2+y^2)。
4. 练习题四:已知椭圆的焦点F1和F2的坐标分别为(-2,0)和(2,0),离心率为3/5,求椭圆的方程。
解答:设椭圆的焦点为F1(-c,0)和F2(c,0),离心率为e,则椭圆的方程为(x+c)^2+y^2=(x-c)^2+y^2=e^2(x^2+y^2)。
代入已知条件,可得到方程为(x+2)^2+y^2=(x-2)^2+y^2=(9/25)(x^2+y^2)。
通过以上练习题,我们可以看到椭圆的方程与其焦点和离心率之间的关系。
椭圆的方程可以通过焦点和离心率来确定,同时也可以通过方程来求解椭圆的性质和参数。
高二数学椭圆专项练习题及参考答案

高二数学椭圆专项练习题及参考答案训练指要熟练掌握椭圆的定义、标准方程、几何性质;会用待定系数法求椭圆方程. 一、选择题1.椭圆中心在坐标原点,对称轴为坐标轴,离心率为0.6,长、短轴之和为36,则椭圆方程为A.16410022=+y xB.11006422=+y xC.1100641641002222=+=+y x y x 或D.110818102222=+=+y x y x 或 2.若方程x 2+ky 2=2,表示焦点在y 轴上的椭圆,那么实数k 的取值范围是A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)3.已知圆x 2+y 2=4,又Q (3,0),P 为圆上任一点,则PQ 的中垂线与OP 之交点M 轨迹为(O 为原点)A.直线B.圆C.椭圆D.双曲线 二、填空题4.设椭圆1204522=+y x 的两个焦点为F 1、F 2,P 为椭圆上一点,且PF 1⊥PF 2,则||PF 1|-|PF 2||=_________.5.(2002年全国高考题)椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k =_________. 三、解答题6.椭圆2222by a x +=1(a >b >0),B (0,b )、B ′(0,-b ),A (a ,0),F 为椭圆的右焦点,若直线AB ⊥B ′F ,求椭圆的离心率.7.在面积为1的△PMN 中,tan M =21,tan N =-2,建立适当的坐标系,求以M 、N 为焦点且过点P 的椭圆方程.8.如图,从椭圆2222by a x +=1(a >b >0)上一点M 向x 轴作垂线,恰好通过椭圆的左焦点F 1,且它的长轴端点A 及短轴的端点B 的连线AB ∥OM .(1)求椭圆的离心率e ; (2)设Q 是椭圆上任意一点,F 2是右焦点,求∠F 1QF 2的取值范围;(3)设Q 是椭圆上一点,当QF 2⊥AB 时,延长QF 2与椭圆交于另一点P ,若△F 1PQ 的面积为203,求此时椭圆的方程.参考答案一、1.C 2.D 3.C 二、4.25,40||||100)2(||||562|||:|212222121=⋅⇒⎪⎭⎪⎬⎫==+==+PF PF c PF PF a PF PF 提示 ∴(|PF 1|-|PF 2|)2=100-2×40=20. ||PF 1|-|PF 2||=25.5.1三、6.215- 7.以MN 所在直线为x 轴,线段MN 的中垂线为y 轴建立坐标系,可得椭圆方程为.1315422=+y x 8.(1)22 (2)[0,2π] (3)1255022=+y x 提示:(1)∵MF 1⊥x 轴,∴x M =-c ,代入椭圆方程求得y M =ab 2,∴k OM =-,,2ab k ac b AB -= ∵OM ∥AB ,∴-c b abac b =⇒-=2 从而e =22.(2)设|QF 1|=r 1,|QF 2|=r 2,∠F 1QF 2=θ,则r 1+r 2=2a ,|F 1F 2|=2c.由余弦定理,得cos θ=212222124r r c r r -+1242)(21221221221-=--+=r r a r r c r r r r≥,01)2(2212=-+r r a 当且仅当r 1=r 2时,上式取等号.∴0≤cos θ≤1,θ∈[0,2π].(3)椭圆方程可化为122222=+cy c x ,又PQ ⊥AB ,∴k PQ =-.21==bak AB PQ :y =2(x -c )代入椭圆方程,得5x 2-8cx +2c 2=0.求得|PQ |=,526c F 1到PQ 的距离为d =,362c ∴.25320||2121=⇒=⋅=∆c d PQ S PQ F ∴椭圆方程为.1255022=+y x椭圆训练题:1. 椭圆19822=++y m x 的离心率21=e ,则m=__________ 2. 椭圆4x 2+2y 2=1的准线方程是_______________3. 已知F 1、F 2为椭圆192522=+y x 的两个焦点,A 、B 为过F 1的直线与椭圆的两个交点,则△ABF 2的周长是____________4. 椭圆12222=+by a x ()0>>b a 上有一点P 到其右焦点的距离是长轴两端点到右焦点的距离的等差中项,则P 点的坐标是_______________5. 椭圆12222=+by a x 焦点为F 1、F 2,P 是椭圆上的任一点,M 为P F 1的中点,若P F 1的长为s ,那么OM 的长等于____________6. 过椭圆1273622=+y x 的一个焦点F 作与椭圆轴不垂直的弦AB ,AB 的垂直平分线交AB 于M ,交x 轴于N ,则FN :AB =___________7. 已知椭圆的对称轴是坐标轴,离心率32=e ,长轴长是6,则椭圆的方程是____________ 8. 方程1162522=++-my m x 表示焦点在y 轴上的椭圆,则m 的值是______________ 9. 椭圆的两焦点把准线间的距离三等分,则这椭圆的离心率是______________10. 椭圆142222=+by b x 上一点P 到右焦点F 2的距离为b ,则P 点到左准线的距离是_______11. 椭圆⎪⎭⎫ ⎝⎛∈=+2,4,1csc sec 2222ππt t y t x ,这个椭圆的焦点坐标是__________12. 曲线()023122=+--+m my y m x 表示椭圆,那么m 的取值是______________ 13. 椭圆13422=+y x 上的一点()11,y x A ,A 点到左焦点的距离为25,则x 1=___________ 14. 椭圆()()19216122=-+-y x 的两个焦点坐标是______________15. 椭圆中心在原点,焦点在x 轴上,两准线的距离是5518,焦距为52,其方程为______ 16. 椭圆上一点P 与两个焦点F 1、F 2所成的∆PF 1F 2中,βα=∠=∠1221,F PF F PF ,则它的离心率e=__________17. 方程142sin 322=⎪⎭⎫ ⎝⎛+-παy x 表示椭圆,则α的取值是______________ 18. 若()()065562222=--+-λλλλy x 表示焦点在x 轴上的椭圆,则λ的值是________19. 椭圆192522=+y x 上不同的三点()()2211,,59,4,,y x C B y x A ⎪⎭⎫ ⎝⎛与焦点()0,4F 的距离成等差数列,则=+21x x ____________ 20. P 是椭圆192522=+y x 上一点,它到左焦点的距离是它到右焦点的距离的4倍,则P 点的坐标是_______________21. 中心在原点,对称轴在坐标轴上,长轴为短轴的2倍,且过()6,2-的椭圆方程是______ 22. 在面积为1的△PMN 中,2tan ,21tan -==N M ,那么以M 、N 为焦点且过P 的椭圆方程是_____________23. 已知△ABC ,()()0,3,0,3-B A 且三边AC 、AB 、BC 的长成等差数列,则顶点C 的轨迹方程是_________24. 椭圆1422=+y m x 的焦距为2,则m 的值是__________ 25. 椭圆14922=+y x 的焦点到准线的距离是____________ 26. 椭圆()112222=-+m y m x 的准线平行于x 轴,则m 的值是__________ 27. 中心在原点,准线方程为4±=x ,离心率为21的椭圆方程是_______28. 椭圆的焦距等于长轴长与短轴长的比例中顶,则离心率等于___________29. 中心在原点,一焦点为()50,01F 的椭圆被直线23-=x y 截得的弦的中点横坐标为21,则此椭圆方程是_________ 30. 椭圆的中心为()0,0,对称轴是坐标轴,短轴的一个端点与两个焦点构成面积为12的三角形,两准线间的距离是225,则此椭圆方程是_____________31. 过点()2,3-且与椭圆369422=+y x 有相同焦点的椭圆方程是____________32. 将椭圆192522=+y x 绕其左焦点逆时针方向旋转90︒,所得椭圆方程是_______ 33. 椭圆192522=+y x 上一点M 到右准线的距离是7.5,那么M 点右焦半径是______ 34. AB 是椭圆14322=+y x 的长轴,F 1是一个焦点,过AB 的每一个十等分点作AB 的垂线,交椭圆同一侧于点P 1,P 2,P 3,⋅⋅⋅⋅⋅⋅,P 9,则11912111BF F P F P F P AF ++⋅⋅⋅+++的值是________35. 中心在原点,一焦点为F (0,1),长短轴长度比为t ,则此椭圆方程是__________ 36. 若方程222x ky +=表示焦点在y 轴的椭圆,则k 的取值是__________37. 椭圆221123x y +=的焦点为F 1、F 2,点P 为椭圆上一点,若线段PF 1的中点在y 轴上,那么1PF :2PF =___________38. 经过)()122,M M --两点的椭圆方程是_____________39. 以椭圆的右焦点F 2(F 1为左焦点)为圆心作一圆,使此圆过椭圆中心并交椭圆于M 、N ,若直线MF 1是圆F 2的切线,则椭圆的离心率是___________40. 椭圆的两个焦点F 1、F 2及中心O 将两准线间的距离四等分,则一焦点与短轴两个端点连线的夹角是__________41. 点A (),0a 到椭圆2212x y +=上的点之间的最短距离是___________ 42. 椭圆2214x y +=与圆()2221x y r -+=有公共点,则r 的取值是________ 43. 若k R ∈,直线1y kx =+与椭圆2215x y m+=总有公共点,则m 的值是___________ 44. 设P 是椭圆上一点,两个焦点F 1、F 2,如果00211275,15PF F PF F ∠=∠=,则离心率等于__________45. P 是椭圆22143x y +=上任一点,两个焦点F 1、F 2,那么12F PF ∠的最大值是_______ 46. 椭圆2244x y +=长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,则此直角三角形的面积是__________47. 椭圆长轴长为6,焦距过焦点F 1作一倾角为α的直线交椭圆于M 、N 两点,当MN 等于短轴长时,α的值是_______48. 设椭圆22143x y +=的长轴两端点A 、B ,点P 在椭圆上,那么直线PA 与PB 的斜率之积是__________49. 倾斜角为4π的直线与椭圆2214x y +=交于A 、B 两点,则线段AB 的中点M 的轨迹方程是______________50. 已知点A (0,1)是椭圆上的一点,P 是椭圆上任一点,当弦长AP 取最大值时,点P 的坐标是_____________椭圆训练题答案1. 544-或 2. 1y =± 3. 20 4. ()()0,0,b b -或 5. 2sa - 6. 1:4 7. 2222119559x y x y +=+=或 8. 9252m <<9. 310.11. (0,12. ()1,+∞ 13. 114. ()()1,115.22194x y += 16. cos2cos2αβαβ+- 17. ()37,,88k k k Z ππππ⎛⎫++∈ ⎪⎝⎭18.)19. 820. 1515,44⎛⎛ ⎝⎭⎝⎭或21.222211148371352x y x y +=+=或 22. 2241153x y += 23. 2213627x y += 24. 53或26. 102m m <≠且 27. 22143x y +=2212575x y += 30. 222211259925x y x y +=+=或 31.2211510x y += 32. ()()22441925x y +-+= 33. 634. 20+35.222221111x y t t t +=-- 36. ()0,1 37. 7 38. 221155x y +=39.1 40.2π41. a a +42. 3⎤⎥⎣⎦43. m ≥1且m ≠5 44. ︒ 46. 162547. 566ππ或48. 34-49. 1,4y x x ⎛⎫⎛=-∈ ⎪⎝⎝⎭ 50. 13⎛⎫- ⎪ ⎪⎝⎭ 椭圆训练试卷一、选择题:本大题共12小题,每小题5分,共60分.请将唯一正确结论的代号填入题后的括号内.1.椭圆3m 2y mx 222++=1的准线平行于x 轴,则实数m 的取值范围是 ( )A .-1<m <3B .-23<m <3且m ≠0 C .-1<m <3且m ≠0 D .m <-1且m ≠02. a 、b 、c 、p 分别表示椭圆的半长轴、半短轴、半焦距、焦点到相应准线的距离,则它们的关系是 ( )A .p=22a b B .p=ba 2 C .p=ca 2 D .p=cb 23.短轴长为5,离心率为32的椭圆的两个焦点分别为F 1、F 2,过F 1作直线交椭圆于A 、B两点,则ΔABF 2的周长为 ( )A .24B .12C .6D .34.下列命题是真命题的是( )A .到两定点距离之和为常数的点的轨迹是椭圆B .到定直线x=ca 2和定F(c ,0)的距离之比为ac 的点的轨迹是椭圆C .到定点F(-c ,0)和定直线x=-ca 2的距离之比为a c(a>c>0)的点的轨迹 是左半个椭圆D .到定直线x=ca 2和定点F(c ,0)的距离之比为ca (a>c>0)的点的轨迹是椭圆5.P 是椭圆4x 2+3y 2=1上任意一点,F 1、F 2是焦点,那么∠F 1PF 2的最大值是( )A .600B .300C .1200D .906.椭圆22b 4x +22b y =1上一点P 到右准线的距离是23b ,则该点到椭圆左焦点的距离是( )A .bB .23b C .3b D .2b 7.椭圆12x 2+3y 2=1的焦点为F 1和F 2,点P 在椭圆上,如果线段F 1P 的中点在y 轴上,那么|PF 1|是|PF 2|的 ( ) A .7倍 B .5倍 C .4倍 D .3倍8.设椭圆22a x +22b y =1(a>b>0)的两个焦点是F 1和F 2,长轴是A 1A 2,P 是椭圆上异于A 1、A 2的点,考虑如下四个命题:①|PF 1|-|A 1F 1|=|A 1F 2|-|PF 2|; ②a-c<|PF 1|<a+c ; ③若b 越接近于a ,则离心率越接近于1;④直线PA 1与PA 2的斜率之积等于-22a b .其中正确的命题是 ( ) A .①②④ B .①②③ C .②③④ D .①④9.过点M(-2,0)的直线l 与椭圆x 2+2y 2=2交于P1、P2两点,线段P1P2的中点为P,设直线l 的斜率为k 1(k 1≠0),直线OP的斜率为k 2,则k 1k 2的值为 ( ) A .2B .-2C .21D .-2110.已知椭圆22ax +22b y =1(a>b>0)的两顶点A(a ,0)、B(0,b),右焦点为F ,且F 到直线AB的距离等于F 到原点的距离,则椭圆的离心率e 满足 ( )A .0<e<22B .22<e<1C . 0<e<2-1D .2-1<e<111.设F1、F2是椭圆2222b ya x +=1(a >b >0)的两个焦点,以F1为圆心,且过椭圆中心的圆与椭圆的一个交点为M,若直线F2M与圆F1相切,则该椭圆的离心率是( )A .2-3B .3-1C .23 D .2212.在椭圆4x 2+3y 2=1内有一点P (1,-1),F 为椭圆右焦点,在椭圆上有一点M ,使|MP|+2|MF|的值最小,则这一最小值是` ( )A .25B .27 C .3D .4二、填空题:本大题共4小题,每小题4分,共16分.请将最简结果填入题中的横线上.13.椭圆3x 2+ky 2=1的离心率是2x 2-11x+5=0的根,则k= .14.如图,∠OFB=6π,SΔABF=2-3,则以OA为长半轴,OB 为短半轴,F为一个焦点的椭圆的标准方程为 .15.过椭圆3y 2x 22+=1的下焦点,且与圆x 2+y 2-3x +y +23=0相切的直线的斜率是 .16.过椭圆9x 2+5y 2=1的左焦点作一条长为12的弦AB ,将椭圆绕其左准线旋转一周,则弦AB 扫过的面积为 .三、解答题:本大题共6小题,共74分.解答题应写出必要的计算步骤或推理过程. 17.(本小题满分12分)已知A 、B 为椭圆22a x +22a 9y 25=1上两点,F 2为椭圆的右焦点,若|AF 2|+|BF 2|=58a ,AB 中点到椭圆左准线的距离为23,求该椭圆方程.18.(本小题满分12分)设中心在原点,焦点在x 轴上的椭圆的离心率为23,并且椭圆与圆x 2+y 2-4x-2y+25=0交于A 、B 两点,若线段AB 的长等于圆的直径. (1) 求直线AB 的方程; (2) 求椭圆的方程.19.(本小题满分12分)已知9x 2+5y 2=1的焦点F 1、F 2,在直线l :x+y-6=0上找一点M ,求以F 1、F 2为焦点,通过点M 且长轴最短的椭圆方程.20.(本小题满分12分)一条变动的直线l 与椭圆4x 2+2y 2=1交于P 、Q 两点,M 是l 上的动点,满足关系|MP|·|MQ|=2.若直线l 在变动过程中始终保持其斜率等于1.求动点M 的轨迹方程,并说明曲线的形状. 21.(本小题满分12分)设椭圆22ax +22b y =1的两焦点为F 1、F 2,长轴两端点为A 1、A 2.(1) P 是椭圆上一点,且∠F 1PF 2=600,求ΔF 1PF 2的面积;(2) 若椭圆上存在一点Q ,使∠A 1QA 2=1200,求椭圆离心率e 的取值范围.22.(本小题满分14分)已知椭圆的一个顶点为A(0,-1),焦点在x 轴上,若右焦点到直线x -y +22=0的距离为3. (1)求椭圆的方程;(2)设椭圆与直线y =kx +m (k ≠0)相交于不同的两点M、N,当|AM|=|AN|时,求m 的取值范围.椭圆训练试卷参考答案一、B D C D A A A A DC B C二、13.4或4914.12y 8x 22=+ 15.5623± 16.18π三、17.解:设A(x 1,y 1),B(x 2,y 2),由焦点半径公式有a-ex 1+a-ex 2=58a ,∴x 1+x 2=21a(∵e=54),即AB中点横坐标为41a ,又左准线方程为x=-45a ,∴41a+45a=23,即a=1,∴椭圆方程为x 2+925y 2=1. 18.解:(1)直线AB 的方程为y=-21x+2; (2)所求椭圆的方程为12x 2+3y 2=1.19.解:由9x2+5y 2=1,得F 1(2,0),F 2(-2,0),F 1关于直线l 的对称点F 1/(6,4),连F 1/F 2交l 于一点,即为所求的点M ,∴2a=|MF 1|+|MF 2|=|F 1/F 2|=45,∴a=25,又c=2,∴b 2=16,故所求椭圆方程为20x 2+16y 2=1.20.解:设动点M(x ,y),动直线l :y=x+m ,并设P(x 1,y 1),Q(x 2,y 2)是方程组⎩⎨⎧=-++=04y 2x ,m x y 22的解,消去y ,得3x 2+4mx+2m 2-4=0,其Δ=16m 2-12(2m 2-4)>0,∴-6<m<6,x 1+x 2=-3m4, x 1x 2=34m 22-,故|MP|=2|x-x 1|,|MQ|=2|x-x 2|.由|MP||MQ|=2,得|x-x 1||x-x 2|=1,也即|x 2-(x 1+x 2)x+x 1x 2|=1,于是有|x 2+3mx 4+34m 22-|=1.∵m=y-x ,∴|x 2+2y 2-4|=3.由x 2+2y 2-4=3,得椭圆7x 2+7y 22=1夹在直线y=x ±6间两段弧,且不包含端点.由x 2+2y 2-4=-3,得椭圆x 2+2y 2=1.21.解:(1)设|PF 1|=r 1,|PF 2|=r 2,则S 21F PF ∆=21r 1r 2sin ∠F 1PF 2,由r 1+r 2=2a , 4c 2=r 12+r 22-2cos ∠F 1PF 2,得r 1r 2=212PF F cos 1b 2∠+.代入面积公式,得 S 21F PF ∆=2121PF F cos 1PF F sin ∠+∠b 2=b 2tg ∠2PF F 21=33b 2.(2)设∠A 1QB=α,∠A 2QB=β,点Q(x 0,y 0)(0<y 0<b).tg θ=tg(α+β)=βα-β+αtg tg 1tg tg =22020000y x a 1y x a y x a --++-=220200a y x ay 2-+.∵220a x +220b y =1,∴x 02=a 2-22b a -y 02.∴tg θ=22220y bb a ay 2--=022y c ab 2-=-3.∴2ab 2≤3c 2y 0≤3c 2b , 即3c 4+4a2c 2-4a 4≥0,∴3e 4+4e 2-4≥0,解之得e 2≥32,∴36≤e<1为所求. 22.解:(1)用待定系数法.椭圆方程为22y 3x +=1.(2)设P为弦MN的中点.由⎪⎩⎪⎨⎧=++=,1y 3x ,m kx y 22得(3k 2+1)x 2+6kmx +3(m 2-1)=0.由Δ>0,得m 2<3k 2+1 ①,∴x P =1k 3mk 32x x 2N M +-=+,从而,y P =kx p +m =1k 3m 2+.∴k AP =km 31k 3m 2++-.由MN⊥AP,得 km 31k 3m 2++-=-k 1,即2m =3k 2+1 ②.将②代入①,得2m >m 2,解得0<m <2.由②得k 2=31m 2->0.解得m >21.故所求m 的取值范围为(21,2).1、征服畏惧、建立自信的最快最确实的方法,就是去做你害怕的事,直到你获得成功的经验。
高考椭圆试题及答案

高考椭圆试题及答案一、选择题1. 已知椭圆的方程为\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),其中a和b分别为椭圆的长半轴和短半轴,若椭圆的离心率为\(\frac{\sqrt{3}}{2}\),则下列说法正确的是()A. \(a > b\)B. \(a < b\)C. \(a = b\)D. \(a = 2b\)答案:A2. 椭圆\(\frac{x^2}{9} + \frac{y^2}{4} = 1\)的长轴长度为()A. 3B. 5C. 6D. 9答案:C二、填空题3. 若椭圆\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)的焦点坐标为\((\sqrt{5}, 0)\)和\((-\sqrt{5}, 0)\),则a的值为()。
答案:34. 椭圆\(\frac{x^2}{16} + \frac{y^2}{9} = 1\)的短轴长度为()。
答案:6三、解答题5. 已知椭圆\(\frac{x^2}{4} + \frac{y^2}{3} = 1\),求椭圆上一点P(x, y)到焦点F(1, 0)的距离的最小值。
答案:最小值为\(\sqrt{3} - 1\)。
6. 椭圆\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)的长轴和短轴分别为2a和2b,且a > b > 0,若椭圆上存在一点P(x, y),使得\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),且\(\frac{x^2}{a^2} = \frac{y^2}{b^2}\),求椭圆的离心率。
答案:离心率为\(\frac{1}{2}\)。
四、计算题7. 已知椭圆\(\frac{x^2}{25} + \frac{y^2}{16} = 1\),求椭圆的离心率和焦距。
答案:离心率\(e = \frac{3}{5}\),焦距\(2c = 6\)。
高中椭圆经典练习题1(含答案)

高中椭圆经典练习题【编著】黄勇权一、填空题:1、已知椭圆的焦点为(3,0),长轴是短轴的2倍,则椭圆的方程是 。
2、已知椭圆22221(0)x y a b a b +=>>的短轴为4,且过点( 132 , 233 ),则椭圆的离心率是 。
3、直线y=21x+1于椭圆12y 3x 22=+相交于A 、B 两点。
则线段AB 的长度是 。
4、如图,椭圆22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线交椭圆于A ,B 两点.当直线AB 经过椭圆的一个顶点时,其倾斜角恰为60︒. 则椭圆的离心率 。
5、F1、F2分别为椭圆1by a 2222=+x 的左右两个焦点,过左焦点F1作x 轴垂线交椭圆于P ,若∠21PF F =45°,则椭圆的离心率为 。
6、F1、F2分别为椭圆15y 922=+x 的左右两个焦点,P 为椭圆上的一点, 若∠21PF F =60°,则△21PF F 的面积为 。
7、椭圆16y 822=+x ,点M 不与C 的焦点重合,A 、B 是M 关于焦点对称的点,若另外一点N ,使得N 与点M 连线的中点落在椭圆上,则=+BN AN 。
1by 22=(a >b >0),过点M(4,1)作斜率k= -2的直线,与椭圆相交9、F 为椭圆15y 922=+x 的右焦点,P 为椭圆上的一点,并在第一象限,且PF=2,点M 在FP 上,若2PM=MF,O 为椭圆的中心,那么线段OM 的长度= 。
120y 2=+有一动点P (x ,y ),点M 地坐标为(4,0),有另一动点N ,若MN =1,且0=•PN MN,则丨PN 丨的最大值= 。
二、选择题1、椭圆1by a x 2222=+(a >b >0)的长轴是短轴的3倍,且过(3,2),则椭圆其中一个焦点的坐标是( )A 、(0102,)B 、(010,)C 、(053,)D 、(05,) 2、已知椭圆C :18y a x 222=+(a >b >0)的离心率为31,则椭圆的焦距为( ) A 、6 B 、3 C 、2 D 、1 过点( 3, 2),则椭圆的右准线方程是( ) A 、 x=3 62 B 、 x= 2 63 C 、x= 3 32 D41b y 22=+(a >b >0)的左右两个焦点为F1、F2,过F2的直线交椭圆于M 、N 两点,若MN F 1∠=60°,MN M F =1,则椭圆的离心率为( )1by 22=+(a >b >0)的左焦点到右顶点的距离是8,右焦点到左准线的距离是20,,则椭圆的方程:( )A 、116y 2022=+xB 、112y 1622=+xC 、136y 4022=+xD 、132y 3622=+x7、已知椭圆12m y 1m x 222=++的焦距为4,则椭圆的离心率为( )A 、51 B 、 510 C 、 131 D 、1326213y 2=,直线过P (1,-1)交椭圆于A 、B ,若P 为线段AB 的中点,那么直线AB 的方程为( )A 、 3x-4y-7=0B 、 3x-4y+7=0C 、 3x-4y+1=0D 、3x-4y-1=01by 22=+(a >b >0)与直线y+x=1相交于A 、B 两点,若椭圆的离心率为22,焦距为2,则线段AB 的长度是( )10、过P (-2,0)的直线斜率为k1(k1≠0),与椭圆1222=+y x 交于A 、B ,线段AB 的中点为M ,直线OM 的斜率为k2,则k1k2的值为( )A 、 - 12B 、 12C - 13D 、 13三、解答题16y 2=+的左右焦点是F1,F2,P 是第一象限内该椭圆上的点, 且F 1P ⊥F 2P ,则P 的横坐标为 。
完整版)椭圆经典练习题两套(带答案)

完整版)椭圆经典练习题两套(带答案)A组基础过关1.选择题1.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于多少?A。
2B。
2/3C。
1/2D。
1/3解析:由题意得2a=2b,所以a=b,又a²=b²+c²,所以b=c,所以a=2c,e=c/a=1/2,答案为C。
2.中心在原点,焦点在x轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是什么?A。
(x²/81)+(y²/72)=1B。
(x²/81)+(y²/9)=1C。
(x²/81)+(y²/45)=1D。
(x²/81)+(y²/36)=1解析:依题意知2a=18,所以a=9,2c=3×2a,所以c=3,所以b=a-c=81-9=72,所以椭圆方程为(x²/81)+(y²/72)=1,答案为A。
3.椭圆x²+4y²=1的离心率是多少?A。
2/3B。
2C。
1/2D。
3解析:先将x²+4y²=1化为标准方程,得(x/1)²+(y/(1/2))²=1,所以a=1,b=1/2,所以c=√(a²-b²)=√(3)/2,所以e=c/a=√(3)/2,答案为A。
2.解答题1.设F₁、F₂分别是椭圆4x²+y²=1的左、右焦点,P是第一象限内该椭圆上的一点,且PF₁⊥PF₂,则点P的横坐标为多少?解析:由题意知,点P即为圆x²+y²=3与椭圆4x²+y²=1在第一象限的交点,解方程组x²+y²=3和4x²+y²=1,得点P的横坐标为√(2/3),答案为√(2/3)。
2.已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为2,且椭圆G上一点到其两个焦点的距离之和为12,则椭圆G的方程是什么?解析:依题意设椭圆G的方程为a²x²+b²y²=1(a>b>0),因为椭圆上一点到其两个焦点的距离之和为12,所以2a=12,所以a=6,又因为椭圆的离心率为2,所以c=a/2=3,所以b=√(a²-c²)=3√5,所以椭圆G的方程为36x²+45y²=1,答案为C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题:
1.下列方程表示椭圆的是()
A. B. C. D.
2.动点P到两个定点(- 4,0).(4,0)的距离之和为8,则P点的轨迹为()
A.椭圆
B.线段
C.直线
D.不能确定
3.已知椭圆的标准方程,则椭圆的焦点坐标为()
A. B. C. D.
4.椭圆的关系是
A.有相同的长.短轴B.有相同的离心率 C.有相同的准线 D.有相同的焦点
5.已知椭圆上一点P到椭圆的一焦点的距离为3,则P到另一焦点的距离是()
A. B.2 C.3 D.6
6.如果表示焦点在x轴上的椭圆,则实数a的取值范围为()
A. B. C. D.任意实数R
7.“m>n>0”是“方程表示焦点在y轴上的椭圆的”()
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
8.椭圆的短轴长是4,长轴长是短轴长的倍,则椭圆的焦距是()
A. B. C. D.
F2
c
第11题
10.方程(a>b>0,k>0且k≠1)与方程(a>b>0)表示的椭圆().
A.有相同的离心率;
B.有共同的焦点;
C.有等长的短轴.长轴;
D.有相同的顶点.
二、填空题:(本大题共4小题,共20分.)
11.(6分)已知椭圆的方程为:,则a=___,b=____,c=____,焦点坐
标为:___ __,焦距等于______;若CD为过左焦点F1的弦,(如图)
则∆CD的周长为________.
12.(6分)椭圆的长轴长为____,短轴长为____,焦点坐标为 四个顶点坐标分别为___ ,离心率为 ;椭圆的左
准线方程为
13.(4分)比较下列每组中的椭圆:
(1)① 与② ,哪一个更圆
(2)①与②,哪一个更扁
14.(4分)若一个椭圆长轴的长度.短轴的长度和焦距成等差数列,则
该椭圆的离心率是
三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.
15.(30分)求满足下列条件的椭圆的标准方程:
(1)两个焦点的坐标分别为(0,-3),(0,3),椭圆的短轴长为8;(2)两个焦点的坐标分别为(-,0),(,0),并且椭圆经过点
(3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点
16.(12分)已知点M在椭圆上,M垂直于椭圆焦点所在的直线,垂直为,并且M为线段的中点,求点的轨迹方程
17.(12分)设点A,B的坐标为,直线AM,BM相交于点M,且它们的斜率之积为求点M的轨迹方程,并讨论值与焦点的关系.
18.(12分)当取何值时,直线:与椭圆相切,相交,相离?
19.(14分)椭圆的焦点分别是和,已知椭圆的离心率过中心作直线与椭圆交于A,B两点,为原点,若的面积是20,
求:(1)的值(2)直线AB的方程
参考答案
1.选择题:
题号12345678910答案B B C D C B C D C A
二.填空题:
11 10,8,6,(0,),12,40 12 10,8,(),(-5,0).(5,0).(0,-4).(0,4),, 13 ②,② 14
三.解答题:
15.(1)解:由题意,椭圆的焦点在轴上,设椭圆的标准方程为
由焦点坐标可得,短轴长为8,即,所以
椭圆的标准方程为
(2)由题意,椭圆的焦点在轴上,设椭圆的标准方程为
由焦点坐标可得,6
所以==9-5=4,所以椭圆的标准方程为
(3)设椭圆的方程为(),因为椭圆过
解得所以椭圆的标准方程为:
16.解:设点的坐标为,点的坐标为,由题意可知
① 因为点在椭圆上,所以有
② , 把①代入②得,所以P点的轨迹是焦点在轴上,标准方程为的椭圆.
17.解:设点M的坐标为,因为点A的坐标是,所以,直线AM的斜率,同理直线BM的斜率.由已知有化简得点M的轨迹方程为
当时,表示焦点在轴上的椭圆;当时,表示焦点在y轴上的椭圆.
18.解:
①代入②得化简得
当即时,直线与椭圆相切;
当,即时,直线与椭圆相交;
当,即或时,直线与椭圆相离.
19.解:(1)由已知,,得,
所以
(2)根据题意,设,则,,所以,把代入椭圆的方程,得,所以点的坐标为,所以直线AB的方程为。