生物质气化发电原理
生物质气化技术的应用案例与分析

生物质气化技术的应用案例与分析随着全球能源需求的不断增长和对环境保护的日益重视,生物质气化技术作为一种可再生能源利用方式,正逐渐受到广泛关注。
生物质气化是指将生物质原料(如木材、农作物秸秆、废弃物等)在一定的温度和压力条件下,通过热化学转化过程,将其转化为可燃气体的技术。
这种技术不仅可以实现生物质资源的高效利用,还能减少对传统化石能源的依赖,降低温室气体排放,具有重要的经济和环境意义。
一、生物质气化技术的原理与特点生物质气化的基本原理是在缺氧或有限氧气供应的条件下,生物质原料发生热解和部分氧化反应,生成含有一氧化碳、氢气、甲烷等成分的合成气。
其主要反应包括热解反应、燃烧反应和还原反应。
生物质气化技术具有以下几个显著特点:1、原料来源广泛:包括各种农业废弃物、林业剩余物、城市生活垃圾等,资源丰富且可再生。
2、能源转化效率较高:相比直接燃烧,气化过程能够更有效地释放生物质中的能量。
3、环境友好:减少了二氧化碳、二氧化硫等污染物的排放。
4、应用灵活:所产生的合成气可用于发电、供热、生产化学品等多种领域。
二、应用案例(一)生物质气化发电在_____地区,建设了一座以生物质气化技术为核心的发电厂。
该发电厂以当地丰富的农作物秸秆和林业废弃物为原料,通过气化炉将生物质转化为合成气,然后利用燃气轮机进行发电。
这座发电厂的装机容量达到了_____兆瓦,年发电量约为_____千瓦时。
与传统的燃煤发电相比,每年可减少二氧化碳排放_____吨,二氧化硫排放_____吨。
同时,该项目还为当地农民提供了额外的收入来源,促进了农业废弃物的资源化利用。
(二)生物质气化供热在_____工业园区,采用了生物质气化供热系统。
该系统以园区周边的木材加工剩余物为燃料,通过气化设备产生合成气,然后将其输送到热交换器中为园区内的企业提供热能。
该供热系统的供热能力达到了_____兆瓦,满足了园区内_____家企业的生产用热需求。
通过使用生物质气化供热,园区内的企业每年可节省能源成本约_____%,同时减少了对传统化石能源的依赖,降低了环境污染。
生物质气化技术生物质气化原理生物质气化是指将生物质原料(柴薪

生物质气化技术生物质气化原理生物质气化是指将生物质原料(柴薪、锯末、麦秆、稻草等)压制成型或简单破碎加工处理后,送入气化炉中,在欠氧的条件下进行气化裂解,从而得到的可燃气体,根据应用需要有时还要对产出气经行净化处理从而得到优质的产品气。
生物质气化原理是在一定的热力学条件下,借助于气化介质(空气、氧气或水蒸气等)的作用,使生物质的高聚物发生热解、氧化、还原、重整反应,热解伴生的焦油进一步热裂化或催化裂化成为小分子碳氢化合物,获得CO、H2和CH4等气体。
由于生物质由纤维素、半纤维素、木质素、惰性灰等组成,含氧量和挥发份高,焦炭的活化性强,因此生物质与煤相比,具有更高的气化活性,更适合气化。
生物质气化主要包括气化反应、合成气催化变换和气体分离净化过程(直接燃用的不用分离净化)。
生物质气化反应原理如图2-1所示:生物质气化化学反应式(以空气为气化介质):CH1.4O0.6+0.4O2+1.5N2=0.7CO+0.3CO2+0.6H2+0.1H2O+(1.5N2)生物质可燃气的优点1)生物质可燃气除具有生物质燃料的一般特点外,还具有以下优点:2)环保清洁型气体燃料;3)燃烧特性好,燃尽率高;4)含硫量极低,仅为燃料油的1/20左右,不用采取任何脱硫措施即可达到环保要求;5)含氮量极低,燃烧时不用采取任何脱硝措施即可达到环保要求;6)燃气含灰量低;7)“0”排放:生物质燃烧排放的CO2与其在生长过程中吸收的CO2相同,且替代了化石能源,减少了净排放,根据《京都议定书》机制,生物质燃料CO2为生态“0”排放。
生物质可燃气的热值、主要成分、燃烧产物1)生物质气体燃料的热值:一般为5~8MJ/m3;2)生物质气体燃料的成分:其主要可燃成份为CO、H2和CH4和一些C2H4高分子碳氢化合物及少量焦油;3)生物质气体燃料的燃烧产物:生物质气体燃料是一种可再生的环保清洁型能源,硫含量很低,主要燃烧产物为CO2、H2O、N2。
生物质气化发电技术

生物质气化发电技术1.气化发电的工作原理及工艺流程1.1气化发电工作原理生物质气化发电技术的基本原理是把生物质转化为可燃气,再利用可燃气推动燃气发电设备进行发电。
它既能解决生物质难于燃用而又分布分散的缺点,又可以充分发挥燃气发电技术设备紧凑而污染少的优点,所以是生物质能最有效最洁净的利用方法之一。
气化发电过程包括三个方面,一是生物质气化,把固体生物质转化为气体燃料;二是气体净化,气化出来的燃气都带有一定的杂质,包括灰份、焦炭和焦油等,需经过净化系统把杂质除去,以保证燃气发电设备的正常运行;三是燃气发电,利用燃气轮机或燃气内燃机进行发电,有的工艺为了提高发电效率,发电过程可以增加余热锅炉和蒸汽轮机。
生物质气化发电技术是生物质能利用中有别于其他可再生能源的独特方式,具有三个方面特点:一是技术有充分的灵活性,由于生物质气化发电可以采用内燃机,也可以采用燃气轮机,甚至结合余热锅炉和蒸汽发电系统,所以生物质气化发电可以根据规模的大小选用合适的发电设备,保证在任何规模下都有合理的发电效率。
这一技术的灵活性能很好地满足生物质分散利用的特点;二是具有较好的洁净性,生物质本身属可再生能源,可以有效地减少CO2、SO2等有害气体的排放。
而气化过程一般温度较低(大约在700-900oC),NOx的生成量很少,所以能有效控制NOx的排放;三是经济性,生物质气化发电技术的灵活性,可以保证该技术在小规模下有效好的经济性,同时燃气发电过程简单,设备紧凑,也使生物质气化发电技术比其他可再生能源发电技术投资更小,所以总的来说,生物质气化发电技术是所有可再生能源技术中最经济的发电技术,综合的发电成本已接近小型常规能源的发电水平。
典型的生物质气化发电工艺流程如图1-1所示。
图1-1气化发电系统流程图生物质循环流化床气化发电装置主要由进料机构,燃气发生装置,燃气净化装置,燃气发电机组、控制装置及废水处理设备六部分组成:进料机构:进料机构采用螺旋加料器,动力设备是电磁调速电机。
生物质气化发电技术

生物质气化发电技术1.气化发电的工作原理及工艺流程1.1气化发电工作原理生物质气化发电技术的基本原理是把生物质转化为可燃气,再利用可燃气推动燃气发电设备进行发电。
它既能解决生物质难于燃用而又分布分散的缺点,又可以充分发挥燃气发电技术设备紧凑而污染少的优点,所以是生物质能最有效最洁净的利用方法之一。
气化发电过程包括三个方面,一是生物质气化,把固体生物质转化为气体燃料;二是气体净化,气化出来的燃气都带有一定的杂质,包括灰份、焦炭和焦油等,需经过净化系统把杂质除去,以保证燃气发电设备的正常运行;三是燃气发电,利用燃气轮机或燃气内燃机进行发电,有的工艺为了提高发电效率,发电过程可以增加余热锅炉和蒸汽轮机。
生物质气化发电技术是生物质能利用中有别于其他可再生能源的独特方式,具有三个方面特点:一是技术有充分的灵活性,由于生物质气化发电可以采用内燃机,也可以采用燃气轮机,甚至结合余热锅炉和蒸汽发电系统,所以生物质气化发电可以根据规模的大小选用合适的发电设备,保证在任何规模下都有合理的发电效率。
这一技术的灵活性能很好地满足生物质分散利用的特点;二是具有较好的洁净性,生物质本身属可再生能源,可以有效地减少CO2、SO2等有害气体的排放。
而气化过程一般温度较低(大约在700-900oC),NOx 的生成量很少,所以能有效控制NOx的排放;三是经济性,生物质气化发电技术的灵活性,可以保证该技术在小规模下有效好的经济性,同时燃气发电过程简单,设备紧凑,也使生物质气化发电技术比其他可再生能源发电技术投资更小,所以总的来说,生物质气化发电技术是所有可再生能源技术中最经济的发电技术,综合的发电成本已接近小型常规能源的发电水平。
典型的生物质气化发电工艺流程如图1-1所示。
图1-1气化发电系统流程图生物质循环流化床气化发电装置主要由进料机构,燃气发生装置,燃气净化装置,燃气发电机组、控制装置及废水处理设备六部分组成:进料机构:进料机构采用螺旋加料器,动力设备是电磁调速电机。
生物质气化原理

生物质气化原理引言:生物质气化是一种利用生物质作为原料进行能源转化的技术。
它将生物质通过高温和催化剂的作用,转化为可燃性的气体,如合成气、甲烷等,并且还可以通过合适的处理技术将废弃物转化为能源。
这一技术具有环保、可持续和经济的优势,被广泛应用于能源生产和废弃物处理领域。
一、什么是生物质气化?生物质气化是一种将生物质通过热解和催化作用转化为气体燃料的过程。
生物质包括植物秸秆、废弃木材、农作物残渣等可再生资源。
在高温下,生物质的主要成分碳水化合物会分解为气体和液体产物,其中气体主要包括合成气、甲烷、一氧化碳等。
生物质气化技术可以有效地利用这些气体作为燃料或化工原料。
二、生物质气化的原理生物质气化的原理包括热解、气化和催化三个步骤。
首先,生物质在高温下经历热解过程,其主要成分如纤维素、半纤维素和木质素被分解为热解油、煤气和焦炭。
然后,煤气通过气化反应产生合成气、甲烷等可燃性气体。
最后,通过添加催化剂来提高气化效率和气体产物的质量。
三、生物质气化的应用1.能源生产:生物质气化技术可以将生物质转化为可燃性气体,如合成气、甲烷等,用于发电、供热和制冷等能源生产领域。
与传统燃煤发电相比,生物质气化发电具有环保、可持续和低碳的优势。
2.替代化石燃料:生物质气化可以将可再生的生物质转化为燃料气体,如生物天然气和生物乙醇,用于取代传统的石油和天然气,减少对有限资源的依赖。
3.废弃物处理:生物质气化技术可以将废弃物转化为有价值的能源。
例如,农作物残渣、城市生活垃圾和污水污泥等废弃物可以通过气化转化为合成气,用于能源生产或其他工业用途。
4.碳捕获和利用:生物质气化产生的合成气中含有一氧化碳,可以通过适当的处理技术转化为二氧化碳和氢气。
这些气体可以用于合成化学品、燃料电池等领域,实现碳的循环利用。
结论:生物质气化是一种有效利用生物质资源进行能源转化的技术。
它可以将生物质转化为可燃性气体,用于能源生产和废弃物处理。
生物质气化技术具有环保、可持续和经济的优势,被广泛应用于能源行业和环境治理领域。
生物质气化的原理

生物质气化的原理
生物质气化是一种利用生物质资源将其转化为可燃气体的过程。
其原理是通过控制在高温环境中对生物质进行热分解,以产生可燃性气体,如合成气体(一氧化碳和氢气),甲烷和其他有机化合物。
生物质气化的过程主要涉及三个主要步骤:干燥、热解和气化。
首先,生物质在干燥过程中,被加热并且与周围环境中的空气接触,以去除水分。
接下来,在热解阶段,生物质在缺氧条件下被加热,其大部分的有机物被分解成焦炭和可燃气体。
最后,在气化阶段,焦炭和可燃气体在高温环境中与蒸汽和气体反应,产生更多的可燃气体,如合成气体。
生物质气化的关键在于控制温度和气氛。
高温有利于生物质的热解和气化反应的进行,但过高的温度也会导致产物的不稳定和副反应的发生。
此外,气氛中存在的氧含量或气氛中是否存在气体也会影响气化反应的选择和产物的质量。
生物质气化可以应用于多种用途,如发电、制造高值化学和燃料产品,以及替代传统的燃烧方式来减少温室气体排放。
它被认为是一种可持续能源转化技术,可以利用农作物废弃物、林木残渣和其他生物质资源来产生清洁能源。
生物质气化技术原理及应用分析

前言生物质能是指由光合作用而产生的各种有机体,光合作用利用空气中的二氧化碳和土壤中的水,将吸收的太阳能转换为碳水化合物和氧气。
生物质通常包括农业废弃物、木材及森林工业废弃物、禽畜粪便、城镇生活垃圾以及能源作物等几种类型。
生物质能具有以下特点[1]:(1)属于可再生能源,可保证能源的永续利用;(2)种类多而分布广,便于就地利用,利用形式多样;(3)相关技术已经成熟,可贮存性好;(4)节能、环保效果好。
1生物质气化技术1.1生物质气化技术的原理生物质气化是利用空气中的氧气或含氧物作气化剂,在高温条件下将生物质燃料中的可燃部分转化为可燃气(主要是氢气、一氧化碳和甲烷)的热化学反应。
20世纪70年代,Ghaly[2]首次提出了将气化技术应用于生物质这种含能密度低的燃料。
生物质的挥发分含量一般在76%~86%[3],生物质受热后在相对较低的温度下就能使大量的挥发分物质析出。
几种常见生物质燃料的工业分析成分如表1所示:生物质气化技术原理及应用分析福建省电力勘测设计院郑昀济南锅炉集团有限公司邵岩李斌【摘要】生物质能是一种理想的可再生能源。
由于分布广泛、有利于环保等特点,因而越来越受到世界各国的关注。
生物质气化技术是利用生物质能的一种方式。
本文介绍了生物质气化技术的原理,生物质气化工艺及气化设备。
目前应用较多的气化技术是生物质气化供气和生物质气化发电技术。
文中提出了应用过程中存在的问题,提高效率、降低焦油含量等是今后利用生物质气化技术的发展方向。
【关键词】生物质气化原理气化技术应用种类工业分析成分水分(%)挥发分(%)固定碳(%)灰分(%)低位热值(MJ/kg)杂草豆秸稻草麦秸玉米秸玉米芯棉秸5.435.104.974.394.8715.06.7868.7774.6565.1167.3671.4576.6068.5416.417.1216.0619.3517.757.0020.719.463.1313.868.905.931.403.9716.19216.14613.97015.36315.45014.39515.991表1几种生物质的工业分析成分为了提供反应的热力学条件,气化过程需要供给空气或氧气,使原料发生部分燃烧。
生物质气化炉原理

生物质气化炉原理
生物质气化炉通过热解生物质材料而产生的气体化学反应,将固态的生物质转化为可燃的气体燃料。
整个气化过程可以分为七个主要阶段。
1. 原料预处理:将生物质材料切碎并除去杂质,以提高气化反应的效率。
2. 干燥阶段:加热生物质材料,除去其中的水分,通常在200°C以下进行。
3. 引燃阶段:将干燥后的生物质材料与氧气或空气接触,在高温下引燃以启动气化反应。
此时,产生的热量会进一步加热生物质并使其脱挥发性的气体。
4. 补充空气阶段:在引燃阶段后,通过供给适量的空气,使燃烧反应完全进行,将生物质中的固体炭化物转化为可燃的一氧化碳和氢气。
5. 燃烧与氧化阶段:在气化过程中,可燃气体与剩余的氧气发生燃烧和氧化反应,使气化产物更加纯净。
6. 均质化阶段:通过对气化产物进行混合和搅拌,使气体内的成分更加均匀,从而提高气化效率。
7. 再热解与燃烧阶段:将部分产生的焦炭再次引入反应中,进行再次热解和燃烧,以进一步增加可产生的气体。
整个生物质气化炉的原理就是通过一系列不同的气化反应,将固态的生物质转化为可燃的气体,以供能源利用或化学产品生产的需要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、概况
生物质气化发电技术,简单地说,就是将各种低热值固体生物质能源资源(如农林业废弃物、生活有机垃圾等)通过气化转换为燃气,再提供发电机组发电的技术。
寻求利用生物质气化发电的方法,既可以解决可再生能源的有效利用,又可以解决各种有机废弃物的环境污染。
正是基于以上原因,生物质气化发电技术得到了越来越多的研究和应用,并日趋完善。
生物质气化发电,可归纳为下列几种方式:
从上图可以看出,生物质气化发电可通过三种途径实现:生物质气化产生燃气作为燃料直接进入燃气锅炉生产蒸汽,再驱动蒸汽轮机发电;也可将净化后的燃气送给燃气轮机燃烧发电;还可以将净化后的燃气送入内燃机直接发电。
在发电和投资规模上,它们分别对应于大规模、中等规模和小规模的发电。
今天,在商业上最为成功的生物质气化内燃发电技术,由于具有装机容量小、布置灵活、投资少、结构紧凑、技术可靠、运行费用低廉、经济效益显著、操作维护简单和对燃气质量要求较低等特点,而得到广泛的推广与应用。
二、生物质气化内燃发电系统主要组成部分
生物质气化内燃发电系统主要由气化炉、燃气净化系统和内燃发电机等组成:
气化炉是将生物质能由固态转化为燃气的装置。
生物质在气化炉内通过控制空气供应量,而进行不完全燃烧,实现低值生物质能由固体向气态的转化,生成包含氢气(H2)、一氧化碳(CO)、甲烷(CH4)、多碳烃(C n H m)等可燃成
分的燃气,完成生物质的气化过程。
气化产生的燃气出口温度随气化炉型式的不同,在350℃~650℃之间,并且燃气中含有未完全裂解的焦油及灰尘等杂质,为满足内燃机长期可靠工作的要求,需要对燃气进行冷却和净化处理,使燃气温度降到40℃以下、焦油灰尘含量控制在50mg/Nm3以内,燃气经过净化后,再进入内燃机发电。
在内燃机内,燃气混合空气燃烧做功,驱动主轴高速转动,主轴再带动发电机进行发电。
生物质气化内燃发电就是通过以上过程,将各种废弃物化废为宝,转化为优质电能,解决废弃物的污染和能源的合理利用问题。
三、本公司生物质气化内燃发电系统介绍
生物质气化内燃发电装置装机容量有160kW、200kW、400kW、600kW、800kW、1000kW等规格,最大输出功率可在1.4MW以上。
在200kW及以下发电规模情况下,气化炉一般采用下吸式固定床气化炉,典型的下吸式固定床气化发电装置如下图所示:
气化炉为下吸式固定床气化炉,可连续加料,连续出灰。
料口在气化炉顶部,原料可从高位料仓放入,也可通过加料机提升进入气化炉内,灰渣由出渣机排出。
固定床气体发生炉装置实物图
燃气冷却采用可靠的多级水洗方式净化,以达到内燃机要求。
内燃机是6250柴油发电机变型设计产品,采用了为满足生物质气化气性能要求的低压缩比、机外单体的混合器结构以及简单可靠的电点火系统。
在发电规模较大的情况下,气化炉一般采用流化床。
由于技术原因,单台内燃机最大输出功率为200kW,因而,在需要较大发电功率时,采取一台流化床气化炉同时拖动多台内燃机。
下图为流化床气化发电工艺流程图。
流化床气化炉,气化效率高、容量大。
原料为颗粒或经过粉碎的原料,旋风分离器将灰渣或颗粒杂质去除。
气化炉出口温度约600℃~650℃,通过多级水洗的办法对燃气进行降温和除尘。
采用多台200kW发电机并联方式发电。
流化床气化系统实物外观图。