牛头刨床机构设计.

合集下载

牛头刨床机构设计

牛头刨床机构设计

牛头刨床机构设计首先,牛头刨床的床身设计应保证其稳定性和刚性。

床身通常由铸铁或钢铁制成,具有足够的重量来抵抗刨削过程中产生的振动和应变。

床身应具有良好的刚性和抗弯曲能力,以确保刨削过程中表面的平整度和一致的厚度。

刨床梁是将刨刀与床身连接的组件,它承受刨床梁和刀具的负荷,并将刨削力传递到床身上。

刨床梁的设计应尽可能减小刨削过程中的振动和变形。

常见的刨床梁设计是C型结构,具有较好的刚性和稳定性。

刀轴是刨床的动力传输部分,用于传递切削力和旋转力矩给刀具。

刀轴通常由钢材制成,具有足够的强度和刚性来承受刨削过程中的负荷。

刀轴的设计应考虑到刀具的尺寸和重量,并采用适当的轴承和传动系统来确保平稳的运行。

刨刀是刨床的切削工具,用于将木材表面切削成平滑的表面。

刨刀的设计取决于刨削木材的要求和应用。

常见的刨刀设计有直刀和斜刀两种。

直刀适用于粗加工,斜刀适用于细加工。

刨刀的材料应具有良好的耐磨性和强度,以确保长时间的使用寿命和高效的刨削效果。

除了上述主要部件,牛头刨床的设计还应考虑到以下因素:1.安全性:刨床应设有安全装置,如紧急停机按钮、防护罩等,以确保操作者的安全。

2.收集和清理木屑:刨床应设有适当的木屑收集和清理系统,以保持工作区的清洁和整洁。

3.调节和控制系统:刨床应设有可调节的刨削深度和刨削速度的控制系统,以满足不同加工要求。

4.维护和保养:刨床应设计为易于维护和保养的结构,包括易于更换刀具、轴承和传动系统等。

总之,牛头刨床机构设计需要考虑到床身稳定性和刚性、刨床梁的刚性和稳定性、刀轴的强度和刚性、刀具的设计和材料选择等因素。

此外,安全性、木屑收集和清理系统、调节和控制系统、维护和保养等也是重要的考虑因素。

通过合理的设计和优质的制造,牛头刨床可以提供高效、稳定和安全的刨削过程,满足不同木材加工的需求。

机械原理课程设计-牛头刨床结构设计

机械原理课程设计-牛头刨床结构设计

机械原理课程设计-牛头刨床结构设计
牛头刨床是金属加工行业中常用的一种大型机床,它主要用于木材或金属的刨削加工。

本文将针对牛头刨床的结构进行设计,旨在为机械原理课程的学习者提供一些实用指导。

首先,牛头刨床的主要结构由床身、主轴箱、工作台、进刀机构、输送机构、电气装置等几个部分组成。

床身应采用铸铁材料,以保证高强度和稳定性。

主轴箱应位于床身的中心位置,包括主轴、齿轮箱和主电机等组件,以便于操作人员直接控制和调节工作过程。

工作台是刨床加工的“工作台”,也是制品的支撑平面。

工作台的高低和翻转方向应该具有可调节的功能,以创造出不同的工作环境。

同时,在工作台上应该安装一块正方形或长方形的工作面板,用于刨削被加工材料的表面。

工作面板的平整度应达到精度等级6级以上。

进刀机构是驱动铣刀前进的部件,其主要组成包括导轨、刨削压力装置、进给丝杠等。

这些部件需要协调工作才能满足牛头刨床的正常运转。

同时,输送机构是将加工材料移动到加工区域的重要组成部分。

电气装置一般由电器控制系统和强电控制系统组成。

电气系统的控制器可以通过控制机床的各个部分进行自动化调节,使刨床在自动化控制水平上达到良好的性能。

总之,设计一台高性能、高精度的牛头刨床需要考虑机械原理、建筑设计、电气工程以及制造工艺等各方面的因素。

本文结合以上方面的特点,希望能为机械原理课程的学习者提供一些实用指导和借鉴。

牛头刨床课程设计

牛头刨床课程设计

牛头刨床课程设计牛头刨床是一种常见的木工机械,用于加工木材表面,使其平整光滑。

在木工行业中,牛头刨床是必不可少的工具之一。

本文将介绍牛头刨床的基本原理、结构和使用方法,并提供一些课程设计的思路。

一、牛头刨床的基本原理牛头刨床的基本原理是利用刨刀在木材表面切削,使其表面平整光滑。

刨刀是由刨刀架和刨刀组成的,刨刀架固定在刨床上,刨刀则通过刨刀架与刨床相连。

当刨床启动时,刨刀开始旋转,同时向前推进,切削木材表面,使其平整光滑。

二、牛头刨床的结构牛头刨床的结构主要由以下几个部分组成:1.床身:床身是牛头刨床的主体部分,通常由铸铁或钢板制成。

床身上有一条长槽,用于固定刨刀架。

2.刨刀架:刨刀架是用于固定刨刀的部件,通常由铸铁或钢板制成。

刨刀架上有一个或多个刨刀槽,用于固定刨刀。

3.刨刀:刨刀是用于切削木材表面的部件,通常由高速钢制成。

刨刀有不同的形状和尺寸,可根据不同的加工需求进行选择。

4.进给机构:进给机构是用于控制刨刀前进速度的部件,通常由电机、减速器和传动装置组成。

进给机构的速度可根据加工需求进行调整。

5.调整机构:调整机构是用于调整刨刀高度和角度的部件,通常由手轮、螺杆和导轨组成。

调整机构的精度和稳定性对加工质量有重要影响。

三、牛头刨床的使用方法使用牛头刨床时,需要注意以下几点:1.选择合适的刨刀:根据加工需求选择合适的刨刀,刨刀的形状和尺寸应与木材的形状和尺寸相匹配。

2.调整刨刀高度和角度:根据加工需求调整刨刀高度和角度,确保刨刀与木材表面接触的角度和深度正确。

3.调整进给速度:根据加工需求调整进给速度,确保刨刀前进速度适当,不过快或过慢都会影响加工质量。

4.保持刨床清洁:定期清理刨床上的木屑和灰尘,保持刨床清洁,以免影响加工质量。

四、课程设计思路针对牛头刨床的课程设计,可以从以下几个方面入手:1.设计一个简单的木工制品,如木制书架或木制餐桌,要求学生使用牛头刨床进行加工。

2.设计一个刨床加工实验,要求学生使用不同的刨刀和进给速度进行加工,比较不同加工参数对加工质量的影响。

牛头刨床课程设计方案一

牛头刨床课程设计方案一

一、引言牛头刨床是一种常见的木工工具,它可以用来刨平木材的表面,使之变得光滑平整。

在木工行业中,牛头刨床的使用非常广泛。

为了提高学生对牛头刨床的操作技能和理论知识的掌握,本课程设计方案一旨在设计一门牛头刨床的课程,帮助学生全面了解牛头刨床的原理、使用方法和注意事项。

二、课程目标本课程的目标是使学生能够:1.了解牛头刨床的工作原理和结构;2.掌握牛头刨床的基本使用方法;3.熟悉牛头刨床的常见故障排除方法;4.学会根据木材的不同特性,选择合适的刨床刀具;5.培养学生的安全意识,避免刨床操作中的事故发生。

三、课程内容1.牛头刨床的工作原理和结构–牛头刨床的定义和作用;–刨床的主要部件及其功能;–牛头刨床的工作原理。

2.牛头刨床的基本使用方法–牛头刨床的操作步骤;–不同类别木材的适用刨床刀具选择;–刨床操作中的注意事项。

3.牛头刨床常见故障排除方法–刨床刀具磨损的识别和更换;–刨床机械部件故障的检修;–刨床操作中常见的问题及其解决方法。

4.木材特性与刨床选择–不同木材特性的介绍;–根据木材特性选择刨床刀具的原则;–刨床操作中的注意事项。

5.安全操作与事故预防–牛头刨床操作中的安全要点;–事故案例分析与讨论;–安全操作守则与演示。

四、教学方法本课程将采用多种教学方法,包括理论讲解、案例分析、实操演示和实践操作等。

力求使学生能够通过实际操作和思考,深入理解牛头刨床的原理和使用方法,并且能够在实践中熟练掌握相关技能。

五、评估方式1.平时表现评估:包括课堂参与度、作业完成情况等。

2.期末考核评估:包括理论考试和实际操作考核,测试学生对相关知识和技能的掌握情况。

六、教材及参考资料1.主教材:《牛头刨床操作与维护实用手册》;2.参考书:《木工基础技术与实践指南》;3.参考资料:相关网络资源和实际案例资料。

七、教学进度安排教学内容学时安排牛头刨床的工作原理和结构 2 学时牛头刨床的基本使用方法 4 学时牛头刨床常见故障排除方法 2 学时木材特性与刨床选择 4 学时安全操作与事故预防 2 学时八、课程实施要求1.提供牛头刨床操作和维护的实物展示和演示;2.安排学生进行实际操作训练;3.安全教育和防护用具的配备。

牛头刨床机构设计方案

牛头刨床机构设计方案

牛头刨床机构设计方案
牛头刨床是一种常见的木工机械设备,用于加工木材表面,使其变得平整光滑。

牛头刨床的机构设计方案包括以下几个方面:
1. 传动系统:主要由电机、皮带或齿轮传动组成,用于驱动刨刀运动。

电机通过皮带或齿轮将动力传递给刨刀,使其能够正常工作。

2. 刨刀机构:牛头刨床的刨刀机构主要包括刨刀床、刨刀、刨刀床的升降机构等。

刨刀床是放置刨刀的部分,刨刀固定在刨刀床上,通过升降机构实现刨刀的升降。

刨刀床的升降机构可以通过螺杆或气压系统实现。

3. 进料系统:用于将待加工的木材送入刨床进行刨削。

进料系统通常由进料辊或进料台组成,通过辊轮或台面带动木材进料,确保木材能够顺利进入刨床。

4. 出料系统:用于将已经加工完成的木材从刨床上取出。

出料系统通常由出料辊或出料台组成,通过辊轮或台面将木材从刨床上顺利取出。

5. 安全保护装置:为了确保操作人员的安全,牛头刨床通常还会配备安全保护装置,如刨刀罩、急停开关等。

刨刀罩可以防止操作人员误触刨刀,而急停开关可以在紧急情况下立即停止刨床的运行。

牛头刨床的机构设计方案主要包括传动系统、刨刀机构、进料
系统、出料系统和安全保护装置等。

这些机构的设计要考虑到刨床的工作效率、刨削质量和操作人员的安全性。

牛头刨床机构设计

牛头刨床机构设计

目录1.设计题目……………………………………………………………...................1.1课程设计的要求…………………………………………………………1.2工作原理…………………………………………………………………1.3设计任务’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’1.4设计数据…………………………………………………………............2.机构基本参数机机构运动简图………………………………………………...3.运动分析………………………………………………………………………...3.1速度分析…………………………………………………………………3.2加速度分析………………………………………………………………4. 动态静力分析………………………………………………………………….4.1取构件5、6基本杆组为示力体………………………………………….4.2取构件3、4基本杆组为示力体………………………………………….4.3取杆件2为示力体……………………………………………………….§1设计题目1.1课程设计的要求电动机轴与曲柄轴2平行,刨刀刀刃E点与铰链点C的垂直距离为50mm,使用寿命10年,每日一班制工作,载荷有轻微冲击。

允许曲柄2转速偏差为±5%。

要求导杆机构的最大压力角应为最小值。

执行构件的传动效率按0.95计算,系统有过载保护。

按小批量生产规模设计。

1.2工作原理牛头刨床是一种靠刀具的往复直线运动及工作台的间歇运动来完成工件的平面切削加工的机床。

图1为其参考示意图。

电动机经过减速传动装置(皮带和齿轮传动)带动执行机构(导杆机构和凸轮机构)完成刨刀的往复运动和间歇移动。

刨床工作时,刨头6由曲柄2带(a)机械系统示意图(b)刨头阻力曲线图动右行,刨刀进行切削,称为工作行程。

机械原理课程设计 牛头刨床连杆机构

机械原理课程设计 牛头刨床连杆机构

机械原理课程设计编程说明书设计题目: 牛头刨床的设计及运动分析(1)指导老师: 席本强, 郝志勇设计者: 迟宇学号: **********班级: 液压09-1班2011年6月30号辽宁工程技术大学机械原理课程设计任务书五、要求:1)作机构的运动简图(A4或A3图纸)。

2)用C语言编写主程序调用子程序, 对机构进行运动分析, 并打印出程序及计算结果。

3)画出导轨4的角位移, 角速度, 角加速度的曲线。

4)编写设计计算说明书。

指导教师:开始日期: 2010年6月26日完成日期: 2010年6月30日目录1.设计要求及参数 (1)2.数学模型 (2)3.程序框图 (4)4.程序清单及运行结果 (5)5.设计总结 (14)6.参考文献 (14)一、设计要求及参数已知: 曲柄每分钟转数n2, 各构件尺寸及重心位置, 且刨头导路X-X位于导杆端点B所作圆弧的平分线上, 数据见下表要求:(1)作机构的运动简图(2)用C语言编写主程序调用子程序, 对机构进行运动分析, 动态显示, 并打印程序及运算结果。

(3)画出导轨4的角位移Ψ, 角速度Ψ’, 角加速度Ψ”。

(4)编写设计计算说明书二、数学模型如图四个向量组成封闭四边形, 于是有0321=+-Z Z Z按复数式可以写成a (cos α+isin α)-b(cos β+isin β)+d(cos θ3+isin θ3)=0(1)由于θ3=90º, 上式可化简为a (cos α+isin α)-b(cos β+isin β)+id=0(2)根据(2)式中实部、虚部分别相等得acos α-bcos β=0(3)asin α-bsin β+d=0(4)(3)(4)联立解得 β=arctan acosaasinad + (5)b=2adsina d2a 2++ (6)将(2)对时间求一阶导数得ω2=β’=baω1cos(α-β)(7)υc =b ’=-a ω1sin(α-β)(8)将(2)对时间求二阶导数得ε3=β”=b1[a ε1cos(α-β)- a ω21sin(α-β)-2υc ω2] (9)a c =b ”=-a ε1sin(α-β)-a ω21cos(α-β)+b ω22(10)ac 即滑块沿杆方向的加速度, 通常曲柄可近似看作均角速转动, 则ε1=0。

牛头刨床平面机构的设计与分析

牛头刨床平面机构的设计与分析

牛头刨床平面机构的设计与分析引言:牛头刨床平面机构是一种常见的木工加工设备,用于对木材表面进行刨削加工。

在牛头刨床平面机构中,刀具通过机构运动,将工件表面的不平整部分削平,使其具有更加光滑的表面质量。

牛头刨床平面机构的设计与分析对于提高机械加工效率、确保加工质量以及降低设备故障率具有重要意义。

一、牛头刨床平面机构的设计要素1.刀具部分设计:刀具部分是牛头刨床平面机构的关键部分,设计合理与否直接影响到加工质量和效率。

刀具部分包括刨刀和刨刀架。

刨刀的选择要考虑到刨削材料的硬度和机床的工作状态。

刨刀架则需要具备刀具安装方便、切削力平稳传递等特点。

2.主动件设计:主动件主要是传动装置,包括电机、减速器、皮带等。

电机要选择合适的功率和转速,确保机床的正常运转。

减速器可以通过传动比选择来调整机床的切削速度。

皮带的选择要考虑到传动效率和寿命,以及对机床的振动和噪音影响。

3.机构设计:牛头刨床平面机构的机构设计要考虑到机床运动的稳定性和刨削质量。

机构设计的关键是选择合适的导轨和导向方式,确保刨削过程中的工作台和刀具的稳定性。

同时,机构设计还需要考虑到切削力和振动等因素的影响,以减小机床的故障率。

二、牛头刨床平面机构的分析方法1.动力学分析:动力学分析可以通过建立相应的运动学方程和动力学方程,研究机械零件的运动状态和力学特性。

动力学分析可以帮助我们评估机床的运动稳定性和工作状态,以及切削力和振动等因素的影响。

2.有限元分析:有限元分析是一种基于计算机模拟的工程分析方法,可以对机床的结构进行力学和热力学分析。

有限元分析可以评估机床在工作过程中的受力情况和变形程度,为机床结构的优化设计提供参考。

3.模态分析:模态分析是一种研究机械结构动态特性的方法,可以分析机床的固有频率和振型。

模态分析可以帮助我们评估机床的动态性能,以及对切削力和振动等外界扰动的响应能力。

4.可靠性分析:可靠性分析可以通过统计学的方法,评估机床的故障率和寿命。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械原理设计说明书设计题目:牛头刨床机构设计学生:汪在福班级:铁车二班学号:********指导老师:**机械原理设计说明书设计题目:牛头刨床机构设计学生姓名汪在福班级铁车二班学号20116473一、设计题目简介牛头刨床是用于加工中小尺寸的平面或直槽的金属切削机床,多用于单件或小批量生产。

为了适用不同材料和不同尺寸工件的粗、精加工,要求主执行构件—刨刀能以数种不同速度、不同行程和不同起始位置作水平往复直线移动,且切削时刨刀的移动速度低于空行程速度,即刨刀具有急回现象。

刨刀可随小刀架作不同进给量的垂直进给;安装工件的工作台应具有不同进给量的横向进给,以完成平面的加工,工作台还应具有升降功能,以适应不同高度的工件加二、设计数据与要求电动机轴与曲柄轴2平行,刨刀刀刃D点与铰链点C的垂直距离为50mm,使用寿命10年,每日一班制工作,载荷有轻微冲击。

允许曲柄2转速偏差为±5%。

要求导杆机构的最大压力角应为最小值;凸轮机构的最大压力角应在许用值[α]之内,摆动从动件9的升、回程运动规律均为等加速等减速运动。

执行构件的传动效率按0.95计算,系统有过载保护。

按小批量生产规模设计回6三、设计任务1、根据牛头刨床的工作原理,拟定2~3个其他形式的执行机构(连杆机构),并对这些机构进行分析对比。

2、根据给定的数据确定机构的运动尺寸。

并将设计结果和步骤写在设计说明书中。

3、用软件(VB、MATLAB、ADAMS或SOLIDWORKS等均可)对执行机构进行运动仿真,并画出输出机构的位移、速度、和加速度线图。

4、导杆机构的动态静力分析。

通过参数化的建模,细化机构仿真模型,并给系统加力,写出外加力的参数化函数语句,打印外加力的曲线,并求出最大平衡力矩和功率。

5、凸轮机构设计。

根据所给定的已知参数,确定凸轮的基本尺寸(基圆半径ro、机架lO2O9和滚子半径rr),并将运算结果写在说明书中。

将凸轮机构放在直角坐标系下,在软件中建模,画出凸轮机构的实际廓线,打印出从动件运动规律和凸轮机构仿真模型。

6、编写设计说明书一份。

应包括设计任务、设计参数、设计计算过程等。

四.设计过程(一)方案选择与确定方案一:如图(1)采用双曲柄六杆机构ABCD,曲柄AB和CD不等长。

方案特点:(1)主动曲柄AB等速转动时,从动曲柄DC做变速运动,并有急回特性。

(2)在双曲柄机构ABCD上串联偏置式曲柄滑块机构DCE,并在滑块上固结刨头,两个连杆机构串联,使急回作用更加显著。

同时回程有较大的加速度,提高了刨床的效率。

图一方案二:方案为偏置曲柄滑块机构。

如图二图二方案特点:结构简单,能承受较大载荷,但其存在有较大的缺点。

一是由于执行件行程较大,则要求有较长的曲柄,从而带来机构所需活动空间较大;二是机构随着行程速比系数K的增大,压力角也增大,使传力特性变坏。

方案三:由曲柄摇杆机构与摇杆滑块机构串联而成。

该方案在传力特性和执行件的速度变化方面比方案(二)有所改进,但在曲柄摇杆机构ABCD 中,随着行程速比系数K 的增大,机构的最大压力角仍然较大,而且整个机构系统所占空间比方案(二)更大。

如图三图三方案四:由摆动导杆机构和摇杆滑块机构串联而成。

该方案克服了方案(三)的缺点,传力特性好,机构系统所占空间小,执行件的速度在工作行程中变化也较缓慢。

如图四图四方案确定:综上,方案四较为合理(二)传动机构尺寸的确定令4O 点为基点用以确定尺寸,滑块6导程回路距基点4O 距离L ;摆动导杆运动所绕圆心2O 距基点4O 距离42O O l ;导杆A O 2的长度A O l 2;导杆B O 4的长度B O l 4;连杆BC 长度BC l 。

由题目已知尺寸及相互关系:机架 24430O O l mm =; 工作行程H=400mm ; 连杆与导杆之比40.36BCO Bl l =; 行程速比系数 1.4K =。

.根据所给数据确定机构尺寸极位夹角:k 1 1.41180180=301 1.41k θ--==++。

导杆长度41400177322sin15sin 2BO H l θ===。

mm 连杆长度:BC l =0.36 4BO l =278mm 曲柄长度:224sin430*sin151112AO O O l l θ===mm为了使机构在运动过程中具有良好的传动力特性;即要求设计时使得机构的最大压力角具有最小,,应此分析得出:只有将构件5即B 点移到两极限位置连线的中垂线上,才能保证机构运动过程的最大压力角具有最小值。

分析如下:解:当导杆摆到左边最大位置时,最大压力角为3α,刨头可能的最大压力角位置是导杆B 和'B ,设压力角为1α ,2α (见下图五)。

根据几何关系3α=12αθ+。

由于2α与1α,3α呈背离关系,即2α增加则1α,3α减小且3α>1α。

则要使机构整体压力最小,只要有2α=3α,当刨头处于导杆摆弧平均置处1α =2α,则 BCBO l l )2cos 1(21arcsin 42θα-=所以44411(1cos )773*773(1cos15)77313760222CO BO BO y L l mm θ=--=--=-=(图五)(图六)(三)机构运动简图的绘制选取一长度比例尺,机构运动简图的绘图如图六所示通过上面的计算,确定数据汇总如下:极位夹角:30度连杆:278mm导杆:778mm曲柄:111mm高度:760mm(四)静力分析1)对曲柄,由平衡条件有:x F =0, 21x F +2o x F =0; y F =0, 21y F +2o y F =0;2O M =0;21x F l 1sin θ2-21y F l 1cos θ2-T N =02)对导杆,又平衡条件有:x F =0, F 4O x +F 43x -F 23sin θ4=0 ; y F =0, F 4O y +F 43y + F 23cos θ4-m 2g=0;4o M =0, - F 43x l 3sin θ4+ F 43y l 3cos θ4-1/2 m 2g l 3cos θ4+ F 23s 3=0 3)对滑块, 由平衡条件有F=0, F32sinθ4-F12x=0xF=0, - F32cosθ4-F12y=0y4)对连杆,由平衡条件有F=0, -F34x-F max=0;xF=0, F cy-F34y=0;yM=0,F cy l4cosθ5+ F max l4sinθ5=0 4o综上所述联立方程求得F34x=- F maxF cy=- F max tanθ5F34y=- F max tanθ5F23=(F max l3sinθ4- F max tanθ5l3cosθ4+1/2 m2g l3cosθ4)/ s3F4O x=- F max+(F max l3sinθ4- F max tanθ5l3cosθ4+1/2 m2g l3cosθ4)sinθ3/ s3 F4O y= m2g- F max tanθ5-(F max l3sinθ4- F max tanθ5l3cosθ4+1/2 m2g l3cosθ4)cosθ4/ s3F12x=-(F max l3sinθ4- F max tanθ5l3cosθ4+1/2 m2g l3cosθ4)sinθ4/ s3F12y=(F max l3sinθ4- F max tanθ5l3cosθ4+1/2 m2g l3cosθ4)cosθ4/ s3F= F12x2o xF= F12y2o yT N=(F max l3sinθ4- F max tanθ5l3cosθ4+1/2 m2g l3cosθ4)l1cos(θ2-θ4)/ s3(五)凸轮设计1. 凸轮机构的设计要求概述:1)已知摆杆9作等加速等减速运动,要求确定凸轮机构的基本尺寸,选取滚子半径,有题目可以知道该凸轮机构的从动件运动规律为等加速等减速运动。

各数据如表:2)由以上给定的各参数值及运动规律可得其运动方程如下表:’3)依据上述运动方程绘制角位移ψ、角速度ω、及角加速度β的曲线:(1)、角位移曲线:图(1)①、取凸轮转角比例尺μφ=1.25°/mm和螺杆摆角的比例尺μψ=0.5°/mm在轴上截取线段代表,过3点做横轴的垂线,并在该垂线上截取33'代表(先做前半部分抛物线).做03的等分点1、2两点,分别过这两点做ψ轴的平行线。

②、将左方矩形边等分成相同的分数,得到点1'和2 '。

③、将坐标原点分别与点1',2',3'相连,得线段O1',O2'和03',分别超过1,2,3点且平行与Ψ轴的直线交与1",2"和3".④、将点0,1",2",3"连成光滑的曲线,即为等加速运动的位移曲线的部分,后半段等减速运动的位移曲线的画法与之相似.(2)角速度ω曲线:①、选凸轮转角比例尺μφ=1.25°/mm 和角速度比例尺μω=0.0837(rad/s)/mm,在轴上截取线段代表。

10''φ(°)ω()图(2)②由角速度方程可得φ=φo /2, ω= ωmax ,求得v 换算到图示长度,3点处φ=Φ0/2,故ωmax 位于过3点且平行与ω轴的直线.由于运动为等加速、等减速,故连接03'即为此段的角速度图,下一端为等减速连接3'6即为这段角速度曲线。

③其他段与上述画法相同,只是与原运动相反。

五.运动仿真通过adams 进行运动仿真,仿真图如图5.1图5.1 运动仿真图进一步分析得到运动曲线如图5.2,图5.3,图5.4:图5.2 刨头输出位移图图5.3 刨头输出速度图图5.4 刨头输出加速度曲线六.三维建模用proe进行三维建模,如图6.1图6.1 三维建模图。

相关文档
最新文档