牛头刨床机械原理课程设计5、12点

合集下载

5点牛头刨床课程设计

5点牛头刨床课程设计

5点牛头刨床课程设计一、课程目标知识目标:1. 学生能理解5点牛头刨床的基本结构、工作原理及其在机械加工中的应用;2. 学生能掌握5点牛头刨床的操作步骤、调整方法及相关安全技术规范;3. 学生能描述5点牛头刨床加工过程中常见的故障及其原因。

技能目标:1. 学生能独立操作5点牛头刨床进行简单零件的加工;2. 学生能根据加工要求,合理选择和调整5点牛头刨床的切削参数;3. 学生能分析并解决5点牛头刨床加工过程中出现的问题。

情感态度价值观目标:1. 培养学生热爱机械加工专业,增强职业责任感;2. 培养学生严谨、细致的工作态度,提高安全意识;3. 培养学生团队协作精神,提升沟通与交流能力。

课程性质:本课程为机械加工专业核心课程,以实践操作为主,理论教学为辅。

学生特点:学生为中职二年级,具有一定的机械加工基础知识和技能。

教学要求:注重理论与实践相结合,强化操作技能训练,提高学生的实际操作能力。

通过本课程的学习,使学生能够达到课程目标所要求的具体学习成果,为今后的工作打下坚实基础。

二、教学内容1. 5点牛头刨床的基本结构:包括床身、刀架、工作台、进给系统、冷却系统等部件的结构与功能;2. 5点牛头刨床的工作原理:讲解切削加工过程中各部件的协同作用,阐述加工原理;3. 5点牛头刨床操作步骤:详细介绍开机、关机、调整、加工等操作流程;4. 切削参数选择与调整:教授如何根据工件材料、加工要求等选择合适的切削速度、进给量等参数;5. 常见故障及其原因:分析加工过程中可能出现的故障现象,探讨其原因及解决办法;6. 安全技术规范:强调操作过程中的安全注意事项,提高学生的安全意识;7. 实践操作:安排学生进行5点牛头刨床的实操训练,巩固所学知识。

教学内容依据教材相关章节进行组织,教学进度安排如下:1. 前2课时:学习5点牛头刨床的基本结构和工作原理;2. 第3-4课时:学习操作步骤、切削参数选择与调整;3. 第5课时:分析常见故障及其原因,强调安全技术规范;4. 第6-8课时:进行实践操作,巩固所学知识。

机械原理课程设计——牛头刨床

机械原理课程设计——牛头刨床
对7号位置受力 分析
对于滑块中心D 点分析
Page 15
对摇杆进行分析
十二、飞轮转动惯量的计算
计算阻力距 确定等效力矩 确定最大盈亏功 估算飞轮转动惯量
Wmax 900 Wmax JF 2 2 2 213.7kg m2 (1 [ ]) π n1 [ ]
Page 16
Page
12
九、主机构尺度综合及运动特性评定
机构位置划分图
以 7号和 14 号位置 作运动分析
Page
13
十、电动机功率与型号的确定
电动机的选择 传动比分配与 减速机构设计 工作台进给方案
Page 14
确定电动机功率
总传动比 采用展开式二级圆柱齿轮减速器
工作台横向进给运动 工作台垂直进给运动
十一、主机构受力分析
Page
3
三、三维模型示意图
ቤተ መጻሕፍቲ ባይዱ三维模型示意图
Page 4
四、设计内容
课题:牛头刨床
1.对导杆机构进行运动分析 设 计 内 容 2.对导杆机构进行动态静力分析
3. 用UG模拟仿真运动校核机构运动分析和动态静 力分析结果
4. 确定电动机功率与型号 5. 减速装置的设计
Page 5
五、机构方案的初步确定
方案一
方案三
方案二
Page 6
五、机构方案的初步确定
功能要求
方 案 对 比
可动性
传递性能 动力性能 制造工艺及经济性
Page
7
六、对方案二的性能分析
(1)机械功能分析
杆1、2、3、6为曲柄摇杆,曲柄1为原动件,作 周期往复运动,使滑块同时周期往复运动,带动导 杆摆动,从而使得滑块4上下往复运动带动刨刀在 水平轨道上来回运动。 其中,刨刀向左为工作行程,速度平稳,运动行 程大;向右为工作回程,速度快,具有快速返回的 特性。

牛头刨床机械原理课程设计5、12点

牛头刨床机械原理课程设计5、12点

课程设计说明书—牛头刨床1. 机构简介牛头刨床是一种用于平面切削加工的机床。

电动机经皮带和齿轮传动,带动曲柄2和固结在其上的凸轮8。

刨床工作时,由导杆机构2-3-4-5-6带动刨头6和刨刀7作往复运动。

刨头右行时,刨刀进行切削,称工作行程,此时要求速度较低并且均匀,以减少电动机容量和提高切削质量;刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生产率。

为此刨床采用有急回作用的导杆机构。

刨刀每次削完一次,利用空回行程的时间,凸轮8通过四杆机构1-9-10-11与棘轮带动螺旋机构,使工作台连同工件作一次进给运动,以便刨刀继续切削。

刨头在工作行程中,受到很大的切削阻力,而空回行程中则没有切削阻力。

因此刨头在整个运动循环中,受力变化是很大的,这就影响了主轴的匀速运转,故需安装飞轮来减少主轴的速度波动,以提高切削质量和减少电动机容量。

图1-11.导杆机构的运动分析已知曲柄每分钟转数n2,各构件尺寸及重心位置,且刨头导路x-x位于导杆端点B所作圆弧高的平分线上。

要求作机构的运动简图,并作机构两个位置的速度、加速度多边形以及刨头的运动线图。

以上内容与后面动态静力分析一起画在1号图纸上。

1.1设计数据牛头刨床是一种用于平面切削加工的机床。

电动机经皮带和齿轮传动,带动曲柄2和固结在其上的凸轮8。

刨床工作时,由导杆机构2-3-4-5-6带动刨头6和刨刀7作往复运动。

刨头右行时,刨刀进行切削,称工作切削。

此时要求速度较低且均匀,以减少电动机容量和提高切削质量;刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生产效率。

为此刨床采用急回作用得导杆机构。

刨刀每切削完一次,利用空回行程的时间,凸轮8通过四杆机构1-9-10-11与棘轮机构带动螺旋机构,使工作台连同工件作一次进给运动,以便刨刀继续切削。

刨头在工作行程中,受到很大的切削阻力,而空回行程中则没有切削阻力。

因此刨头在整个运动循环中,受力变化是很大的,这就影响了主轴的匀速运转,故需装飞轮来减小株洲的速度波动,以减少切削质量和电动机容量。

牛头刨床机械原理课程设计5点和10点

牛头刨床机械原理课程设计5点和10点

牛头刨床机械原理课程设计5点和10点5点设计:1. 刨床的基本原理和结构:介绍牛头刨床的基本原理和结构,包括刨床的工作原理、组成部分和各部分的功能。

2. 机床主要零部件的设计:对牛头刨床的主要零部件进行设计,包括主轴、进给机构、工作台、导轨等部分,要考虑到零件的尺寸、材料、加工工艺等方面。

3. 机床的传动系统设计:设计刨床的传动系统,包括主轴传动、进给机构传动、液压系统传动等,要保证传动系统的可靠性和高效性。

4. 机床的控制系统设计:设计刨床的控制系统,包括数控系统、PLC控制系统等,要考虑到控制系统的稳定性、可靠性和操作性。

5. 刨床的实验验证和性能测试:对设计的刨床进行实验验证和性能测试,包括机床的加工精度、加工效率、运行稳定性等方面的测试。

10点设计:1. 刨床的基本原理和结构:详细介绍牛头刨床的基本原理和结构,包括刨床的工作原理、组成部分和各部分的功能,以及与其他刨床的比较分析。

2. 机床主要零部件的设计:对牛头刨床的主要零部件进行详细的设计,包括主轴、进给机构、工作台、导轨等部分,要考虑到零件的尺寸、材料、加工工艺等方面,并进行实际加工验证。

3. 机床的传动系统设计:设计刨床的传动系统,包括主轴传动、进给机构传动、液压系统传动等,要保证传动系统的可靠性和高效性,并进行实际运行验证。

4. 机床的控制系统设计:设计刨床的控制系统,包括数控系统、PLC控制系统等,要考虑到控制系统的稳定性、可靠性和操作性,并进行实际操作验证。

5. 刨床的结构优化设计:对刨床的结构进行优化设计,包括增加刨床的稳定性、降低噪音、提高加工精度等方面的优化。

6. 刨床的自动化设计:对刨床进行自动化设计,包括自动进给、自动换刀、自动测量等方面的设计,提高机床的自动化程度。

7. 刨床的CAD设计:对刨床进行CAD设计,包括三维模型设计、工艺分析、装配分析等方面的设计。

8. 刨床的加工工艺研究:对刨床的加工工艺进行研究,包括加工策略、刀具选择、工艺参数等方面的研究。

机械原理-牛头刨床课程设计5位置

机械原理-牛头刨床课程设计5位置

机械原理-牛头刨床课程设计5位置
设计任务:
设计一个具有5个工作位置的牛头刨床,能够自动完成工件的进给、切削和退刀操作。

设计内容:
1. 确定机床整体结构和主要参数。

2. 设计机床的进给机构,包括进给轴、传动副和控制系统。

3. 设计机床的切削机构,包括主轴、锯条、导向系统和夹紧装置。

4. 设计机床的退刀机构,包括退刀轴、传动副和控制系统。

5. 设计机床的自动化控制系统,包括程序控制和传感器反馈控制。

设计步骤:
1. 确定机床的整体结构和主要参数,包括机身、进给轴、主轴和牛头等。

2. 设计进给机构,确定进给速度和进给行程,设计传动副和控制系统。

3. 设计切削机构,确定切削速度和切削深度,设计主轴传动副、锯条、导向系统和夹紧装置。

4. 设计退刀机构,确定退刀速度和行程,设计传动副和控制系统。

5. 设计自动化控制系统,编写程序控制和传感器反馈控制,实现自动进给、切削和退刀操作。

6. 对机床进行整体结构的装配和调试,进行实验验证,对设计进行优化调整和完善。

机械原理课程设计——牛头刨床

机械原理课程设计——牛头刨床

项目
刨刀冲程 H( mm)
刨刀越程量 ΔS( mm)
刨削平均速度 Vm( mm/s)
极位夹角 θ( ° )
行程速比系数 K
机器运转速度许用不均匀系
数[δ]
参数
320 16
1211.4
30
1.4
0.05
Page 11
八 、机构运动循环图
机构工艺动作分解
牛头刨床的主运动为: 电动机 →变速机构→摇杆机构 →滑枕往复运动; 牛头刨床的进给运动为: 电动机 →变速机构→棘轮进给 机构 →工作台横向进给运动。
Page 12
九 、主机构尺度综合及运动特性评定
机构位置划分图
以 7号和 14 号位置 作运动分析
Page 13
十 、 电动机功率与型号的确定
电动机的选择
传动比分配与 减速机构设计
确定电动机功率 总传动比
采用展开式二级圆柱齿轮减速器
工作台进给方案
Page 14
工作台横向进给运动 工作台垂直进给运动
其中 ,刨刀向左为工作行程 ,速度平稳 ,运动行 程大; 向右为工作回程,速度快,具有快速返回的 特性。
Page 8
六 、对方案二的பைடு நூலகம்能分析
(2)传递性能和动力性能分析
杆 1、2、3、6 所组成的曲柄摇杆机构中 ,传动 角是不断变化传动性能最好的时候出现在 A ,B, C ,D 四点共线与机构处于极位时两者传动角相等 该机构中不存在高副 , 只有回转副和滑动副 ,故能 承受较大的载荷 , 有较强的承载能力 , 可以传动 较大的载荷 。当其最小传动角和最大传动角相差不 大时 ,该机构的运转就很平稳 ,不论是震动还是冲 击都不会很大 。从而使机械又一定的稳定性和精确 度。

机械原理课程设计牛头刨床设计

机械原理课程设计牛头刨床设计

机械原理课程设计牛头刨床设计机械原理课程设计牛头刨床设计随着科技不断的发展,机械英才的培养已受到各界的高度重视。

机械原理作为机械类专业的重点课程之一,对于学生的综合素质和能力的培养有着至关重要的作用。

为了提高学生的实践能力和专业技能,我在接受机械原理课程设计任务时,选择了一项具有挑战性和实用性的牛头刨床设计任务。

一、课程设计目标通过本次课程设计,主要目标如下:1.让学生了解牛头刨床的基本工作原理及其结构特点;2.提高学生的机械设计和制造能力;3.培养学生的合作精神和创新能力;4.促进学生的动手操作和实验能力的提高。

二、课程设计步骤1.课程设计前期准备在进行具体设计之前,我对牛头刨床的相关资料进行了大量的研究和归纳,学生们也需要认真学习刨床的相关知识。

同时,我还组织了互动的讲座和课堂讨论,以便于学生能够更加深入地理解牛头刨床的工作原理和结构特点。

2.机械设计在机械设计过程中,我们采取的是课堂授课和实际组装相结合的方法,进一步提高了学生的实践能力和设计能力。

课堂授课的内容主要包括刨床的设计思路、工作原理、传动方式等内容,通过实际操作和模拟实验,让学生从多个角度全面了解牛头刨床的结构和特点。

同时,我们还根据实际情况,对课程内容进行了针对性的调整和完善。

3.装配测试在机械设计完成后,我们对刨床进行了装配测试。

通过实际的组装和测试,提高了学生的实验能力和操作技能。

在测试过程中,我们严格按照安全操作规程进行操作,避免了误操作和安全事故的发生。

4.实践操作在实践操作中,我们对刨床的使用方法进行了详细的讲解和演示,让学生可以熟练地操作和使用刨床。

同时,我们组织了一些实践操作题目,让学生能够更好地理解和应用所学的知识。

三、收获通过本次课程设计,学生们都获得了很大的收获。

首先,他们对机械设计的基本原理和方法有了更深入的了解,同时也提高了他们的实践能力和实验能力。

其次,在团队协作方面,学生们也得到了很好的锻炼,提高了他们的合作精神和创新能力。

机械原理牛头刨床课程设计

机械原理牛头刨床课程设计

机械原理牛头刨床课程设计牛头刨床课程设计本课程的目的是使学生理解牛头刨床的原理,掌握正确的操作方法,安全而且高效的操作机床,为以后的实验、制作做准备。

一、总述牛头刨床,是用来进行切铣或者刨削加工的机床,主要用于打凹槽、打丁、刨槽、切断、挤出、切透等工作。

由于它精度高,准确性好,可以用来在机械加工行业中制作同样形状的零件,因此十分流行。

二、物理原理牛头刨床是一种摩擦式加工机床,其工作原理是将工件把其用牛头刨刃进行切削,产生摩擦动力发生滑动现象,从而实现对工件的加工加工非常有效率。

它特点体现在机床的构造,通常由一个垂直的刨花杆,一个活动的刨刃和一个垂直的工件夹紧装置组成。

三、机床结构牛头刨床,基本包括:主轴系统,分度齿轮系统,臂节系统,工件夹紧系统,床身系统和润滑系统等结构。

主轴系统由主轴、轴夹等组成,分度齿轮系统由主齿轮、主动齿轮、位移齿轮和分度齿轮组成,臂节系统由夹紧臂、轨道臂、杠杆调整臂、弹簧臂和臂轮组成,工件夹紧系统由夹紧框、夹紧杆、紧固螺栓及液压夹紧装置组成,润滑系统由油箱、油泵和油管组成。

四、机床操作1、在夹紧上就好紧固螺丝杆调整压力,根据工艺要求选择合适锥度的刨刃,按照顺序从大到小的刨;2、翻转夹件夹紧装置夹紧工件,使其与机床的定位位置一致;3、调整切削深度,即调整刨刃夹紧臂的位置,当刨刃完全进入工件时,开机进行加工;4、加工中要注意机床及工件的热量,使其保持在一定范围内;5、加工完成后,去除刨刃,清理刨花,进行刀具检查,并更换新的刀具。

五、课程内容1、讲解物理原理及机床结构;2、讨论加工工艺;3、实操演示加工技术;4、实验室测试本课程学习的技能;5、指导并完成机床制作机械部件的实际操作。

六、学习成果1、理解牛头刨床的原理,掌握机床的结构及各部件;2、熟悉牛头刨床内所有工艺加工流程及其步骤;3、掌握各种加工技术,能够正确熟练地操作机床;4、能够正确配置工艺,以满足加工的要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计说明书—牛头刨床1. 机构简介牛头刨床是一种用于平面切削加工的机床。

电动机经皮带和齿轮传动,带动曲柄2和固结在其上的凸轮8。

刨床工作时,由导杆机构2-3-4-5-6带动刨头6和刨刀7作往复运动。

刨头右行时,刨刀进行切削,称工作行程,此时要求速度较低并且均匀,以减少电动机容量和提高切削质量;刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生产率。

为此刨床采用有急回作用的导杆机构。

刨刀每次削完一次,利用空回行程的时间,凸轮8通过四杆机构1-9-10-11与棘轮带动螺旋机构,使工作台连同工件作一次进给运动,以便刨刀继续切削。

刨头在工作行程中,受到很大的切削阻力,而空回行程中则没有切削阻力。

因此刨头在整个运动循环中,受力变化是很大的,这就影响了主轴的匀速运转,故需安装飞轮来减少主轴的速度波动,以提高切削质量和减少电动机容量。

图1-11.导杆机构的运动分析已知曲柄每分钟转数n2,各构件尺寸及重心位置,且刨头导路x-x位于导杆端点B所作圆弧高的平分线上。

要求作机构的运动简图,并作机构两个位置的速度、加速度多边形以及刨头的运动线图。

以上内容与后面动态静力分析一起画在1号图纸上。

1.1设计数据牛头刨床是一种用于平面切削加工的机床。

电动机经皮带和齿轮传动,带动曲柄2和固结在其上的凸轮8。

刨床工作时,由导杆机构2-3-4-5-6带动刨头6和刨刀7作往复运动。

刨头右行时,刨刀进行切削,称工作切削。

此时要求速度较低且均匀,以减少电动机容量和提高切削质量;刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生产效率。

为此刨床采用急回作用得导杆机构。

刨刀每切削完一次,利用空回行程的时间,凸轮8通过四杆机构1-9-10-11与棘轮机构带动螺旋机构,使工作台连同工件作一次进给运动,以便刨刀继续切削。

刨头在工作行程中,受到很大的切削阻力,而空回行程中则没有切削阻力。

因此刨头在整个运动循环中,受力变化是很大的,这就影响了主轴的匀速运转,故需装飞轮来减小株洲的速度波动,以减少切削质量和电动机容量。

设计导杆机构的运动分析内容符号n2L O2O4L O2A L o4B L BC L o4s4xS6yS6 mm单位r/min方案60 380 110 540 0.25l o4B0.5 l o4B240 50 Ⅲ1.2曲柄位置的确定曲柄位置图的作法为:取1和8’为工作行程起点和终点所对应的曲柄位置,1’和7’为切削起点和终点所对应的曲柄位置,其余2、3…12等,是由位置1起,顺ω2方向将曲柄圆作12等分的位置(如下图)。

图1-2取第方案的第5位置和第12位置(如下图1-3)。

C 1B 1B 2AAO 2C 2O 46543图1-3 1.5速度分析以速度比例尺µ=(0.01m/s)/mm 和加速度比例µa=(0.05m/s ²)/mm 用相对运动的图解法作该两个位置的速度多边形和加速度多边形如下图1-4,1-5,并将其结果列入表格(1-2)表格 1-1 位置未知量方程5和12V A4υA4=υA3+υA4A3大小? √?方向⊥O4A⊥O2A ∥O4BV CυC5=υB5+υC5B5大小? √?方向∥XX⊥O4B ⊥BCa Aa A4 =a n A4+ a A4τ= a A3n + a A4A3K + a A4A3r大小:ω42l O4A? √2ω4υA4A3?方向:B→A⊥O4B A→O2⊥O4B(向左)∥O4B(沿a ca c5= a B5+ a c5B5n+ a c5B5τ大小? √√?方向∥XX √ C→B ⊥BC5号位置速度图:如图1-4PP1:100由图解得:Vc=0.7796588803m/s图1-45号位置加速度图:如图PP1:100图1-5由图解的:a C=0.6700434555m/s212号位置速度图:如图1-61:100PP图1-6 由图解得:V c=0.6230007022m/s12号位置加速度图:如1-7P1:100P 1:100图1-7有图解得:a c=9.05895656m/s2表格(1-2)位置要求图解法结果5 v c(m/s)0.7796588803 a c(m/s²) 0.670043455512vc(m/s)0.6230007022ac(m/s²)9.05895656各点的速度,加速度分别列入表1-3,1-4中表1-3项目位置ω2ω4VA VB Vc5 6.702064328 1.099911090.5899439270.7820588970.77965888012 6.702064328 1.348377410.32280025120.6379484350.623000702单位r/s r/s m/s 表1-4项目位置3Aa nAa4tAa4nBa tBa C a5 4.04258997 0.7954670660.47085474940.01010219751.01920609540.6700443455512 4.04258997 0.3550515754.5683517290.1186032741.27793490119.05895656单位2/sm1.4导杆机构的动态静力分析设计数据导杆机构的动静态分析G4G6P y p J s4N mm kg m2220 800 9000 80 1.2 已知各构件的重量G(曲柄2、滑块3和连杆5的重量都可忽略不计),导杆4绕重心的转动惯量Js4及切削力P的变化规律。

要求求各运动副中反作用力及曲柄上所需要的平衡力矩。

以上内容做在运动分析的同一张图纸上。

首先按杆组分解实力体,用力多边形法决定各运动副中的作用反力和加于曲柄上的平衡力矩。

参考图1-3,将其分解为5-6杆组示力体,3-4杆组示力体和曲柄。

图2-12.1矢量图解法:取12号位置为研究对象:yF I6N G8F45x2.1.1 5-6杆组示力体共受五个力,分别为P、G6、F i6、R16、R45,其中R45和R16方向已知,大小未知,切削力P沿X轴方向,指向刀架,重力G6和支座反力F16均垂直于质心,R45沿杆方向由C指向B,惯性力Fi6大小可由运动分析求得,方向水平向左。

选取比例尺μ=(10N)/mm,作力的多边形。

将方程列入表2-1。

U=10N/mm已知P=9000N,G6=800N,又a c=a c5=4.5795229205m/s2,那么我们可以计算F I6=- G6/g×a c =-800/10×4.5795229205=-366.361834N又ΣF=P+ G6 + F I6 + F45 + F RI6=0,方向//x轴↓←B→C ↑大小9000 800 √??作为多边行如图1-7所示PG6NF I6F45图1-7图1-7力多边形可得:F45=8634.49503048NN=950.05283516 N在图1-6中,对c点取距,有ΣM C=-P·y P-G6X S6+ F R16·x-F I6·y S6=0代入数据得x=1.11907557m分离3,4构件进行运动静力分析,杆组力体图如图1-8所示,2.1.2对3-4杆组示力体分析u=10N/mm已知:F54=-F45=8634.49503048N,G4=220N a B4=a A4· l O4S4/l O4A=2.2610419m/s2 ,a S4=a4=?????????rad/s2由此可得:F I4=-G4/g×a S4 =-220/10×2.2610419N=-49.7429218N M S4=-J S4·B S4=???????在图1-8中,对O4点取矩得:M O4=F54×lh1+FI4×lh2+G4×lh3-FR34lo4A+M=0代入数据,得MO4=467.98292×0.53871848-69.06674986×0.24694178+200×0.33367 47- FR34×0.27761537+12.61028309=0 故FR34=916.1573602N2.1.3G4F I4F23F54F xF y对曲柄分析,共受2个力,分别为R32,R12和一个力偶M,由于滑块3为二力杆,所以R32= R34,方向相反,因为曲柄2只受两个力和一个力偶,所以F R12与F R32等大反力,由此可以求得:32MF12h2=99.471635mm,则,对曲柄列平行方程有,ΣM O2=M-F42·h2=0 即M-916.1573602×99.471635×10-3=0,即M=91.1316705 N·M。

相关文档
最新文档