17.4零指数幂与负整数指数幂练习题及答案
零指数幂与负整数指数幂

数指数幂的运算规则实际上是零指数幂运算规则的一种扩展。
06
零指数幂与负整数指数 幂的实例
零指数幂的实例
定义
零指数幂定义为1的0次方等于1。
实例
例如,10^0 = 1,5^0 = 1,2^0 = 1等。
负整数指数幂的实例
定义
负整数指数幂定义为1除以正整数 指数幂。
实例
例如,2^(-3) = 1/8,5^(-2) = 1/25,10^(-1) = 1/10等。
应用
在解决实际问题时,我们 通常使用零指数幂的性质 来简化计算。
负整数指数幂的性质
定义
负整数指数幂定义为1除以正整数指数幂的倒数,即a^(-n) = 1 / (a^n),其中a为底数, n为正整数。
性质
负整数指数幂的性质是底数不能为0,因为任何数的0次方都等于1,所以当底数为0时, 结果无意义。此外,当n为奇数时,负整数指数幂的结果为正数;当n为偶数时,负整数 指数幂的结果为负数。
应用
在解决实际问题时,我们通常使用负整数指数幂的性质来简化计算。例如,在物理学中, 我们经常使用负整数指数幂来表示单位不同的量,如速度和时间的关系v = t^-1等。
03
指数幂的运算规则
零指数幂的运算规则
定义
零指数幂定义为1的0次方 等于1,即任何非零数的0 次幂等于1,而0的0次幂 无定义。
计算方法
使用场景
在科学计算、工程领域中经常出现,用于计算逆运算情况。
04
指数幂的应用
零指数幂在生活中的应用
物理单位换算
在物理学科中,零指数幂被广泛应用于单位换算,例如在计算能 量转换时,需要用到零指数幂进行单位转换。
化学方程式配平
在化学学科中,零指数幂被用于配平化学方程式,确保反应前后的 原子数量相等。
零指数幂与负整数指数幂

a0 1(a 0)
2、 负整数指数幂的意义.
an 1 (a 0, n是正整数) an
课本97页练习1题 99页练习2题 103页习题1、2题
谢谢聆听,再见!
除法的意义:
52
55
52 55
1 53
103 107 103 1
发现:
53
1 53
104
1 104
107 104
a3 a5 a35 a 2 (a 0)
a3 a5 a3 1 (a 0) a5 a2
a2
1 a2
规定:
ap1 apFra bibliotek(a0,
p为正整数)
任何不等于零的数的-p (n为正整数)次幂,
等于这个数的p 次幂的倒数.
例3 计算:
43
(1)3
(0.2)2
课本99页第2题 例4计算:( 1 )3
2
22 10 2
1.若代数式3x 1 3有意义, 求x的取值范围;
2 、若 2x 1
8
,则x=____,若
x1 1 ,则x=___,
10
若 10x 0.0001,则x=___.
小结:谈谈本节课的收获?
年级:七年级 学科名称:数学
授课学校: 授课教师:
一 、复习提问
1.回忆正整数指数幂的运算性质: (1)同底数的幂的乘法:
am an amn (m,n是正整数);
(2)幂的乘方:
(a m )n a mn (m,n是正整数);
(3)积的乘方:
(ab)n a nbn (n是正整数);
(4)同底数的幂的除法:
1.计算(:1)(100 20 ) (10 20 ) (2)103 100 105
初中数学 习题:16.4.1零指数幂与负整数幂

零指数幂与负整数幂课时练习一、选择题1.计算(﹣1)0的结果为( )B .﹣1 D .无意义答案:A解析: 根据零指数幂的运算方法:a 0=1(a ≠0),求出(﹣1)0的结果为多少即可. 解答:∵(﹣1)0=1,∴(﹣1)0的结果为1.故选:A .2.计算:(﹣32)0=( ) B .﹣23 D .32 答案:A解析: 根据零指数幂:a 0=1(a ≠0),求出(﹣32)0的值是多少即可. 解答:(﹣32)0=1. 故选:A .3.(π﹣)0的相反数是( )D .﹣1答案:D解析: 首先利用零指数幂的性质得出(π﹣)0的值,再利用相反数的定义进行解答,即只有符号不同的两个数交互为相反数.解答:(π﹣)0的相反数是:﹣1.故选:D .4.下列运算正确的是( )=0 B .﹣32=9 C .﹣|﹣3|=﹣3 D .9=3答案:C解析: 根零指数幂、绝对值、算术平方根、平方等知识点进行解答.解答:=1,故错误,B.﹣32=﹣9,故错误,C.﹣|﹣3|=﹣3,正确;D.9=3,故错误,故选C .5.计算:(﹣2)0=( )A .﹣2答案:C解析: 根据任何非0数的0次幂等于1进行计算即可.解答::(﹣2)0=1.故选:C .6.计算(﹣21)﹣1的结果是( ) A .﹣21 B .21 D .﹣2 答案:D解析:根据负整数指数幂的运算法则计算.解答:原式=﹣211=﹣2.故选D . 7.下列计算正确的是( )=4 =0﹣1=﹣2 D .4=±2答案:A解析: A.根据有理数的乘方的运算方法判断即可.B.根据零指数幂的运算方法判断即可.C.根据负整数指数幂的运算方法判断即可.D.根据算术平方根的含义和求法判断即可.解答:∵22=4,∴选项A 正确;∵20=1,∴选项B 不正确;∵2﹣1=, ∴选项C 不正确; ∵4=2∴选项D 不正确.故选:A .8.计算﹣3﹣2的值是( )B .91D .﹣6 答案:B 解析:根据负整数指数幂:a ﹣p =p a 1(a ≠0,p 为正整数)进行计算. 解答:﹣3﹣2=﹣(31)2=﹣91, 故选:B .9.下列运算正确的是( )A .﹣(﹣a +b )=a +b ﹣3a 2=a C .(x 6)2=x 8 ÷)32(﹣1=32 答案:D解析: 根据去括号法则,幂的乘方,底数不变指数相乘;负整数指数次幂等于正整数指数次幂的倒数对各选项解析判断后利用排除法求解.解答:A.﹣(﹣a +b )=a ﹣b ,故本选项错误;﹣3a 2不能运算,故本选项错误;C.(x 6)2=x 12,故本选项错误;÷(32)﹣1=1÷23=32,故本选项正确. 故选D .10.下列运算正确的是( )A .4=2B .(﹣3)2=﹣9﹣3=﹣6 =0答案:A解析: 根据算术平方根、乘方、负整数指数幂、零指数幂等知识点进行作答.解答:A.4=2,故选项正确;B.(﹣3)2=9,故选项错误;﹣3=81,故选项错误; =1,故选项错误.故选:A .11.下列计算中,正确的是( )﹣2=91 B .2)3( =﹣3 ÷m 2=m 3 D .(a ﹣b )2=a 2﹣b2 答案:A解析: 分别根据负整数指数幂及同底数幂的除法法则、数的开方法则及完全平方公式对各选项进行逐一解析即可.解答:A.原式=231=91,故本选项正确; B.原式=3,故本选项错误;C .原式=m 6﹣2=m 4,故本选项错误; D.原式=a 2+b 2﹣2ab ,故本选项错误.故选A .12.下列各式中计算正确的是( )﹣3=271 ﹣5=﹣a 5 C .(﹣3a ﹣3)2=9a 6 +a 3=a 8 答案:A解析: 根据负指数幂、二次方、实数加法的运算法则进行逐一判断即可.解答:﹣3=271,故本选项正确, ﹣5=51a,故本选项错误, C .(﹣3a ﹣3)2=961a ,故本选项错误, +a 3已经是最简形式,故本选项错误,故选A .13. 20150=( )C .﹣2015答案:B解析: 根据非零的零次幂等于1,可得答案.解答:20150=1.故选:B .14.如果(m ﹣3)m =1,那么m 应取( )≥3 =0 =3 =0,4或2答案:D解析: 根据任何非零数的0次幂为1和±1的偶次幂为1进行解答即可.解答:∵(0﹣3)0=1,∴m =0,∵(2﹣3)2=1,∴m =2,∵(4﹣3)4=1,∴m =4,故选:D .15.计算20140的结果是( )D .﹣1答案:A解析: 根据零指数幂计算即可.解答:20140=1,故选A .二、填空题16.=----01)2()21( . 答案:-3解析: 利用零指数幂及负整数指数幂的定义求解即可. 解答:01)2()21(----=﹣2﹣1=﹣3.故答案为:﹣3.17. 20150= .答案:1解析: 根据非零的零次幂等于1,可得答案.解答:20150=1.故答案为:1.18.式子(x +)0=1成立,则字母x 不能取的值是 .答案:解析: 根据任何非0数的0次幂等于1进行解答即可.解答:由题意得,x +≠0,x ≠﹣,故答案为:﹣.19.若(x ﹣2)0=1,则x 应满足条件 .答案:x ≠2解析: 根据0指数幂的概念解答.解答:若(x ﹣2)0=1,则x 应满足x ﹣2≠0,即x ≠2,故本题答案为:x ≠2.20.计算:(21)﹣2+(﹣2)3﹣20110= . 答案:﹣5解析: 根据任何一个不为0的数的0次幂都为1和a ﹣n =n a 1和有理数的加减法进行计算即可.解答:原式=4﹣8﹣1=﹣5.故答案为:﹣5.三、解答题21.已知:42)2(--x x =1,求x 的值.答案:x =﹣2或x =3解答:∵42)2(--x x =1,∴x 2﹣4=0,∴x =±2.又∵底数不能为0,∴x ≠2.∴x =﹣2,当x ﹣2=1,解得:x =3,∴x =﹣2或x =3解析: 由零指数幂的定义可知指数为0,解出x 的值即可解答,注意一个正数有两个平方根,他们互为相反数.22.计算:1)21(--+4)1(02++x .答案:1解答:原式=(﹣2)+1+2=1,故答案为1.解析: 分别根据零指数幂、算术平方根、负指数幂的运算法则计算,然后根据实数的运算法则求得计算结果.23.计算:4)12010(0--.答案:﹣1解答:原式=1﹣2=﹣1.解析: 分别根据零指数幂,算术平方根的运算法则计算,然后根据实数的运算法则求得计算结果.解答:原式=1﹣2=﹣1.24.计算:(﹣2)2﹣20070+|﹣6|答案:9解答:原式=4﹣1+6=9.解析: 根据有理数的乘方、零指数幂、绝对值等知识点进行解答,注意(﹣2)2=4,20070=1,|﹣6|=6,代入代数式即可得解.25.计算:3220610)23(-+-.答案:5解答:原式=1+3416⨯=1+4=5.解析:0)23( =1,3次方根的被开方数可用平方差公式计算得到,把所求得的数值代入即可求解.。
指数与指数幂的运算 习题(含答案)

【方法点晴】本题考查指数函数的变换,形如 的图象的作法:先做出 的图象,再将 轴下方的图象翻折到 轴上方. 的图象 的图象向下平移一个单位,再将 轴下方的图象翻折到 轴上方得到,由于底数 不确定,故应分 和 两种情况分别作图,结合图形可得最后结果.
23.4
【解析】原式 ,故答案为4.
试题解析:
(1) 原式=
(2)
.
27.(1) (2)
【解析】试题分析:
(1)根据分数指数幂的运算法则和对数的运算求解.(2)根据 求得 ,解方程组求出 后再求解.
试题解析:
(1)原式=3﹣3+(4﹣2)× = .
(2)∵sinα+cosα= ,①
∴ 1+2sinαcosα= ,
∴2sinαcosα=﹣ .
指数与指数幂的运算习题(含答案)
一、单选题
1.已知x,y为正实数,则
A.2lnx+lny=2lnx+2lnyB.2ln(x+y)=2lnx•2lny
C.2lnx•lny=2lnx+2lnyD.2ln(xy)=2lnx•2lny
2.化简 的结果为
A.−9B.7
C.−10D.9
3.若 ,且 , 为整数,则下列各式中正确的是
【解析】
【分析】
利用根式的运算法则运算即可.
【详解】
(1) ;
1) 中实数 的取值由 的奇偶性确定,只要 有意义,其值恒等于 ,即 ;
(2) 是一个恒有意义的式子,不受 的奇偶性限制, ,但 的值受 的奇偶性影响.
29.(1)89;(2) .
【解析】试题分析:指数幂运算要严格按照幂运算定义和法则运算,法则包括同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘;积的乘方等于把积中每个因数乘方,再把所得的幂相乘;对数运算要注意利用对数运算法则,包括积、商、幂的对数运算法则,这些公式既要学会正用,还要学会反着用.
八年级数学上册负整数指数幂练习题

八年级数学上册负整数指数幂练习题(含答案解析)学校:___________姓名:___________班级:__________一、单选题1.()02-的值为( )A .2-B .0C .1D .2 2.若220.3,3a b --=-=-,213c -⎛⎫=- ⎪⎝⎭,013d ⎛⎫=- ⎪⎝⎭,则( ) A .a b c d <<< B .b a c d <<< C .b a d c <<< D .a b d c <<<3.020*******)(0.125)8+⨯的结果是( )AB 2C .2D .04.计算x 2•x 3的结果是( )A .x 6B .x 5C .x 4D .x 35.若a 、b 为有理数,0a <,0b >,且a b >,那么a ,b ,a -,b -的大小关系是( ) A .b a b a -<<<-B .b b a a <-<<-C .a b b a <-<<-D .a b b a <<-<- 6.下列运算中,正确的是( )A 3±B .()020-=C .122-=-D 2- 7.已知212m -⎛⎫= ⎪⎝⎭,()32n =-,012p ⎛⎫=-- ⎪⎝⎭,则m ,n ,p 的大小关系是( ) A .m p n << B .n m p << C .p n m << D .n p m <<二、填空题8.计算:(1=__________; (2)=__________;(3)|2-=_________;(4)2|+=__________.9.计算:3|-11()3-=_______.10.计算:10(4)(π--+=_________.三、解答题11.计算:(1)(⎛⨯- ⎝;)12;(4))11112-⎛⎫ ⎪⎝⎭. 12.计算:|1-.13.已知一元二次方程20ax bx c ++=有一根为1,且1a =,求2013abc 的值.14.观察并验证下列等式:332121()29+=+=,3332123123()36++=++=,333321234123)410(0+++=+++=,(1)续写等式:3333312345++++=________;(写出最后结果)(2)我们已经知道()112312n n n +++⋅⋅⋅+=+,根据上述等式中所体现的规律,猜想结论:333331231()n n +++⋅⋅⋅+-+=________;(结果用因式乘积表示)(3)利用(2)中得到的结论计算:①333333695760+++⋅⋅⋅++;①333313521()n +++⋅⋅⋅+-;(4)试对(2)中得到的结论进行证明.参考答案:1.C【分析】根据零指数幂的运算法则求出()02-的值.【详解】解: ()021-=.故选:C .【点睛】本题考查了零指数幂,零指数幂法则:任何一个不等于零的数的零次幂都等于1.2.D【分析】直接利用负整数指数幂的性质以及零指数幂的性质分别化简得出答案. 【详解】解:21000.39a -=-=-,2193b -==--,2913c -⎛⎫=- ⎪⎭=⎝,0113d ⎛⎫=-= ⎪⎝⎭, ①10011999-<-<<, ①a b d c <<<,故选D .【点睛】此题主要考查了负整数指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.3.C【分析】根据零次幂定义,积的乘方的逆运算进行计算.【详解】020122012201211)(0.125)81(8)1128+⨯=+⨯=+=. 故选:C【点睛】此题考查实数的混合运算,掌握零次幂定义,积的乘方的逆运算是解题的关键.4.B【分析】直接利用同底数幂的乘法运算法则计算得出答案.【详解】解:x 2•x 3=x 2+3=x 5.故选:B .【点睛】此题主要考查同底数幂的乘法,解题的关键是熟知其运算法则.5.C【分析】根据0a <,0b >,且a b >,可得0a ->,0b -<,a b ->,据此判断出b ,a -,b -的大小关系即可.【详解】解:①0a <,0b >,且a b >,①0a ->,0b -<,a b ->,①a b <-,①a b b a <-<<-.故选:C .【考点】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;①负数都小于0;①正数大于一切负数;①两个负数,绝对值大的其值反而小.6.D【分析】根据算术平方根,零指数幂,负整数指数幂,立方根的性质,逐项判断即可求解.【详解】解:3=,故本选项错误,不符合题意;B.()021-=,故本选项错误,不符合题意; C.1122-=,故本选项错误,不符合题意;2=-,故本选项正确,符合题意.故选:D .【点睛】本题主要考查了算术平方根,零指数幂,负整数指数幂,立方根的性质,熟练掌握相关运算法则是解题的关键.7.D【分析】根据负整数指数幂,有理数的乘方,零指数幂分别求得,,m n p 的值,进而比较大小即可.【详解】解:①212m -⎛⎫= ⎪⎝⎭4=,()32n =-8=-,012p ⎛⎫=-- ⎪⎝⎭1=-, ①n p m <<故选:D .【点睛】本题考查了负整数指数幂,有理数的乘方,零指数幂,掌握运算法则是解题的关键.8. 2; 2+【分析】根据同类根式的合并法则和去绝对值符号法则进行计算.【详解】解:(1=(2)=(3)|22=,(4)2|2++故答案为:2;2【点睛】本题考查同类根式的计算,掌握运算法则是关键.9.【分析】利用绝对值的性质、负整数指数幂的性质化简,再利用实数的加减运算法则得出结果.【详解】解:原式33=,=故答案为:【点睛】此题主要考查了绝对值的性质、负整数指数幂,解题的关键是正确化简各数.10.34##0.75【分析】根据零指数幂和负整数指数幂的计算法则求解即可【详解】解:原式114=-+34 =.故答案为:34.【点睛】本题主要考查了零指数幂和负整数指数幂,熟知二者的计算法则是解题的关键.11.(1)(2)(3)1(4)0【分析】(1)先根据二次根式性质进行化简,然后再进行计算即可;(2)先根据二次根式性质进行化简,然后再按照二次根式乘除运算法则进行计算即可;(3)根据二次根式混合运算法则进行计算即可;(4)根据平方差公式和二次根式性质和负整数指数幂进行运算即可.(1)解:==(2)(⎛⨯- ⎝⎛= ⎝⎭⎛= ⎝⎭= (3))1232=1=(4)解:)11112-⎛⎫ ⎪⎝⎭ 131412=--+22=-+0=【点睛】本题主要考查了二次根式的混合运算和实数混合运算,熟练掌握二次根式的性质和混合运算法则,是解题的关键.12.(1)-124(2)6【分析】(1)直接利用立方根性质化简以及有理数加减运算法则计算即可;(2)直接利用算术平方根性质以及绝对值的性质分别化简计算即可.(1)=2-3-54 =-124(2)|1-1=6【点睛】此题主要考查了实数运算,正确化简各数是解题关键.13.2.【分析】结合题意,根据二次根式的非负性得到2020b b -≥⎧⎨-≥⎩,解得2b =,代入1a =得到a ,又因为1x =是20ax bx c ++=的根,则可得1c =-,再将a ,b ,c 的值代入2013abc 计算,即可得到答案.【详解】①1a =,①2020b b -≥⎧⎨-≥⎩,即22b b ≥⎧⎨≤⎩,①2b =. 代入得1a =-.又①1x =是20ax bx c ++=的根,①211210c -⨯+⨯+=,①1c =-.①()20132013121abc =-⨯⨯-()1212=-⨯⨯-=.【点睛】本题考查二次根式的非负性、指数幂的运算,解题的关键是掌握二次根式的非负性、指数幂的运算.14.(1)225;(2)221(1)4n n +;(3)①1190700,①422n n -;(4)见解析 【分析】(1)(2)直接根据题意给出的规律即可求解.(3)①先按积的乘方分出27,提公因式27,再按给出的规律即可求解,①需先添偶次项,][333333331232[2462()()]n n +++⋅⋅⋅+-+++⋅⋅⋅+,前面括号中直接][333333331232[()()2462]n n =+++⋅⋅⋅+-+++⋅⋅⋅+,后变括号利用积的乘方分出8,提公因式8,再按给出的规律计算,提公因式整理结果集(4)利用和立方公式展开,求出平方和公式,再利用和四次方公式展开,利用错位相减法求出立方和即可【详解】解:(1)22()1234552251=++++=,故答案为:225;(2)原式()2222111231(1)(1)24++n n n n n n ⎡⎤=++-+=+=+⎡⎤⎣⎦⎢⎥⎣⎦, 故答案为:221(1)4n n +; (3)①原式33333132333()()()20()=⨯+⨯+⨯+⋅⋅⋅+⨯,33332712722732720=⨯+⨯+⨯+⋅⋅⋅+⨯,33332712320()=+++⋅⋅⋅+,227123(20)++++=,2212720214=⨯⨯⨯, 2744100=⨯,1190700=;①原式][333333331232[()()2462]n n =+++⋅⋅⋅+-+++⋅⋅⋅+,23333333322232[123212]n +++n =-++⨯+⋅⋅⋅⎤⎡+⨯⎣⨯⨯⎦, 22333312218(12(4))()3n n n =⋅⋅+⋅-+++, 2222()114218144()n n n n =⨯+-⨯⨯⨯+, 2222()()2121n n n n =+-+,,221(2)n n =-,422n n =-;(4)①33213(1)3n n n n +=+++,①33213(1)3n n n n +-=++,①332()(131)()311n n n n --=-+-+,…①3323232321-=⨯+⨯+,①3322131311-=⨯+⨯+,上述n 个等式相加,得,3322211312()()(312)n n n n +-=++⋅⋅⋅++++⋅⋅⋅++,①222331211()()(12)3n n n n ++⋅⋅⋅+=+--++⋅⋅⋅+-,3(1)(1)3(1)2n n n n +=+-⨯-+, 23(1)(1)12n n n ⎡⎤=++--⎢⎥⎣⎦, 21(1)2n n n ⎛⎫=++ ⎪⎝⎭, ①222112(1)(21)6n n n n ++⋅⋅⋅+=++, ①44321464()1n n n n n +=++++,①44321464()1n n n n n +-=+++,①44321416()()(1411)()n n n n n --=-+-+-+,…4432324262421-=⨯+⨯+⨯+,4432214161411-=⨯+⨯+⨯+,上述n 个等式相加,得,44333222141261()2412()()()n n n n n n +-=++⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++,①33342224121161()()()()2412n n n n n ++⋅⋅⋅+=+--++⋅⋅⋅+-++⋅⋅⋅+-,41(1)(1)6(1)(21)4(1)62n n n n n n n +=+-⨯++-⨯-+,3()[()()121]121n n n n n =++-+--,32()(1)n n n =++, ①33322112(1)4n n n ++⋅⋅⋅+=+. 【点睛】本题考查自然数立方和公式推导及应用,掌握自然数列和公式,自然数平方和公式,自然数立方和推导过程,规律型:数字的变化类、因式分解的应用是解题关键.。
分式零指数幂和负整数指数幂

第十七章 分式§17.4 零指数幂与负整指数幂一. 知识点:1.零指数幂:任何不等于零的数的零次幂都等于1。
2.负整指数幂:任何不等于零的数的-n (n 为正整数)次幂,等于这个数的n 次幂的倒数.3.科学记数法:可以利用10的负整数次幂,用科学记数法表示一些绝对值较小的数,即将它们表示成a ×10-n 的形式,其中n 是正整数,1≤∣a ∣<10.二.自主学习类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝对值较小的数,即将它们表示成a ×10-n 的形式,其中n .是正整数,.....1.≤∣..a .∣<..10....例如,0.000021可以表示成2.1×10-5.三.练习(一)基础1.计算(1)810÷810; (2)10-2; (3)(-0.1)0; (4)2-2;2.用科学记数法表示:(1)0.000 03; (2)-0.000 0064; (3)0.000 0314; (4)2013 000.3.用科学记数法填空:(1)1秒是1微秒的1000000倍,则1微秒=_______秒;(2)1毫克=_________千克; (3)1微米=_________米; (4)1纳米=_________微米;(5)1平方厘米=_________平方米; (6)1毫升=_________立方米.(二)巩固4.计算:(1)101)1)-+ (2)0221(()(2)2--+---(3)16÷(-2)3-(31)-1+(3-1)05.用小数表示下列各数:(1)10-4; (2)2.1×10-5.6.用小数表示下列各数:(1)-10-3×(-2) (2)(8×105)÷(-2×104)3(三)提高7.计算下列各式,并且把结果化为只含有正整数指数幂的形式:(1)(a -3)2(ab 2)-3; (2)(2mn 2)-2(m -2n -1)-3.8.计算)102.3()104(36⨯⨯⨯- 2125)103()103(--⨯÷⨯。
华师大版数学八年级下册16.4《零指数幂与负整数指数幂》(第2课时)教学设计

华师大版数学八年级下册16.4《零指数幂与负整数指数幂》(第2课时)教学设计一. 教材分析《零指数幂与负整数指数幂》是华师大版数学八年级下册16.4章节的内容,本节课的主要内容是让学生掌握零指数幂和负整数指数幂的定义及其性质。
这一部分内容是指数幂的基础,对于学生理解指数幂的概念和应用具有重要的意义。
教材通过例题和练习题的形式,帮助学生理解和掌握零指数幂和负整数指数幂的计算方法和应用。
二. 学情分析学生在学习本节课之前,已经学习了有理数的乘方,对指数幂的概念和计算方法有一定的了解。
但是,对于零指数幂和负整数指数幂的理解可能会存在一定的困难。
因此,在教学过程中,需要引导学生通过已有的知识体系,理解和掌握新的概念。
三. 教学目标1.理解零指数幂和负整数指数幂的定义。
2.掌握零指数幂和负整数指数幂的计算方法。
3.能够应用零指数幂和负整数指数幂解决实际问题。
四. 教学重难点1.零指数幂和负整数指数幂的定义。
2.零指数幂和负整数指数幂的计算方法。
五. 教学方法采用问题驱动的教学方法,通过引导学生思考和探索,让学生自主发现零指数幂和负整数指数幂的定义和性质。
同时,结合例题和练习题,让学生通过实际操作,巩固所学的知识。
六. 教学准备1.PPT课件。
2.例题和练习题。
七. 教学过程1.导入(5分钟)通过复习有理数的乘方,引导学生回顾指数幂的概念和计算方法。
然后,提出问题:“如果一个数的指数是0或者负数,该如何计算呢?”让学生思考和讨论。
2.呈现(10分钟)根据学生的讨论,给出零指数幂和负整数指数幂的定义。
零指数幂表示一个数的0次方,等于1;负整数指数幂表示一个数的负整数次方,等于该数的倒数的正整数次方。
3.操练(10分钟)让学生通过计算一些具体的例子,来理解和掌握零指数幂和负整数指数幂的计算方法。
可以让学生分组进行讨论和计算,然后分享结果。
4.巩固(10分钟)通过一些练习题,让学生巩固所学的知识。
可以设置一些选择题和填空题,让学生快速作出判断和填写答案。
零指数幂与负整数指数幂计算题50道

零指数幂与负整数指数幂计算题50道
摘要:
1.零指数幂的定义与性质
2.负整数指数幂的定义与性质
3.零指数幂与负整数指数幂的计算方法
4.50 道计算题的解答
正文:
零指数幂是指一个数的0 次方,它的值等于1。
这是数学中的基本定义,无论这个数是多少,它的0 次方都等于1。
例如,2 的0 次方等于1,3 的0 次方也等于1。
负整数指数幂是指一个数的负整数次方,它的值等于这个数的倒数的正整数次方。
例如,2 的-3 次方等于1/2 的3 次方,即1/8。
同样,3 的-4 次方等于1/3 的4 次方,即1/81。
对于零指数幂和负整数指数幂的计算,主要是记住它们的定义和性质,然后根据定义进行计算。
需要注意的是,0 的任何正整数次方都等于0,而0 的0 次方等于1。
接下来,我将提供50 道零指数幂与负整数指数幂的计算题,并给出解答。
由于篇幅原因,这里只列举前5 道题目及其解答,剩余的题目请参考附件。
题目1:2 的0 次方等于?
解答1:1
题目2:3 的-3 次方等于?
解答2:1/27
题目3:0 的3 次方等于?
解答3:0
题目4:-2 的-2 次方等于?
解答4:1/4
题目5:-3 的-4 次方等于?
解答5:1/81
对于剩余的题目,读者可以根据零指数幂和负整数指数幂的定义与性质进行计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
零指数幂与负整数指数幂练习题
一.解答题(共30小题)
1.计算:.
2.计算:
3.(1)计算:|﹣3|﹣+(π﹣3.14)0
(2)先化简,再求值:(3+m)(3﹣m)+m(m﹣4)﹣7,其中m= 4.计算:.
5.计算:
6.计算:22﹣(﹣1)0+.
7.计算:.
8.计算:.
9.(1)计算|﹣2|+(﹣1)0﹣()﹣1﹣(﹣1)2011
(2)化简.
10.计算:
11.(1)计算:.
(2)化简:求值.3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)],其中x=﹣,y=﹣3.12.(1)计算:23+﹣﹣;
(2)解方程组:.
13.计算:.14.(2009•重庆)计算:|﹣2|+()﹣1×(π﹣)0﹣+(﹣1)2.
15.计算:﹣12+|﹣2|+()﹣1﹣5×(2009﹣π)0
16.计算:(﹣2)2+2×(﹣3)+()﹣1
17.(1)计算:()﹣1﹣++(﹣1)2009
(2)解方程组:
18.计算:|﹣|+(3.14﹣π)0+(﹣)2×()﹣2
19.计算﹣22+|4﹣7|+(﹣π)0
20.(1)计算:()2﹣(﹣3)+20(2)因式分解:a3﹣ab2.21.计算:﹣(﹣1)+|﹣2|+(π+3)0﹣.
22.计算:+(﹣)0+(﹣1)3﹣|﹣1|.
23.计算:.
24.计算:22+(4﹣7)÷+()0
25.计算:
26.计算:|﹣2|+﹣()﹣1+(3﹣π)0
27.计算:﹣1+(﹣2)3+|﹣3|﹣
28.计算:(﹣1)2006+|﹣|﹣(2﹣)0﹣3.29.计算:.30.计算:
零指数幂与负整数指数幂练习题及答案
参考答案与试题解析
一.解答题(共30小题)
1.计算:.
解
答:
解:原式=3﹣1+4=6.故答案为6.
2.计算:
解
答:
解:,
=2+1+4﹣2,
=5.
故答案为:5.
3.(1)计算:|﹣3|﹣+(π﹣3.14)0
(2)先化简,再求值:(3+m)(3﹣m)+m(m﹣4)﹣7,其中m=
解答:解:(1)原式=3﹣4+1
=0;
(2)原式=9﹣m2+m2﹣4m﹣7 =2﹣4m,
当m=时,原式=2﹣4×=1.
4.计算:.
解
答:
解:原式=(﹣2)+1+2=1,故答案为1.5.计算:.
解答:解:原式=2+3+1﹣1 =5.
6.计算:22﹣(﹣1)0+.
解
答:
解:原式=4﹣1+2=5.
7.计算:.
解答:解:
=1+3﹣1﹣(﹣2)=5.
故答案为5.
8.计算:.解
答:
解:原式=
=.
9.(1)计算|﹣2|+(﹣1)0﹣()﹣1﹣(﹣1)2011
(2)化简.
解答:解:(1)|﹣2|+(﹣1)0﹣()﹣1﹣(﹣1)2011,=2+1﹣3+1,
=1;
(2),
=,
=,
=.
10.计算:
解答:解:原式=2﹣1+(3分)=2﹣1+1(5分)
=2.(7分)
11.(1)计算:.
(2)化简:求值.3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)],其中x=﹣,y=﹣3.
解答:解:(1)原式=4+1﹣2=3.
(2)原式=3x2﹣6xy﹣3x2+2y﹣2xy﹣2y=﹣8xy 当x=﹣,y=﹣3时,
原式=﹣8×=﹣12.
12.(1)计算:23+﹣﹣;(2)解方程组:.
解
答:
(1)解:原式=8+1﹣﹣9=﹣;
(2)
解:①﹣②得:x=4
代入②得:y=5
∴方程组的解为.
故答案为﹣、.
13.计算:.
解
答:
解:原式=3﹣3+1=﹣2.
14.(2009•重庆)计算:|﹣2|+()﹣1×(π﹣)0﹣+(﹣1)2.
解
答:
解:原式=2+3×1﹣3+1=3.故答案为3.
15.计算:﹣12+|﹣2|+()﹣1﹣5×(2009﹣π)0
解答:解:原式=﹣12+|﹣2|+()﹣1﹣5×(2009﹣π)0=﹣1+2﹣+2﹣5=﹣2﹣.故答案为﹣2﹣.
16.计算:(﹣2)2+2×(﹣3)+()﹣1
解答:解:∵(﹣2)2=4,()﹣1=3;
∴(﹣2)2+2×(﹣3)+()﹣1=4﹣6+3=1.故答案为1.
17.(1)计算:()﹣1﹣++(﹣1)2009(2)解方程组:
解答:解:(1)原式=3﹣2+1﹣1=1
(2)(1)×2,得4x﹣2y=12(3),(2)+(3),得5x=10,x=2.把x=2代入(1),得y=﹣2
∴原方程组的解为
故答案为1、.
18.计算:|﹣|+(3.14﹣π)0+(﹣)2×()﹣2
解
答:
解:原式=+1+2×4=9.
19.计算﹣22+|4﹣7|+(﹣π)0
解
答:
解:原式=﹣4+3+1=0.故答案为0.
20.(1)计算:()2﹣(﹣3)+20(2)因式分解:a3﹣ab2.
解答:解:(1)原式=3+3+1=7;
(2)原式=a(a2﹣b2)=a(a+b)(a﹣b).故答案为7、a(a+b)(a﹣b).
21.计算:﹣(﹣1)+|﹣2|+(π+3)0﹣.
解答:解:﹣(﹣1)+|﹣2|+(π+3)0﹣=1+2+1﹣3(6分)
=1(8分)
22.计算:+(﹣)0+(﹣1)3﹣|﹣1|.
解
答:
解:原式=2+1﹣1﹣1=1.故答案为1.23.计算:.解
答:
解:原式=2﹣2×2+3+1=2.
24.计算:22+(4﹣7)÷+()0
解
答:
解:22+(4﹣7)÷+()0
=4﹣3×+1
=4﹣2+1
=3.25.计算:
解答:解:原式=3﹣2+1﹣3(四种运算每错一个扣(2分),扣完(6分)为止)(6分)=﹣1.(8分)
故答案为﹣1.
26.计算:|﹣2|+﹣()﹣1+(3﹣π)0。