有限元与有限差分法基础
有限元法与有限差分法的主要区别

有限元法与有限差分法的主要区别有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
从差分的空间形式来考虑,可分为中心格式和逆风格式。
考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
有限元素法有限体积法有限差分法有限容积法的区别

1.1 概念有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
1.2 差分格式(1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
(2)从差分的空间形式来考虑,可分为中心格式和逆风格式。
(3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
1.3 构造差分的方法构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
2. FEM2.1 概述有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
2.2 原理有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学、土力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
有限元与有限差分法基础

离散化过程
P vε T σ d a v u T P d v a u T G d 0 v
( u e ) T B T D e B u e d v ( u e ) T N T P d a ( u e ) T N T G d 0 v
v
a
v
B T D e B u e d v N T P d a N T G d v 0
线弹性问题几何方程—三维问题
三 维 问 题
2020/8/2
u
ε Lu ε
xx yy zz xy yz zx
x v
y w
z u v y x vw z y w u x z
x
0
0
y
0
z
0
y
0
x z
0
0
0
u
离散化过程
单元插值关系 uNue N为单元形函数矩阵 u e 单元节点自由度向量
单元几何关系 εLu
L为单元几何微分算子
单元本构关系 σDeε
D e为单元弹性矩阵
v ( 2u 02e 0) /T 8P /2B v B T T D D v e B e ε u B T e u d σ e d d a v v ( a u a v N e ) u T T P T N d P T d P d a v N v v a T G a ( u u d e T ) G T N d v 0 T G d 0 v 0 16/162
yz
zx
xx
yy
zz
xy
24/162
线弹性问题本构方程—平面应力
平面应力状态
xx
xx
Dxxyeyxy11E00Exyyzyyzz2 21010D
求解偏微分方程三种数值方法

数值模拟偏微分方程的三种方法介绍(有限差分方法、有限元方法、有限体积方法)I.三者简介有限差分方法(Finite Difference Methods)是数值模拟偏微分方程最早采用的方法,至今仍被广泛使用。
该方法包括区域剖分和差商代替导数两个步骤。
首先将求解区域划分为差分网格,用有限个网格节点代替连续的求解区域。
其次,利用Taylor级数展开等方法将偏微分方程中的导数项在网格节点上用函数值的差商代替进行离散,从而建立以网格节点上的值为未知量的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且十分成熟的数值方法。
差商代替导数后的格式称为有限差分格式,从格式的精度来考虑,有一阶格式、二阶格式和高阶格式。
从差分的空间离散形式来考虑,有中心格式和迎风格式。
对于瞬态方程,考虑时间方向的离散,有显格式、隐格式、交替显隐格式等。
目前常见的差分格式,主要是以上几种格式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于结构网格,网格的大小一般根据问题模型和Courant 稳定条件来决定。
有限元方法(Finite Element Methods)的基础是虚位移原理和分片多项式插值。
该方法的构造过程包括以下三个步骤。
首先,利用虚位移原理得到偏微分方程的弱形式,将计算区域划分为有限个互不重叠的单元(三角形、四边形、四面体、六面体等),在每个单元上选择合适的节点作为求解函数的插值点,将偏微分方程中的变量改写成由各变量或其导数的节点值与所选用的分片插值基函数组成的线性表达式,得到微分方程的离散形式。
利用插值函数的局部支集性质及数值积分可以得到未知量的代数方程组。
有限元方法有较完善的理论基础,具有求解区域灵活(复杂区域)、单元类型灵活(适于结构网格和非结构网格)、程序代码通用(数值模拟软件多数基于有限元方法)等特点。
有限元方法最早应用于结构力学,随着计算机的发展已经渗透到计算物理、流体力学与电磁学等各个数值模拟领域。
有限元法,有限差分法和有限体积法的区别

有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
从差分的空间形式来考虑,可分为中心格式和逆风格式。
考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
有限差分法和有限元法

有限差分法和有限元法
有限差分法(Finite Difference Method)和有限元法(Finite Element Method)是两种常用的数值计算方法,用于求解偏微分方程的数值解。
有限差分法是通过将求解区域离散化为网格,然后在各个网格节点处用差分逼近偏微分方程中的导数项,将偏微分方程转化为代数方程组。
通过求解这个方程组,可以得到离散节点上的数值解。
有限差分法适用于一维、二维或三维的问题,可用来处理线性或非线性、稳定或非稳定的偏微分方程。
有限差分法的优点是简单易实现,容易理解和计算,但是对于复杂的几何形状和边界条件,离散网格的选择可能会对精度和计算结果产生较大的影响。
有限元法则是通过将求解区域划分为互不重叠的有限元,每个有限元内部采用局部函数近似原方程,然后将所有有限元的近似解拼接在一起,形成整个求解区域上的近似解。
有限元法通常在每个有限元上构造基函数,通过求解代数方程组确定基函数的系数,从而得到整个求解区域上的数值解。
有限元法适用于一维、二维或三维的问题,能够处理各种几何形状和边界条件,适用范围更广。
有限元法的优点是对复杂几何形状的适应性好,精度高,但是相对于有限差分法而言,复杂度较高,需要更多的计算量和计算时间。
总体来说,有限差分法更适用于简单的几何形状和边界条件,而有限元法更适用于复杂的几何形状和边界条件。
两种方法在
实际的工程和科学计算中都有广泛的应用,选择哪种方法取决于具体问题的性质和求解的要求。
有限元法,有限差分法,有限体积法

有限元法,有限差分法,有限体积法
有限元法、有限差分法和有限体积法都是数值计算方法,用于求解偏微分方程的数值解。
有限元法是一种将连续问题离散化为有限个简单子问题的方法,将连续的物理问题转化为离散的数学问题,通过求解离散问题得到连续问题的近似解。
它将求解区域分割成有限个小区域,每个小区域内的解用一组基函数表示,通过求解基函数系数得到整个求解区域的解。
有限差分法是一种将偏微分方程中的导数用差分近似表示的方法,将求解区域离散化为有限个网格点,通过差分方程求解得到每个网格点的解,从而得到整个求解区域的解。
有限体积法是一种将偏微分方程中的积分用体积平均值表示的方法,将求解区域离散化为有限个体积元,通过求解体积元上的平衡方程得到每个体积元的解,从而得到整个求解区域的解。
这三种方法各有优缺点,适用于不同类型的问题。
在实际应用中,需要根据具体问题的特点选择合适的数值计算方法。
有限差分 有限元 有限体积

有限差分有限元有限体积有限差分、有限元和有限体积是数值计算方法中常用的三种离散化方法。
它们的核心思想是将微分方程式转化为一系列有限的点上的代数方程式,将连续问题转化为离散问题。
一、有限差分法有限差分法是将微分方程的导数用差商来逼近的方法,用差商来代替微分运算。
用区间的两个端点上的函数值之差来代替区间内函数导数的平均值。
在连续的区间上进行近似,大大减小了计算量。
有限差分法是一种较为简单的数值解法,适用于规则网格的微分方程求解,被广泛应用在流体力学、结构力学、电场问题等领域中。
二、有限元法有限元法是将求解域分成若干个划分元,然后在每个单元内用多项式函数逼近问题的解,最终利用点、线、面元件的连接关系来求解整体问题的一种方法。
该方法可以处理复杂的几何形状和物理变化,适用于非常规的边界条件和材料特性,解决超过几百万自由度的三维大规模问题。
三、有限体积法有限体积法是将求解域分成若干个控制体,对质量、能量、动量等守恒量在各个控制体上进行积分,从而推导出控制体内分布的方程。
该方法以区域的体积分为基础,在各个控制体内求解守恒方程。
该方法适用于复杂的多组分、多相流动的领域以及非稳态或非线性问题。
无论是有限差分、有限元还是有限体积法,其核心思想都是通过把连续的微分方程式离散求解,从而转化为一系列有限的点上的代数方程式,解决了连续问题转化为离散问题的过程,从而通过离散求解代数方程式来得到问题的解。
这三种数值计算方法的应用使科学计算得以更加高效、精确地进行,对现代计算、科学技术的推进起到了巨大的贡献。