[教育]有限差分法与有限元法对比及FLAC3D应用
有限差分法FLAC3D功能,优缺点分析

FLAC/FLAC3D系列——岩土体工程高级连续介质力学分析软件通知:FLAC3D 4.0隆重推出,了解详细情况,点击此处FLAC(Fast Lagrangian Analysis of Continua)软件是由美国Itasca公司开发的。
目前,FLAC有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本, 1995年,FLAC2D已升级为V3.3的版本,其程序能够使用护展内存,至今已发展到V5.0版本。
FLAC3D是一个三维有限差分程序,目前已发展到V4.0版本。
并且其推出的FLAC SLOPE有了WINDOWS界面。
FLAC(Fast Lagrangian Analysis of Continua)是一个利用显式有限差分方法求解的岩土、采矿工程师进行分析和设计的二维连续介质程序,主要用来模拟土、岩、或其他材料的非线性力学行为,可以解决众多有限元程序难以模拟的复杂的工程问题,例如大变形、大应变、非线性及非稳定系统(甚至大面积屈服/失稳或完全塌方)等问题。
FLAC的基本功能和特征为:●允许介质出现大应变和大变形;●Interface 单元可以模拟连续介质中的界面,并允许界面发生滑动和开裂;●显式计算方法,能够为非稳定物理过程提供稳定解,直观反映岩土体工程中的破坏;●地下水流动与力学计算完全耦合(包括负孔隙水压,非饱和流及相界面计算);●采用结构加固单元模拟加固措施,例如衬砌、锚杆、桩基等;●材料模型库(例如:弹性模型、莫尔库仑塑性模型、任意各向异性模型、双屈服模型、粘性及应变软化模型);●预定义材料性质,用户也可增加用户自己的材料性质设定并储存到数据库中;●一系列可选择模块,包括:热力学模块、流变模块、动力学模块、二相流模块等,用户还可用C++建立自己的模型;●边坡稳定系数计算满足边坡设计的要求;●用户可用内部语言(FISH)增加自己定义的各种特性(如:新的本构模型,新变量或新命令);FLAC软件的优势:➢连续体大应变模拟➢界面单元用已代表不连续接触界面可能出现的完全不连续性质的张开和滑动,因此可以模拟断层、节理和摩擦边界等➢显式求解模式可以获得不稳定物理过程的稳定解➢材料模型:✧“空(null)”模型;✧三种弹性模型(各向同性、横观各向异性、和正交各向异性);✧七种非线性模型(Drucker-Prager、Mohr-Coulomb、应变硬化及应变软化、节理化、双线性应变硬化/软化节理化、双屈服、修正的Cam-clay模型)➢任何参数指标的连续变化或统计分布的模拟➢外接口编程语言(FISH)允许用户添加用户自定义功能➢方便的边界定义和初始条件定义方式➢可定义水位线/面进行有效应力计算➢地下水渗流计算以及完全的应力场渗流场偶合计算(含负孔隙压力、非饱和流、井)➢结构单元如隧道衬砌、桩、壳、梁锚杆、锚索、土工织物及其组合,可以模拟不同的加固手段及其与围岩(土体)的相互作用➢自选模块包括:✧热和热力学分析模块;✧流变计算模块;✧动力分析模块实现真时间历程的瞬时动力响应模拟;✧用C++编写的用户自定义本构模块开挖直立坡的喷射混凝土墙加土钉加固的模拟加(下)和不加(上)土工织物土坡的潜在破坏特征FLAC-3D(Three Dimensional Fast Lagrangian Analysis of Continua)是美国Itasca Consulting Goup lnc开发的三维快速拉格朗日分析程序,是二维的有限差分程序FLAC2D的扩展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。
有限元法,有限差分法和有限体积法的区别

有限元法,有限差分法和有限体积法的区别有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
从差分的空间形式来考虑,可分为中心格式和逆风格式。
考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
有限差分,有限元,有限体积等离散方法的区别介绍

有限差分,有限元,有限体积等等离散方法的区别介绍一、区域离散化所谓区域离散化,实质上就是用一组有限个离散的点来代替原来连续的空间。
实施过程是;把所计算的区域划分成许多互不重迭的子区域,确定每个子区域的节点位置及该节点所代表的控制容积。
节点:需要求解的未知物理量的几何位置;控制容积:应用控制方程或守恒定律的最小几何单位。
一般把节点看成是控制容积的代表。
控制容积和子区域并不总是重合的。
在区域离散化过程开始时,由一系列与坐标轴相应的直线或曲线簇所划分出来的小区域称为子区域。
网格是离散的基础,网格节点是离散化物理量的存储位置。
大家都知道,常用的离散化方法有:有限差分法,有限元法,有限体积法。
1. 有限差分法是数值解法中最经典的方法。
它是将求解区域划分为差分网格,用有限个网格节点代替连续的求解域,然后将偏微分方程(控制方程)的导数用差商代替,推导出含有离散点上有限个未知数的差分方程组。
这种方法发展比较早,比较成熟,较多用于求解双曲线和抛物线型问题。
用它求解边界条件复杂、尤其是椭圆型问题不如有限元法或有限体积法方便。
2. 有限元法是将一个连续的求解域任意分成适当形状的许多微小单元,并于各小单元分片构造插值函数,然后根据极值原理(变分或加权余量法),将问题的控制方程转化为所有单元上的有限元方程,把总体的极值作为各单元极值之和,即将局部单元总体合成,形成嵌入了指定边界条件的代数方程组,求解该方程组就得到各节点上待求的函数值。
对椭圆型问题有更好的适应性。
有限元法求解的速度较有限差分法和有限体积法慢,在商用CFD软件中应用并不广泛。
目前的商用CFD软件中,FIDAP采用的是有限元法。
3. 有限体积法又称为控制体积法,是将计算区域划分为网格,并使每个网格点周围有一个互不重复的控制体积,将待解的微分方程对每个控制体积积分,从而得到一组离散方程。
其中的未知数十网格节点上的因变量。
子域法加离散,就是有限体积法的基本方法。
就离散方法而言,有限体积法可视作有限元法和有限差分法的中间产物。
有限元法与有限差分法的主要区别

有限元法与有限差分法的主要区别有限元法与有限差分法的主要区别有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
从差分的空间形式来考虑,可分为中心格式和逆风格式。
考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
FLAC3D网络高手总结教程

初始条件优化
通过试算和对比分析,对初始条件进行调整和优化,以减小仿真 误差。
求解过程监控与结果
求解过程监控
01
在求解过程中,实时监控模型的计算状态,如收敛情况、计算
时间等。
结果输出与Байду номын сангаас视化
02
将仿真结果以云图、等值线、矢量图等形式进行可视化输出,
了解最新研究进展和应用案例。
利用在线资源和学习平台
03
推荐学员们利用各类在线资源和学习平台,如教程、
案例库、技术论坛等,持续学习和提升自己的技能。
THANKS
感谢观看
大变形问题处理
采用FLAC3D的大变形分析技术,对大变形问题进 行高效求解,如滑坡、泥石流等灾害过程的模拟。
非线性迭代算法优化
通过优化FLAC3D的非线性迭代算法,提高 非线性问题求解的收敛性和计算效率。
并行计算加速技术应用
01
并行计算环境搭建
介绍如何在FLAC3D中搭建并行 计算环境,包括硬件配置和软件 设置等。
结果输出异常或不符合预期原因排查
异常一
输出结果与预期不符,如何排查?
排查
首先检查模型设置和输入参数是否正确。然后,尝试使用不同的算法或调整参数进行计算,观察结果是否有变化 。此外,也可以查看详细的计算过程和日志信息,以便更深入地了解问题所在。
结果输出异常或不符合预期原因排查
异常二
结果中出现明显的数值不稳定现象,如何排查?
经验分享
在案例分析和实战演练过程中,积累了一些宝贵的经验和教训。例如,在建模过程中要 注重细节和质量控制;在选择材料参数时要结合实际情况进行综合考虑;在设置边界条 件和荷载时要确保准确性和合理性等。这些经验和教训对于提高FLAC3D建模水平和解
有限差分法与有限元法对比及FLAC3D应用

FLAC3D不像有限元软 件,它在建模过程中 就划分了网格,不需 要再重新划分网格。 一般在需要分析的区 域网格建的密一点, 这样会提高计算的精 度。 在建模过程中,在生成相邻的两个网格时,两个网格的单元数必须要相 同,要不然就会造成网格的不连续性
定义边界条件,材料特性 针对三维模型,固定x=0和x=100处x向位移,y=0和y=60处y向位移,模型底 面固定x,y,z三个方向位移。 土体的本构关系定义为mohr-coulomb模型,针对此模型需要定义的参 数分别为体积模量K,剪切模量G,摩擦角,粘聚力c,抗拉强度,剪胀角。
命令栏
分析问题过程
建立网格
初始条件 前处理 边界条件
初始应力平衡
外荷载 求解 后处理
实例分析
三维加筋土路堤处治不均匀 沉降模型 在不同地基路段的结合处, 地基刚度差异较大,经常产 生差异沉降。地基的这种差 异沉降将加剧路面结构的破 坏
土层的参数: 模型 软弱土层 硬粘土层 路堤土
ρ(kg/m^3) C(kpa) ϕ (o) E(kpa)
在FLAC3D中,有一个网格形状库,提供了12种最基本的原始网格形状。有矩形网 格(Brick)、退化矩形网格 (Degenerate Brick)、形网格(Wedge) (Pyramid)、四面体形 网格(Tetrahedron)、圆柱体形网格(Cylinder)、、金字塔形网格矩形体外环绕放射状 网格(Radial Brick)、平行六面体外环绕放射状网格(Radial Tunnel)、圆柱体外环绕放 射状网格(Radial Cylinder)、柱形壳体网格(Cylindrical Shell)、交叉圆柱体网格 (Cylinder Intersection)、交叉平行六面体网格(Tunnel Intersection)。通过这12种基本 的模型就可以组合成复杂的岩土工程的模型。 FLAC3D的生成网格用generate zone命令 FLAC3D的模型定义采用model命令,材料参数用property命令 FLAC3D的边界条件,初始条件采用fix,free,initial命令 FLAC3D的计算求解采用step,solve,set mech命令 FLAC3D的施加外荷载采用apply命令
有限差分,有限元,有限体积等的区别介绍

有限差分,有限元,有限体积等离散方法的区别介绍1 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
从差分的空间形式来考虑,可分为中心格式和逆风格式。
考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
2 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
有限差分,有限元,有限体积等离散方法的区别介绍

有限差分,有限元,有限体积等离散方法的区别介绍1 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
从差分的空间形式来考虑,可分为中心格式和逆风格式。
考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
2 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。