黄冈市黄州区西湖中学2020年5月高三数学(理科)压轴考试

合集下载

湖北省黄冈中学2020届高三普通高等学校招生全国统一考试数学理科(含答案)

湖北省黄冈中学2020届高三普通高等学校招生全国统一考试数学理科(含答案)

|
AF
|

|
BF
|
.”那么对于椭圆
E,问否存在实数
λ,使得 |
AF2
|
+
|
BF2=|
λ | AF2 | ⋅ | BF2 | 成
立,若存在求出 λ 的值;若不存在,请说明理由.
21. (12 分)已知函数 f (= x) ex−2 +1.
(1)求函数 f(2x)在 x=1 处的切线方程; (2)若不等式 f(x+y)+ f(x-y)≥mx 对任意的 x∈[0,+∞), y∈[0,+∞) 都成立,求实数 m 的取值范围.
2x)
2sin(2x
)
6
6
,由
2k≤2x ≤3 2k , k Z
k≤x≤ 5 k ,k Z
2
62
,解得 3
6
,即函数的增区间为
[
k , 5
k ], k Z
[, ]
3
ห้องสมุดไป่ตู้
6
,所以当 k 0 时,增区间为 3 2 ,选 D.
9.【答案】B【解析】作出不等式对应的平面区域,如图所示:
请考生在第 22,23 题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.
22. (10 分)选修 4-4 坐标系与参数方程
x=
1+
3t
在直角坐标系 xOy 中,直线 l 的参数方程为 2
(t 为参数).以原点为极点, x 轴正半轴为极轴建立极
y = 1+ t
坐标系,圆 C 的极坐标方= 程为 ρ 2 cos(θ − π ) . 4

|
z |2 z

黄冈市黄州区西湖中学2008年5月高三压轴考试

黄冈市黄州区西湖中学2008年5月高三压轴考试

黄冈市黄州区西湖中学2008年5月高三压轴考试文科数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷50分,第Ⅱ卷100分,卷面共计150分,时间120分钟.第Ⅰ卷(选择题 共50分)一.选择题:本题共有10个小题,每小题5分,共50分;在每小题给出的四个选项中只有一项是正确的 1.集合{}12A x Nx *=∈-<的真子集的个数为 ( )A .3B .4C .7D .8 2.函数)23(log 52-=x y 的定义域为A.⎪⎭⎫⎝⎛+∞,32B.⎥⎦⎤⎝⎛1,32 C.(1,+∞) D.⎪⎭⎫⎝⎛54,323.已知⎪⎩⎪⎨⎧≤≥+≤-a y y x y x 00,且y x z 2+=的最大值是3,则a 的值为A.1 B.-1 C.0 D.24.已知n展开式中,各项系数的和与其各项二项式系数的和之比为64,则展开式中的常数项等于 ( )A . 135B . 270C . 540D . 1215 5.下面四个命题:①“直线a ∥直线b ”的充要条件是“a 平行于b 所在的平面”;②“直线l ⊥平面α内所有直线”的充要条件是“l ⊥平面α”;③“直线a 、b 为异面直线”的充分不必要条件是“直线a 、b 不相交”;④“平面α∥平面β”的必要不充分条件是“α内存在不共线三点到β的距离相等”; 其中正确命题的序号是 ( )A .①②B .②③C .③④D .②④6.已知)1(3cos3)1(3sin)(+-+=x x x f ππ,则(1)(2)(2008)+++= f f f ( )A .23B .3C .1D .07.已知O ,A ,B ,C 是不共线的四点,若存在一组正实数1λ,2λ,3λ,使1λOA +2λOB+3λ= 0,则三个角∠AOB ,∠BOC ,∠COA ( )A .都是锐角B .至多有两个钝角C .恰有两个钝角D .至少有两个钝角。

8.由数字0,1,2,3,4,5组成没有重复数字的五位数,所得的数是大于20000的偶数的概率为 ( )A .2512 B .52 C .256 D .10021 9.如图过抛物线x y 42=焦点的直线依次交抛物线与圆()1122=+-y x 于A ,B ,C ,D ,则AB CD ⨯=A.4 B.2 C.1 D.2110.函数a ax x x f +-=2)(2在区间(∞-,1)上有最小值,则函数xx f x g )()(=在区间(1,)∞+上一定A.有最小值 B.有最大值 C.是减函数 D.是增函数第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中横线上. 11.已知在平面直角坐标系中,O (0,0), M (1,21), N (0,1), Q (2,3), 动点P (x,y )满足: 0≤OP ⋅OM≤1,0≤⋅≤1,则⋅的最大值为_____.12. 已知函数y =f(x) (x ∈R)满足f(x +3)=f(x +1),且x ∈[-1,1]时,f(x)=|x|,则y =f(x)与y =log 5x 的图象交点的个数是 13.函数xx y sin 51sin 41+-+=的值域为 .14.若两条异面直线所成的角为600,则称这对异面直线为“理想异面直线对”,在连接正方体各顶点的所有直线中,“理想异面直线对”的对数为_____. 15.已知抛物线的方程为22(0)y px p =>,直线l 与抛物线交于A,B 两点,且以弦AB为直径的圆M 与抛物线的准线相切,则弦AB 的中点M 的轨迹方程为 ;当直线l 的倾斜角为3π时,圆M 的半径为 .三、解答题:本大题共6小题,共75分,解答题应写出文字说明、证明过程或演算步骤。

2020年湖北省黄冈中学高考数学冲刺试卷(理科)(二)(附详解)

2020年湖北省黄冈中学高考数学冲刺试卷(理科)(二)(附详解)

2020年湖北省黄冈中学高考数学冲刺试卷(理科)(二)一、选择题(本大题共12小题,共60.0分)1.已知集合A={x∈Z|x2−2x−3≤0},B={x|x−1>0},则集合A∩B=()A. {2,3}B. {−1,1}C. {1,2,3}D. ⌀=n+i(m,n∈R),其中i为虚数单位,则m+n=()2.己知m−2iiA. −1B. 1C. 3D. −33.已知向量a⃗,b⃗ 满足|a⃗|=1,|2a⃗+b⃗ |=√7,且a⃗与b⃗ 的夹角为60°,则|b⃗ |=()A. 1B. 3C. √3D. √54.已知数列{a n}为等差数列,S n为其前n项和,a6+a3−a5=3,则S7=()A. 42B. 21C. 7D. 35.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图和90后从事互联网行业者岗位分布图(90后指1990年及以后出生,80后指1980−1989年之间出生,80前指1979年及以前出生),则下列结论中不一定正确的是()A. 互联网行业从业人员中90后占一半以上B. 互联网行业中从事技术岗位的人数90后比80后多C. 互联网行业中从事设计岗位的人数90后比80前多D. 互联网行业中从事市场岗位的90后人数不足总人数的10%(其中e为自然对数的底数)的图象大致为()6.函数f(x)=e x+1x3(e x−1)A. B.C. D.7.已知抛物线y2=4x的焦点为F,M,N是抛物线上两个不同的点.若|MF|+|NF|=5,则线段MN的中点到y轴的距离为()A. 3B. 32C. 5 D. 528.如图,我国古代珠算算具算盘每个档(挂珠的杆)上有7颗算珠,用梁隔开,梁上面两颗叫上珠,下面5颗叫下珠.若从某一档的7颗算珠中任取3颗,至少含有一颗上珠的概率为()A. 57B. 47C. 27D. 179.已知函数f(x)=2sin(2x+π6),将f(x)的图象上所有点向右平移θ(θ>0)个单位长度,得到的图象关于直线x=π6对称,则θ的最小值为()A. π6B. π3C. π2D. π10.设α是给定的平面,A,B是不在α内的任意两点.有下列四个命题:①在α内存在直线与直线AB异面;②在α内存在直线与直线AB相交;③存在过直线AB的平面与α垂直;④存在过直线AB的平面与α平行.其中,一定正确的是()A. ①②③B. ①③C. ①④D. ③④11.已知双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1作圆x2+y2=a2的切线,交双曲线右支于点M,若∠F1MF2=45°,则双曲线的渐近线方程为()A. y=±√2xB. y=±√3xC. y=±xD. y=±2x12.已知球O是正四面体A−BCD的外接球,BC=2,点E在线段BD上,且BD=3BE,过点E作球O的截面,则所得截面圆面积的最小值是()A. 89π B. 11π18C. 512π D. 4π9二、填空题(本大题共4小题,共20.0分)13.“角谷定理”的内容为对于每一个正整数,如果它是奇数,则对它乘3再加1;如果它是偶数,则对它除以2;如此循环,最终都能够得到1.如图为研究角谷定理的一个程序框图.若输入n的值为6,则输出i的值为______.14.已知cos(2α+π6)=−25,则sin(2α−π3)=______.15.若(3+ax)(1+x)4展开式中x的系数为13,则展开式中各项系数和为______(用数字作答).16.已知函数f(x)={e x−1−e1−x,x≤1|x−2|−1,x>1(其中e为自然对数的底数),则不等式f(x)+ f(x−1)<0的解集为______.三、解答题(本大题共7小题,共82.0分)17.已知数列{a n}中,a1=1且2a n+1=6a n+2n−1(n∈N∗).(1)求证:数列{a n+n2}为等比数列;(2)求数列{a n}的前n项和S n.18.如图,在四棱锥S−ABCD中,已知四边形ABCD是边长为√2的正方形,点S在底面ABCD上的射影为底面ABCD的中心点O,点P在棱SD上,且△SAC的面积为1.(1)若点P是SD的中点,求证:平面SCD⊥平面PAC;(2)在棱SD上是否存在一点P使得二面角P−AC−D的余弦值为√5?若存在,求出5点P的位置;若不存在,说明理由.19.已知椭圆的一个顶点A(0,−1),焦点在x轴上,离心率为√3.2(1)求椭圆的标准方程;(2)设直线y=kx+m(k≠0)与椭圆交于不同的两点M,N.当|AM|=|AN|时,求m的取值范围.20.东莞的轻轨给市民出行带来了很大的方便,越来越多的市民选择乘坐轻轨出行,很多市民都会开汽车到离家最近的轻轨站,将车停放在轻轨站停车场,然后进站乘轻轨出行,这给轻轨站停车场带来很大的压力.某轻轨站停车场为了解决这个问题,决定对机动车停车施行收费制度,收费标准如下:4小时内(含4小时)每辆每次收费5元;超过4小时不超过6小时,每增加一小时收费增加3元;超过6小时不超过8小时,每增加一小时收费增加4元,超过8小时至24小时内(含24小时)收费30元;超过24小时,按前述标准重新计费.上述标准不足一小时的按一小时计费.为了调查该停车场一天的收费情况,现统计1000辆车的停留时间(假设每辆车一天内在该停车场仅停车一次),得到下面的频数分布表:以车辆在停车场停留时间位于各区间的频率代替车辆在停车场停留时间位于各区间的概率.(1)现在用分层抽样的方法从上面1000辆车中抽取了100辆车进行进一步深入调研,记录并统计了停车时长与司机性别的2×2列联表:完成上述列联表,并判断能否有90%的把握认为“停车是否超过6小时”与性别有关?(2)(i)X表示某辆车一天之内(含一天)在该停车场停车一次所交费用,求X的概率分布列及期望E(X);(ii)现随机抽取该停车场内停放的3辆车,ξ表示3辆车中停车费用大于E(X)的车辆数,求P(ξ≥2)的概率.参考公式:k2=n(ad−bc)2,其中n=a+b+c+d(a+b)(c+d)(a+c)(b+d)21.已知函数f(x)=e2x+mx,x∈(0,+∞)(其中e为自然对数的底数).(1)求f(x)的单调性;(2)若m=−2,g(x)=a2x2e x,对于任意a∈(0,1),是否存在与a有关的正常数x0,使得f(x02)−1>g(x0)成立?如果存在,求出一个符合条件x0;否则说明理由.22.在直角坐标系xOy中,圆C的普通方程为x2+y2−4x−6y+5=0.在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为ρsin(θ+π4)=−3√22.(1)写出圆C的参数方程和直线l的直角坐标方程;(2)设点P在C上,点Q在l上,求|PQ|的最小值及此时点P的直角坐标.23.已知函数f(x)=|x+1|−|x−2|.(1)解不等式f(x)≤1;(2)记函数f(x)的最大值为s,若√a+√b+√c=s(a,b,c>0),证明:√a b√c≥3.答案和解析1.【答案】A【解析】解:∵A={x∈Z|−1≤x≤3}={−1,0,1,2,3},B={x|x>1},∴A∩B={2,3}.故选:A.可以求出集合A,B,然后进行交集的运算即可.本题考查了描述法、列举法的定义,一元二次不等式的解法,交集的运算,考查了计算能力,属于基础题.2.【答案】D=n+i,得m−2i=i(n+i)=−1+ni,【解析】解:由m−2ii∴m=−1,n=−2.则m+n=−3.故选:D.利用复数代数形式的乘除运算化简,再由复数相等的条件列式求得m,n的值,则答案可求.本题考查复数代数形式的乘除运算,考查复数相等的条件,是基础题.3.【答案】A【解析】解:∵向量a⃗,b⃗ 满足|a⃗|=1,|2a⃗+b⃗ |=√7,∴4a⃗2+4a⃗⋅b⃗ +b⃗ 2=7.又a⃗与b⃗ 的夹角为60°,∴4+4⋅1⋅|b⃗ |⋅cos60°+|b⃗ |2=7,则|b⃗ |=1,或|b⃗ |=−3(舍去),故选:A.由题意利用两个向量的数量积的定义,求向量的模的方法,属于基础题.本题主要考查两个向量的数量积的定义,求向量的模的方法,属于基础题.4.【答案】B【解析】解:∵数列{a n}为等差数列,S n为其前n项和,a6+a3−a5=3,∴a1+5d+a1+2d−a1−4d=a1+3d=3,∴S7=7(a1+a7)=7(a1+3d)=21.2故选:B.利用等差数列通项公式求出a1+3d=3,再由S7=72(a1+a7)=7(a1+3d),能求出结果.本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.5.【答案】B【解析】解:由整个互联网行业从业者年龄分布饼状图和90后从事互联网行业者岗位分布图,知:在A中,互联网行业从业人员中90后占56%,故A正确;在B中,互联网行业中从事技术岗位的人数90后不一定比80后多,故B错误;在C中,互联网行业中从事设计岗位的人数90后比80前多,故C正确;在D中,互联网行业中从事市场岗位的90后人数不足总人数的10%,故D正确.故选:B.利用整个互联网行业从业者年龄分布饼状图和90后从事互联网行业者岗位分布图直接求解.本题考查例题真假的判断,考查整个互联网行业从业者年龄分布饼状图和90后从事互联网行业者岗位分布图的性质等基础知识,考查运算求解能力,是基础题.6.【答案】D【解析】解:f(−x)=e −x+1(−x)3(e−x−1)=−1+e xx3(1−e x)=e x+1x3(e x−1)=f(x),故函数f(x)为偶函数,其图象关于y轴对称,故排除A,C;当x→+∞时,x3(e x−1)>>e x+1,f(x)→0,故排除B.故选:D.由函数为偶函数,排除AC;由x→+∞时,f(x)→0,排除B,由此得到答案.本题考查函数图象的确定,考查读图识图能力,属于基础题.7.【答案】B【解析】【分析】考查抛物线的定义的应用,属于基础题.抛物线到焦点的距离转化为到准线的距离,可求出横坐标之和,进而求出中点的横坐标,求出结果即可.【解答】解:由抛物线方程得,准线方程为:x=−1,设M(x,y),N(x′,y′),由抛物线的定义得,MF+NF=x+x′+p=x+x′+2=5,线段MN的中点的横坐标为x+x′2=32,线段MN的中点到y轴的距离为:32.故选:B.8.【答案】A【解析】解:我国古代珠算算具算盘每个档(挂珠的杆)上有7颗算珠,用梁隔开,梁上面两颗叫上珠,下面5颗叫下珠.从某一档的7颗算珠中任取3颗,基本事件总数n=C73=35,至少含有一颗上珠包含的基本事件个数m=C22C51+C21C52=25,∴至少含有一颗上珠的概率为P=mn =2535=57.故选:A.从某一档的7颗算珠中任取3颗,基本事件总数n=C73=35,至少含有一颗上珠包含的基本事件个数m=C22C51+C21C52=25,由此能求出至少含有一颗上珠的概率.本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.9.【答案】C【解析】解:函数f(x)=2sin(2x+π6),将f(x)的图象上所有点向右平移θ(θ>0)个单位长度,得y=f(x−θ)=2sin[2(x−θ)+π6]=2sin(2x−2θ+π6);又函数y的图象关于直线x=π6对称,即2×π6−2θ+π6=kπ+π2,k∈Z;解得θ=−12kπ,k∈Z;又θ>0,所以θ的最小值为π.2故选:C.根据三角函数图象平移法则写出平移后的函数解析式,再根据函数图象关于直线x=π6对称求出θ的最小值.本题考查了三角函数的图象与性质的应用问题,也考查了图象平移问题,是基础题.10.【答案】B【解析】解:对于①,无论直线AB与α平行,还是直线AB与α相交,都在α内存在直线与直线AB异面,所以①正确;对于②,当直线AB与α平行时,平面α内不存在直线与直线AB相交,所以②错误;对于③,无论直线AB与α平行,还是直线AB与α相交,都存在过直线AB的平面与α垂直,所以③正确;对于④,若直线AB与α相交,则不存在过直线AB的平面与α平行,所以④错误;综上知,正确的命题序号是①③.故选:B.根据空间中的直线与平面、以及平面与平面的位置关系,判断题目中的命题真假性即可.本题考查了空间中的直线与平面以及平面与平面的位置关系应用问题,是基础题.11.【答案】A【解析】【分析】本题考查双曲线的渐近线方程,考查双曲线的定义和三角形的中位线定理,考查运算能力,属于中档题.设切点为N,连接ON,作F2作F2A⊥MN,垂足为A,运用中位线定理和勾股定理,结合双曲线的定义,即可得到a,b的关系,进而得到所求渐近线方程.【解答】解:设切点为N ,连接ON ,作F 2作F 2A ⊥MN ,垂足为A , 由|ON|=a ,且ON 为△F 1F 2A 的中位线,可得 |F 2A|=2a ,|F 1N|=√c 2−a 2=b , 即有|F 1A|=2b , 因为∠F 1MF 2=45°,所以在等腰直角三角形MF 2A 中,可得|MF 2|=2√2a , 即有|MF 1|=2b +2a ,由双曲线的定义可得|MF 1|−|MF 2|=2b +2a −2√2a =2a , 可得b =√2a ,则双曲线的渐近线方程为y =±√2x. 故选A .12.【答案】A【解析】解:作AO′⊥面BCD ,垂足为O′连接BO′并延长交CD 于F ,由题意得F 时CD 的中点,且O′为三角形BCD 的外接圆的圆心,设三角形BCD 的外接圆半径为r ,则r =BO′=23BF =23⋅√32BC =√33⋅2=2√33,高ℎ=AO′=√AB 2−BO′2=(2√33)=2√63,设外接球的球心为O ,设外接球的半径为R ,则由题意知O 在AO′上,连接OB ,R =OB ,在三角形BOO′中:R 2=r 2+(ℎ−R)2,所以2Rℎ=r 2+ℎ2,将r ,h 值代入可得:R =√62,所以OO′=AO′−R =2√63−√62=√66, 因为点E 在线段BD 上,且BD =3BE ,BD =2,所以BE =23,在三角形BEO′中,由余弦定理:O′E =√BO′2+BE 2−2⋅BO′⋅BE ⋅cos30°=√(2√33)2+(23)2−2⋅2√33⋅23⋅√32=23,正三角形OEO′中,OE 2=O′E 2+OO′2=(23)2+(√66)2=1118当过E 的截面与OE 垂直时,截面的面积最小,设截面的半径为r′则r′2=R 2−OE 2=(√62)2−1118=1618=89,所以截面的面积S =πr′2=89π,故选:A.由正四面体的棱长求出底面外接圆的半径即棱锥的高,再由外接球的半径与高和底面外接圆的半径之间的关系求出外接球的半径,在△BEO′,由余弦定理求出EO′的值,当过E的截面与OE垂直时,截面的面积最小,求出OE,再求求出截面的半径,进而求出截面的面积.考查正四面体的外接球的半径与棱长的关系,及截面面积最小时的情况.属于中档题.13.【答案】8【解析】解:i=0,n=6;n为偶数,n=3,i=1;n为奇数,n=10,i=2;n为偶数,n=5,i=3;n为奇数,n=16,i=4;n为偶数,n=8,i=5;n为偶数,n=4,i=6;n为偶数,n=2,i=7;n为偶数,n=1,i=8;跳出循环,输出结果8,故答案为:8.由已知中的程序语句可知:该程序的功能是利用循环结构计算n的值并输出相应变量i 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.14.【答案】25【解析】解:因为sin(2α−π3)=cos[π2−(2α−π3)]=cos(5π6−2α)=cos[π−(2α+5π6)]=−cos(2α+π6)=25.故答案为:25.直接根据诱导公式把所求问题转化为sin(2α−π3)=cos[π2−(2α−π3)]=cos(5π6−2α)=cos[π−(2α+5π6)]=−cos(2α+π6)即可求解.本题主要考查诱导公式在解题中的应用,属于基础题目.15.【答案】64【解析】解:∵(3+ax)(1+x)4展开式中x 的系数为:3C 41+aC 44=12+a =13,∴a =1, 令x =1,得:(3+x)(1+x)4展开式中各项系数和为:(3+1×1)(1+1)4=64, 故答案为:64.依题意,可得3C 41+aC 44=12+a =13,求得a =1,再赋值x =1,即可求得展开式中各项系数和.本题考查二项式定理,依题意,求得a =1是关键,考查赋值法的灵活应用,属于中档题.16.【答案】(−∞,72)【解析】解:因为f(x)={e x−1−e 1−x ,x ≤1|x −2|−1,x >1,∴当x ≤1时,x −1≤0,∴由f(x)+f(x −1)<0,得e x−1−e 1−x +e x−2−e 2−x <0,∴x ≤32,又x ≤1,∴x ≤32; 当1<x ≤2时,0<x −1≤1,∴由f(x)+f(x −1)<0, 得|x −2|−1+e x−2−e 2−x <0,∴|x −2|<1−e x−2+e 2−x , ∵当1<x ≤2时,|x −2|∈[0,1),1−e x−2+e 2−x ∈[1,1+e +1e ), ∴当1<x ≤2时,f(x)+f(x −1)<0成立,∴1<x ≤2, 当x >2时,由f(x)+f(x −1)<0,得|x −2|−1+|x −3|−1<0,∴|x −2|+|x −3|<2, ∴32<x <72,又x >2,∴2<x <72, 综上,不等式的解集为(−∞,72). 故答案为:(−∞,72).根据f(x)+f(x −1)<0,分x ≤1,1<x ≤2和x >2三种情况解不等式即可. 本题考查了指数不等式和绝对值不等式的解法,考查了分类讨论思想和计算能力,属中档题.17.【答案】(1)证明:∵2a n+1=6a n +2n −1(n ∈N ∗)∴a n+1=3a n+n−12;∴a n+1+n+1 2a n+n2=3a n+n−12+n+12a n+n2=3a n+32na n+n2=3;∴{a n+n2}为等比数列,首项为32,公比为3.(2)解:由(1)得:a n+n2=(a1+12)×3n−1=32×3n−1=12×3n;∴a n=12×3n−n2;S n=a1+a2+a3+⋯…+a n=12(31+32+33+⋯…+3n)−12(1+2+3+⋯…+n) =123(1−3n)1−3−12n(n+1)2=3(3n−1)4−n2+n4=3n+1−n2−n−34.【解析】(1)把已知的递推关系式整理即可证明结论;(2)先利用(1)的结论求出通项公式,再直接利用分组求和即可求解.本题主要考查由数列的递推关系式求数列的通项以及分组求和的应用,是对数列知识的综合考查,属于中档题目.18.【答案】解:(1)∵点S在底面ABCD上的射影为点O,∴SO⊥平面ABCD,∵四边形ABCD是边长为√2的正方形,∴AC=2;∵三角形SAC的面积为1,∴12×2×SO=1,即SO=1,∴SC=√2,∵CD=√2,点P是SD的中点,∴CP⊥SD,同理可得AP⊥SD;又因为AP∩CP=P,AP,CP⊂平面PAC;∴SD⊥平面PAC,∵SD⊂平面SCD,∴平面SCD⊥平面PAC.(2)如图,连接OB,易得OB,OC,OS两两互相垂直,分别以OB,OC,OS为x轴,y轴,z轴建立空间直角坐标系O−xyz,则A(0,−1,0),C(0,1,0),S(0,0,1),D(−1,0,0);假设存在点P 使得二面角P −AC −D 的余弦值为√55,不妨设SP ⃗⃗⃗⃗⃗ =λSD ⃗⃗⃗⃗⃗ ,又点P 在棱SD 上,∴0≤λ≤1, 又SD⃗⃗⃗⃗⃗ =(−1,0,−1), ∴SP⃗⃗⃗⃗⃗ =(−λ,0,−λ),∴P(−λ,0,1−λ), 设平面PAC 的法向量为n ⃗ =(x,y ,z),则{n ⃗ ⋅AP ⃗⃗⃗⃗⃗ =0n ⃗ ⋅AC ⃗⃗⃗⃗⃗ =0,∵AP⃗⃗⃗⃗⃗ =(−λ,1,1−λ),AC ⃗⃗⃗⃗⃗ =(0,2,0), ∴{−λx +y +(1−λ)z =02y =0, 令z =λ,可得x =1−λ,∴平面PAC 的一个法向量为n⃗ =(1−λ,0,λ), 又平面ACD 的一个法向量为OS⃗⃗⃗⃗⃗ =(0,0,1),二面角P −AC −D 的余弦值为√55; ∴|cos <OS ⃗⃗⃗⃗⃗ ,n ⃗ >|=|OS ⃗⃗⃗⃗⃗ ⋅n ⃗⃗ ||OS ⃗⃗⃗⃗⃗ |×|n ⃗⃗ |=√(1−λ)2+λ2=√55, 即3λ2+2λ−1=0,解得λ=13或λ=−1(不合题意,舍去);所以存在点P 符合题意,点P 为棱SD 靠近端点S 的三等分点.【解析】(1)根据题意证明CP ⊥SD ,AP ⊥SD ,得出SD ⊥平面PAC ,即可证明平面SCD ⊥平面PAC ;(2)连接OB ,易知OB ,OC ,OS 两两互相垂直,建立空间直角坐标系O −xyz ,设存在点P 使得二面角P −AC −D 的余弦值为√55,SP ⃗⃗⃗⃗⃗ =λSD ⃗⃗⃗⃗⃗ ,则0≤λ≤1; 利用法向量表示二面角的余弦值,求出λ的值,从而求出点P 的位置.本题考查了空间中的垂直关系应用问题,也考查了利用空间向量求出二面角余弦的计算问题,是中档题.19.【答案】解:(1)设椭圆的标准方程为x 2a +y2b =1(a >b >0), 则{b =1ca =√32,a 2=b 2+c 2,解之得:a =2,b =1,c =√3.故椭圆的标准方程为x 24+y 2=1.(2)设P(x 0,y 0)弦MN 的中点,设M(x 1,y 1),N(x 2,y 2), 由{y =kx +m,x 24+y 2=1,得(4k 2+1)x 2+8kmx +4(m 2−1)=0, 因为直线与椭圆相交,所以x 1+x 2=−8km4k 2+1,x 1x 2=4(m 2−1)4k 2+1,△=(8km)2−16(4k 2+1)(m 2−1)>0⇒m 2<1+4k 2,① ∴x 0=x 1+x 22=−4km4k 2+1,所以y 0=kx 0+m =m4k +1. ∴k AP =y 0+1x 0=−m+1+4k 24km,又|AM|=|AN|,∴AP ⊥MN ,则−m+1+4k 24km=−1k,即3m =4k 2+1,②把②代入①得m 2<3m ,解得0<m <3, 由②得k 2=3m−14>0,解得m >13.综上可知m 的取值范围为(13,3).【解析】(1)根据顶点、离心率建立方程求出椭圆的标准方程;(2)先由直线与椭圆方程联立方程组,由判别式得出不等关系,根与系数关系,再将条件|AM|=|AN|转化为A 在线段MN 的垂直平分线上,建立等量关系,最后将它们相结合进行求解.本题考查了椭圆的标准方程以及直线与椭圆的位置关系的综合问题,有一定难度,属于中档题目.20.【答案】解:(1)2×2列联表如下:根据上表数据代入公式可得K 2=100×(20×30−10×40)230×70×60×40=5063≈0.794<2.706,所以没有超过90%的把握认为“停车是否超过6小时”与性别有关. (2)(i)由题意知:X 的可取值为5,8,11,15,19,30, P(X =5)=110,P(X =8)=110,P(X =11)=15, P(X =15)=15,P(X =19)=720,P(X =30)=120.所以X 的分布列为:∴E(X)=5×110+8×110+11×15+15×15+19×720+30×120=14.65. (ii)由题意得P(X >14.65)=15+720+120=35, ∴ξ~B(3,35),∴P(ξ≥2)=P(ξ=2)+P(ξ=3)=C 32(35)2(25)+(35)3=3×925×25+27125=81125.【解析】(1)作出2×2列联表,求出K 2=100×(20×30−10×40)230×70×60×40=5063≈0.794<2.706,从而没有超过90%的把握认为“停车是否超过6小时”与性别有关.(2)(i)由题意知:X 的可取值为5,8,11,15,19,30,分别求出相应的概率,由此有求出X 的分布列和数学期望.(ii)由题意得P(X >14.65)=15+720+120=35,从而ξ~B(3,35),由此能求出P(ξ≥2)的概率.本题考查独立检验的应用,考查概率、离散型随机变量的分布列、数学期望的求法,考查二项分布等基础知识,考查运算求解能力,是中档题.21.【答案】解:(1)f′(x)=2e 2x +m ,①当m ≥0时,f′(x)>0恒成立,所以f(x)在(0,+∞)上的单调递增;②当−2≤m <0时,x ∈(0,+∞),f′(x)>0,所以f(x)在(0,+∞)上的单调递增; ③当m <−2时,由f′(x)=0得x =12ln(−m2)>0,x ∈(0,12ln(−m2))时,f′(x)<0,f(x)单调递减,x ∈(12ln(−m 2),+∞)时,f′(x)>0,f(x)单调递增; 综上所述:当m ≥−2时,f(x)在(0,+∞)上的单调递增;当m <−2时,f(x)在(0,12ln(−m2))上单调递减,f(x)在(12ln(−m2),+∞)上单调递增;(2)f(x02)−1>g(x 0)⇒e x 0−x 0−1>a2x 02e x 0⇒1−x 0+1e x 0>a2x 02⇒a2x 02+x 0+1e x 0−1<0(∗),需求一个x 0,使(∗)成立,只要求出t(x)=a2x 2+x+1e x−1的最小值,满足t(x)min <0,∵t′(x)=x(a −1e x )∴t(x)在(0,−lna)上单调递减,在(−lna,+∞)上单调递增, ∴t(x)min =t(−lna)=a2ln 2a +a(−lna +1)−1,只需证明a2ln 2a +a(−lna +1)−1<0在a ∈(0,1)内成立即可,令φ(a)=a 2ln 2a +a(−lna +1)−1⇒φ′(a)=12ln 2a >0, ∴φ(a)在a ∈(0,1)单调递增,∴φ(a)<φ(1)=12ln 21+1×(−ln1+1)−1=0,所以t(x)min <0,故存在与a 有关的正常数x 0=−lna(0<a <1)使(∗)成立.【解析】(1)先对函数求导,然后结合导数与单调性的关系即可判断, (2)需求一个x 0,满足结论成立,只要求出t(x)=a2x 2+x+1e x−1的最小值,满足t(x)min <0,结合函数的性质及导数即可证明.本题考查了导数的综合应用,考查了一定的推理与运算的能力,属于中档题.22.【答案】解:(1)圆C 的方程可化为(x −2)2+(y −3)2=8,圆心为C(2,3),半径为2√2,∴圆C 的参数方程为{x =2+2√2cosαy =3+2√2sinα(α为参数)直线l 的极坐标方程可化为ρsinθ+ρcosθ=−3, ∵{ρcosθ=x ρsinθ=y, ∴直线l 的直角坐标方程为x +y +3=0. (2):曲线C 是以C(2,3)为圆心,半径为2√2的圆, 圆心C(2,3)到直线l :x +y +3=0的距离d =22=4√2,所以|PQ|min =4√2−2√2=2√2,此时直线PQ 经过圆心C(2,3),且与直线l :x +y +3=0垂直,k PQ ⋅k l =−1, 所以k PQ =1,PQ 所在直线方程为y −3=x −2,即y =x +1. 联立直线和圆的方程{y =x +1x 2+y 2−4x −6y +5=0,解得{x =0y =1或 {x =4y =5当|PQ|取得最小值时,点P 的坐标为(0,1) 所以|PQ|min =2√2,此时点P 的坐标为(0,1).【解析】(1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用点到直线的距离公式的应用和方程组的解法的应用求出结果.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,点到直线的距离公式的应用,方程组的解法的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.23.【答案】解:(1)f(x)={−3,x ≤−12x −1,−1<x <23,x ≥2,①当x ≤−1时,−3≤1恒成立,所以x ≤−1;②当−1<x <2时,2x −1≤1,即x ≤1,所以−1<x ≤1; ③当x ≥2时,3≤1显然不成立,所以不合题意; 综上,不等式的解集为(−∞,1]. (2)证明:由(1)知f(x)max =3=s , 于是√a +√b +√c =3, 所以√a√a √b√b +√c+√c≥2√b +2√c +2√a =6,当且仅当a =b =c =1时取等号, 所以√a √b √c ≥3.【解析】(1)先将f(x)写为分段函数的形式,然后根据f(x)≤1分别解不等式即可; (2)先由(1)得到f(x)的最大值s ,然后利用基本不等式即可证明√a √b √c ≥3成立.本题考查了绝对值不等式的解法和利用综合法证明不等式,考查了分类讨论思想和转化思想,属中档题.。

2020届湖北省黄冈中学高三5月二模考试数学(理)试卷word版有答案(精品)

2020届湖北省黄冈中学高三5月二模考试数学(理)试卷word版有答案(精品)

黄冈中学高三5月第二次模拟考试数学(理科)试卷 试卷满分:150分一.选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}223,1,0,1,2,3A x y x x B ==--=-,则()R C A B =I ( )A .{}0,1B .{}0,1,2C .{}1,0,1-D .{}1,3- 2. 若复数232018|34|134i z i i i i i-=++++++-…,则z 的共轭复数的虚部为( )A .15-B .95-C .95D .95i -3. 设537535714(),(),log 755a b c -===,则c b a ,,的大小关系是( )A .c a b <<B .b a c <<C .a c b <<D .a b c <<4.一个几何体的三视图如图所示,那么这个几何体的表面积是( ) A .1623+ B .1625+C .2023+D .2025+5. 下列命题正确的个数是( )1:p 若,m n 是两条不同的直线,,αβ是两个不同的平面,若,,,m n m n ααββ⊂⊂∥∥,则αβ∥2:p 命题“32000,10x x x ∃∈-+≤R ”的否定是“32,10x R x x ∀∈-+≥”3:p 函数sin()6y x πω=+在2x =处取得最大值,则正数ω的最小值为6π4:p 若随机变量()2~,Z N μσ,则()0.6826P Z μσμσ-<≤+=,()220.9544P Z μσμσ-<≤+=.已知随机变量()~6,4X N ,则()280.8185P X <≤=A .1个B .2个C .3个D .4个6. 过双曲线22:1x yΓ-=上任意点P作双曲线Γ的切线,交双曲线Γ两条渐近线分别交于,A B两点,若O为坐标原点,则AOB∆的面积为( )A.4 B.3 C.2 D.17. 函数2sin()xxf xe=在[,]ππ-的图像大致为( )8.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论,如图一,主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中曾经经历过的两仪数量总和.它是中华传统文化中隐藏着的世界数学史上第一道数列题,0,2,4,8,12,18,…,如图二,是求大衍数列前n项和的程序框图,执行该程序框图,输入10m=,则输出的S为()A. 100B. 250C. 140D. 1909.已知ABC∆所在平面内有两点,P Q,满足0,PA PC QA QB QC BC+=++=u u u r u u u r r u u u r u u u r u u u r u u u r,若4,2AB AC==u u u r u u u r,23APQS∆=,则2AB AC BC⋅+u u u r u u u r u u u r的值为( )n=1,S=01结束是n为奇数?否输入正整数ma=n22开始n=n+1 a=n2-12S=S+an≥m?输出S是否图二A. ±B. 8±C. 12±D. 20±10.已知三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形,且2AB SA SB SC ====,则该三棱锥的外接球的体积为( )A.27B.9C.27D.2711.实数x ,y 满足约束条件3310x y x y y +⎧⎪-⎨⎪⎩≤≥≥,它表示的平面区域为C ,目标函数2z x y =-的最小值为1p .由曲线()230y x y =≥,直线3x =及x 轴围成的平面区域为D ,向区域D 内任投入一个质点,该质点落入C 的概率为2p ,则1224p p -的值为( )A .12B .23C .35D .4312. 若函数2()ln ln x f x ax x x x=+--有三个不同的零点,则实数a 的取值范围是( )A. 1(1,)1e e e --B. 1[1,]1e e e --C. 1(,1)1e e e ---D. 1[,1]1e e e ---二.填空题:本大题共4小题,每小题5分,共20分.13.若()6111ax x ⎛⎫+- ⎪⎝⎭的展开式中的常数项是11-,则实数a 的值为_________.14.已知椭圆22221(0)x y a b a b+=>>的左焦点1F ,过点1F 作倾斜角为30︒的直线与圆222x y b +=相交的,则椭圆的离心率为_________.15.已知正项等比数列{}n a 的前n 项和为n S 且8426S S -=,则9101112a a a a +++的最小值为_________.16.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知6a c +=,(3cos )tan sin 2BA A -=,则ABC ∆的面积的最大值为 .三.解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤. (一)必考题17.(本小题满分12分)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且22()(2a b c bc --=.(1)求角A 的大小;(2)若等差数列{}n a 的公差不为零,且1sin 1=A a ,且2a 、4a 、8a 成等比数列,求14n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n S .18.(本小题满分12分)如图,在四棱锥S ABCD -中,SCD ∆为钝角三角形,侧面SCD 垂直于底面ABCD ,CD SD =,点M 是SA 的中点,AD BC ∥,90ABC ∠=︒,12AB AD BC ==.(1)求证:平面MBD ⊥平面SCD ;(2)若直线SD 与底面ABCD 所成的角为60o ,求二面角B MD C --余弦值.19.(本小题满分12分)IC 芯片堪称“国之重器”,其制作流程异常繁琐,制作IC 芯片核心部分首先需要制造单晶的晶圆,此过程主要是加入碳,以氧化还原的方式,将氧化硅转换为高纯度的硅.为达到这一高标准要求,研究工作人员曾就是否需采用西门子制程(Siemens process )这一工艺标准进行了反复比较,在一次实验中,工作人员对生产出的50片单晶的晶圆进行研究,结果发现使用了该工艺的30片单晶的晶圆中有28片达标,没有使用该工艺的20片单晶的晶圆中有12片达标.(1)用列联表判断:这次实验是否有99.5%的把握认为单晶的晶圆的制作效果与使用西门子制程(Siemens process )这一工艺标准有关?(2)在得到单晶的晶圆后,接下来的生产制作还需对单晶的晶圆依次进行金属溅镀,涂布光阻,蚀刻技术,光阻去除这四个环节的精密操作,进而得到多晶的晶圆,生产出来的多晶的晶圆经过严格的质检,确定合格后才能进入下一个流程.如果生产出来的多晶的晶圆在质检中不合格,那么必须依次对前四个环节进行技术检测并对所有的出错环节进行修复才能成为合格品.在实验的初期,由于技术的不成熟,生产制作的多晶的晶圆很难达到理想状态,研究人员根据以往的数据与经验得知在实验生产多晶的晶圆的过程中,前三个环节每个环节生产正常的概率为23,每个环节出错需要修复的费用均为20元,第四环节生产正常的概率为34,此环节出错需要修复的费用为10元,问:一次试验生产出来的多晶的晶圆要成为合格品大约还需要消耗多少元费用?(假设质检与检测过程不产生费用)参考公式:22()=,()()()()n ad bc K n a b c d a b c d a c b d -=+++++++ 参考数据: 20()P K k ≥0.15 0.10 0.05 0.0250.01 0.005 0.00120.(本小题满分12分)已知抛物线C 顶点在原点,焦点在y 轴上,抛物线C 上一点(),2Q a 到焦点的距离为3,线段AB 的两端点()11,A x y , ()22,B x y 在抛物线C 上. (1)求抛物线C 的方程;(2)在抛物线C 上存在点()33,D x y ,满足312x x x <<,若ABD ∆是以角A 为直角的等腰直角三角形,求ABD ∆面积的最小值.21.(本小题满分12分)已知函数2()ln ,()().2a f x x x g x x x a a R ==+-∈ (1)若直线(0)()(),x t t y f x y g x A B =>==与曲线和分别交于两点,且曲线()y f x =在A 处的切线与()y g x =在B 处的切线相互平行,求a 的取值范围;(2)设()()()h x f x g x =-在其定义域内有两个不同的极值点12,,x x 且12.0,x x λ>>已知若不等式112e x x λλ+<⋅恒成立,求λ的取值范围.(二)选考题 请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-4:坐标系与参数方程已知平面直角坐标系中,曲线C 的参数方程为1()2x y ααα⎧=⎪⎨=+⎪⎩为参数,直线1:0l x =,直线 2:0l x y -=,以原点O 为极点,x 轴的正半轴为极轴(取相同的长度单位)建立极坐标系.(1)求曲线C 和直线12,l l 的极坐标方程;(2)若直线1l 与曲线C 交于,O A 两点,直线2l 与曲线C 交于,O B 两点,求线段AB 的长.23.(本小题满分10分)选修4-5:不等式选讲 已知0a >,0b >,且222a b +=. (1)若2214|21||1|x x a b+≥---恒成立,求x 的取值范围; (2)证明:5511()()4a b ab++≥.黄冈中学高三5月第二次模拟考试数学(理科)答案 试卷满分:150分一.选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{{},1,0,1,2,3A x y B ===-,则()R C A B =I ( )A .{}0,1B .{}0,1,2C .{}1,0,1-D .{}1,3- 【答案】B2.若复数232018|34|134i z i i i i i-=++++++-…,则z 的共轭复数的虚部为( )A .15- B .95-C .95D .95i -【答案】B3.设537535714(),(),log 755a b c -===,则c b a ,,的大小关系是( )A .c a b <<B .b a c <<C .a c b <<D .a b c <<【答案】D4. 一个几何体的三视图如图所示,那么这个几何体的表面积是( )A .16+B .16+C .20+D .20+【答案】B5.下列命题正确的个数是( )1:p 若,m n 是两条不同的直线,,αβ是两个不同的平面,若,,,m n m n ααββ⊂⊂∥∥,则αβ∥【错误】2:p 命题“32000,10x x x ∃∈-+≤R ”的否定是“32,10x R x x ∀∈-+≥”【错误】3:p 函数sin()6y x πω=+在2x =处取得最大值,则正数ω的最小值为6π【正确】4:p 若随机变量()2~,Z N μσ,则()0.6826P Z μσμσ-<≤+=,()220.9544P Z μσμσ-<≤+=.已知随机变量()~6,4X N ,则()280.8185P X <≤=【正确】 A .1个 B .2个 C .3个 D .4个【答案】B6. 过双曲线22:1x y Γ-=上任意点P 作双曲线Γ的切线,交双曲线Γ两条渐近线分别交于,A B 两点,若O 为坐标原点,则AOB ∆的面积为( )A .4B .3C .2D .1【答案】D 7. 函数2sin ()xxf x e=在[,]ππ-的图像大致为( )8. 大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的 推论,如图一,主要用于解释中国传统文化中的太极衍生原理. 数列中的每一项,都代表太极衍生过程中曾经经历过的两仪 数量总和.它是中华传统文化中隐藏着的世界数学史上第一道数 列题,0,2,4,8,12,18,…,如图二,是求大衍数列 前n 项和的程序框图,执行该程序框图,输入10m =,则输 出的S 为( )A. 100B. 250C. 140D. 190【答案】D9.已知ABC ∆所在平面内有两点,P Q ,满足0,PA PC QA QB QC BC +=++=u u u r u u u r r u u u r u u u r u u u r u u u r,若4,2AB AC ==u u u r u u u r ,23APQ S ∆=,则2AB AC BC ⋅+u u u r u u u r u u u r的值为( )A. 43±B. 843±C. 1243±D. 2043±【答案】D【解析】因为0PA PC +=u u u r u u u r r,所以P 为AC 中点,又因为QA QB QC BC ++=u u u r u u u r u u u r u u u r 即QA QB BC QC BQ +=-=u u u r u u u r u u u r u u u r u u u r ,所以2QA BQ =u u u r u u u r ,所以Q 为线段AB 的靠近B 的三等分点.所以13APQ ABC S S ∆∆=,所以1sin 22ABCS AB AC A ∆==u u u r u u u r ,所以1sin 2A =,3cos A =或3-.故cos 43AB AC AB AC A ⋅=⋅=±u u u r u u u r u u u r u u u r .10.已知三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形,且2AB SA SB SC ====,则该三棱锥的外接球的体积为( ) A.86π B.43π C.43π D.323π 【答案】D11.实数x ,y 满足约束条件3310x y x y y +⎧⎪-⎨⎪⎩≤≥≥,它表示的平面区域为C ,目标函数2z x y =-的最小值为1p .由曲线()230y x y =≥,直线3x =及x 轴围成的平面区域为D ,向区域D 内任投入一个质点,该质点落入C 的概率为2p ,则1224p p -的值为( )A .12B .35C .23D .43【答案】C【解析】画出可行域如下图所示,由图可知,目标函数在点31,22A ⎛⎫ ⎪⎝⎭处取得最小值,且最小值为12z =,即112p =.区域C 的面积为1112222⨯⨯=,平面区域D 的面积为33320233d 63x x x ⎛⎫== ⎪ ⎪⎝⎭⎰,故2112612p ==,所以121224133p p -=-=.12. 若函数2()ln ln x f x ax x x x=+--有三个不同的零点,则实数a 的取值范围是( )A. 1(1,)1e e e -- B.1[1,]1e e e -- C. 1(,1)1e e e --- D. 1[,1]1e e e --- 【解析】由题意可得ln ,(0,)ln x xa x x x x=-∈+∞-有3个不同解,令ln (),ln x xg x x x x=--22221ln 1ln ln (1ln )(2ln )(0,),'(),(ln )(ln )x x x x x x x g x x x x x x x ----∈+∞=-=--则当(0,)x ∈+∞时,令2ln y x x =-,则1211'2,(0,),'0,2x y x y y x x -=-=∈<当递减;当1(,),'0,2x y y ∈+∞>递增,则min 11ln1ln 20,(0,)2y x =-=+>∈+∞则当时,恒有2ln 0.'()0,x x g x ->=令得1x =或,(0,1),'()0,()x e x g x g x =∈<且时递减;(1,),'()0,()x e g x g x ∈>时递增;(,)x e ∈+∞时,'()0,()g x g x <递减,则()g x 的极小值为(1)1,()g g x =的极大值为1(),1e g e e e=--结合函数图象可得实数a 的取值范围是1(1,)1e e e--.[答案]A 二.填空题:本大题共4小题,每小题5分,共20分.13. 若()6111ax x ⎛⎫+- ⎪⎝⎭的展开式中的常数项是11-,则实数a 的值为_________. 【答案】214.已知椭圆22221(0)x y a b a b+=>>的左焦点1F ,过点1F 作倾斜角为30︒的直线与圆222x y b +=相交的,则椭圆的离心率为_________.15.已知正项等比数列{}n a 的前n 项和为n S 且8426S S -=,则9101112a a a a +++的最小值为_________. 【解析】由题意可得:9101112128a a a a S S +++=-,由8426S S -=可得8446S S S -=+,由等比数列的性质可得:484128,,S S S S S --成等比数列,则()()2412884S S S S S -=-,综上可得:249101112128444(6)361224S a a a a S S S S S ++++=-==++≥当且仅当46S =时等号成立.综上可得,则9101112a a a a +++的最小值为24.16.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知6a c +=,(3cos )tan sin 2BA A -=,则ABC ∆的面积的最大值为 .【答案】 Q (3cos )tansin 2B A A -=,∴sin (3cos )sin 1cos B A A B-=+,整理得 3sin sin sin B A C =+,则3b a c =+ 又6a c +=,∴2b =.又2222cos b a c ac B =+-,则24()22cos 362(1cos )a c ac ac B ac B =+--=-+,∴16cos 1B ac=-∴11cos 22ABC S ac B ∆===,Q 6a c +=,∴9ac ≤∴ABC S ∆=,当且仅当3a c ==时取等号.三.解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤. (一)必考题17. 在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c,且22()(2a b c bc --=.(1)求角A 的大小;(2)若等差数列{}n a 的公差不为零,且1sin 1=A a ,且2a 、4a 、8a 成等比数列,求14n n a a +⎧⎫⎨⎬⎩⎭的前n 项和nS .【解析】(1)由22()(23)a b c bc --=-,2223a b c bc --=-,所以2223cos 2b c a A bc +-==6A π∴=(2)设{}n a 的公差为d ,由得21=a ,且2428a a a =,∴2111(3)()(7)a d a d a d +=++.又0d ≠,∴2d =,∴2n a n =.∴14111(1)1n n a a n n n n +==-++, ∴11111111(1)()()()122334111n n S n n n n =-+-+-++-=-=+++… 18. 如图,在四棱锥S ABCD -中,SCD ∆为钝角三角形,侧面SCD 垂直于底面ABCD ,CD SD =,点M 是SA 的中点,AD BC ∥,90ABC ∠=︒,12AB AD BC ==. (1)求证:平面MBD ⊥平面SCD ;(2)若直线SD 与底面ABCD 所成的角为60o ,求二面角B MD C --余弦值.【解析】(1)证明:取BC 中点E ,连接DE ,设AB AD a ==,2BC a =, 依题意得,四边形ABED 为正方形,且有BE DE CE a ===,2BD CD a ==,所以222BD CD BC +=,所以BD CD ⊥,又平面SCD ⊥底面ABCD ,平面SCD I 底面ABCD CD =,BD ⊂底面ABCD , 所以BD ⊥平面SCD . 又BD ⊂平面MBD ,所以平面MBD ⊥平面SCD (2)过点S 作CD 的垂线,交CD 延长线于点H ,连接AH ,因为平面SCD ⊥底面ABCD ,平面SCD I 底面ABCD CD =,SH CD ⊥SH ⊂平面SCD ,所以SH ⊥底面ABCD ,故DH 为斜线SD 在底面ABCD 内的射影, SDH ∠为斜线SD 与底面ABCD 所成的角,即60SDH ∠=︒由(1)得,2SD a =,所以在Rt SHD ∆中,2SD a =,22DH a =,6SH =,在ADH ∆中,45ADH ∠=︒,AD a =,22DH a =,由余弦定理得22AH a =, 所以222AH DH AD +=,从而90AHD ∠=︒,过点D 作DF SH ∥,所以DF ⊥底面ABCD ,所以,,DB DC DF 两两垂直,如图,以点D 为坐标原点,DB uuu r 为x 轴正方向,DC uuu r 为y 轴正方向,DF uuu r为z轴正方向建立空间直角坐标系,则()2,0,0Ba ,()2,0C a ,260,S ⎛⎫⎪ ⎪⎝⎭,22,,022A a a ⎛⎫- ⎪ ⎪⎝⎭,226,42M a ⎛⎫- ⎪ ⎪⎝⎭, 设平面MBD 的法向量(),,n x y z =r00n DB n DM ⎧⋅=⎪⎨⋅=⎪⎩r uu u r r uuu u r 得202260424x x y z =-+=⎩ 取1z =得3n ⎛⎫= ⎪ ⎪⎝⎭r ,设平面MCD 的法向量(),,m x y z '''=u r00m DC m DM ⎧⋅=⎪⎨⋅=⎪⎩u r uuu r u r uuu u r 得202260424y x y z ⎧'=⎪'''-+=⎪⎩,取1z '=得,()3,0,1m =-u r , 所以17cos ,724n mn m n m⋅===⋅⋅r u rr u r r u r 故所求的二面角B MD C --的余弦值为77.19. IC 芯片堪称“国之重器”,其制作流程异常繁琐,制作IC 芯片核心部分首先需要制造单晶的晶圆,此过程主要是加入碳,以氧化还原的方式,将氧化硅转换为高纯度的硅.为达到这一高标准要求,研究工作人员曾就是否需采用西门子制程(Siemens process )这一工艺标准进行了反复比较,在一次实验中,工作人员对生产出的50片单晶的晶圆进行研究,结果发现使用了该工艺的30片单晶的晶圆中有28片达标,没有使用该工艺的20片单晶的晶圆中有12片达标.(1)用列联表判断:这次实验是否有99.5%的把握认为单晶的晶圆的制作效果与使用西门子制程(Siemens process )这一工艺标准有关?(2)在得到单晶的晶圆后,接下来的生产制作还需对单晶的晶圆依次进行金属溅镀,涂布光阻,蚀刻技术,光阻去除这四个环节的精密操作,进而得到多晶的晶圆,生产出来的多晶的晶圆经过严格的质检,确定合格后才能进入下一个流程.如果生产出来的多晶的晶圆在质检中不合格,那么必须依次对前四个环节进行技术检测并对所有的出错环节进行修复才能成为合格品.在实验的初期,由于技术的不成熟,生产制作的多晶的晶圆很难达到理想状态,研究人员根据以往的数据与经验得知在实验生产多晶的晶圆的过程中,前三个环节每个环节生产正常的概率为23,每个环节出错需要修复的费用均为20元,第四环节生产正常的概率为34,此环节出错需要修复的费用为10元,问:一次试验生产出来的多晶的晶圆要成为合格品大约还需要消耗多少元费用?(假设质检与检测过程不产生费用)参考公式:22()=,()()()()n ad bc K n a b c d a b c d a c b d -=+++++++ 参考数据:【解析】(1)由题意列列表为:故250(288212)257.879302040103K ⨯-⨯==>⨯⨯⨯ 故有99.5%的把握认为晶圆的制作效果与使用西门子制程这一工艺技术有关(2)设i A 表示检测到第i 个环节有问题,(1,2,3,4)i =,X 表示成为一个合格的多晶圆需消耗的费用,则X 的可能取值为:0,10,20,30,40,50,60,700X =,表明四个环节均正常312342324(0)()()34108P X P A A A A ====g10X =表明第四环节有问题31234218(10)()()34108P X P A A A A ====g20X =表明前三环节有一环节有问题12312336(20)()()334108P X C ===g g 30X =表明前三环节有一环节及第四环节有问题12312112(30)()()334108P X C ===g g 40X =,表明前三环节有两环节有问题22312318(40)()()334108P X C ===g g50X =表明前三环节有两环节及第四环节有问题2231216(50)()()334108P X C ===g g60X =表明前三环节有问题31234133(60)()()34108P X P A A A A ====g70X =四环节均有问题31234111(70)()()34108P X P A A A A ====g费用X 分布列为:X 0 10 20 30 40 50 60 70 P241088108361081210818108610831081108故:108542EX ===(元)故大约需要耗费452元20. 已知抛物线C 顶点在原点,焦点在y 轴上,抛物线C 上一点(),2Q a 到焦点的距离为3,线段AB 的两端点()11,A x y , ()22,B x y 在抛物线C 上. (1)求抛物线C 的方程;(2)在抛物线C 上存在点()33,D x y ,满足312x x x <<,若ABD ∆是以角A 为直角的等腰直角三角形,求ABD ∆面积的最小值.【答案】(1)24x y =;(2)最小值为16.【解析】(1)设抛物线的方程为22x py =,抛物线的焦点为F ,则322pQF ==+,所以1p =,则抛物线C 的方程为24x y =.(2)如图所示,设211,4x A x ⎛⎫ ⎪⎝⎭, 222,4x B x ⎛⎫ ⎪⎝⎭,233(,)4x D x ,根据抛物线关于y 轴对称,取10x ≥,记1AB k k =, 2AD k k =,则有2114x x k +=, 3124x x k +=,所以2114x k x =-, 3214x k x =-, 121k k ⋅=-, 又因为ABD ∆是以A 为顶点的等腰直角三角形,所以AB AD =,2212123111k x x k x x +-=+-,将23,x x 代入得:221112211212k k x k k x +-=+- 化简求出1x ,得: 3112114422k x k k -=+,则()2222112114411||122ABDk S AB k k k ∆⎛⎫+=⋅=⨯+⨯ ⎪+⎝⎭,可以先求AB 的最小值即可, 2211211441k AB k k k +=+⋅+,令()3222222111t t y t t t t t++=+⋅=++, 则()()()()()1322222223122112t t t t t t y t t+⋅⋅+-+++'=()()()()()()11233223222222213322111t tt t t t tt t t t tt t ++----+-+-==++()()()()122222111tt t t t +-+=+所以可以得出当1t =即11k =时, AB 最小值为42,此时10x =,即当()0,0A , ()4,4B , ()4,4D -时, ABD ∆为等腰直角三角形,且此时面积最小,最小值为16.21. 已知函数2()ln ,()().2a f x x x g x x x a a R ==+-∈ (1)若直线(0)()(),x t t y f x y g x A B =>==与曲线和分别交于两点,且曲线()y f x = 在A 处的切线与()y g x =在B 处的切线相互平行,求a 的取值范围;(2)设()()()h x f x g x =-在其定义域内有两个不同的极值点12,,x x 且12.0,x x λ>>已知 若不等式112e x x λλ+<⋅恒成立,求λ的取值范围.【解析】(1)依题意,函数()f x 的定义域为(0,+∞),'()ln 1,'() 1.f x x g x ax =+=+因为曲线()y f x =在A 处的切线与()y g x =在B 处的切线相互平行,所以'()'()(0,)f t g t =+∞在有解,即方程ln 0(0,)t at -=+∞在有解.……………………2分方程ln 0(0,)t at -=+∞在有解转化为函数ln y x y ax ==与函数的图像在(0,)+∞上有交点,如图,令过原点且与函数ln y x =的图像相切的直线的斜率为k ,只须.a k ≤令切点为000000ln 1(,ln ),'|,x x x A x x k y k x x ====则又,所以000ln 1,x x x =解得01,x e k e ==于是,所以1.a e≤………………………………………5分(2)2()()()ln (0),'()ln .2a h x f x g x x x x x a x h x x ax =-=--+>=-所以 因为12,()x x h x 为在其定义域内有两个不同的极值点,所以12,ln 0x x x ax -=是方程的两个根,即12112212ln ln ln ,ln ,.x x x ax x ax a x x -===-作差得……………………………6分因为120,0,,x x λ>>>所以112121ln ln 1e x x x x λλλλλ+<⋅⇔+<+⇔+<1212121()ax ax a x x a x x λλλλ++=+⇔>+⇔121121212212ln ln (1)()1ln x x x x x x x x x x x x λλλλ-+-+>⇔>-++⇔112122(1)(1)ln .x xx x x x λλ+->+……8分令12x t x =,则(1,)t ∈+∞,由题意知,不等式(1)(1)ln (1,)t t t t λλ+->∈+∞+在上恒成立. 令2222(1)(1)1(1)(1)()()ln ,'().()()t t t t t t t t t t t λλλϕϕλλλ+-+--=-=-=+++则 (ⅰ)若21,(1,),'()0,t t λϕ≥∈+∞>对一切所以()(1,)t ϕ+∞在上单调递增,又(1)0,ϕ=所以()0t ϕ>(1,)+∞在上恒成立,符合题意.……………………………10分(ⅱ)若221,(1,)t λλ>∈当时,2'()0;(,),t t ϕλ<∈+∞当时2'()0,()(1,)t t ϕϕλ>所以在上单调递减,在2(,)λ+∞上单调递增,又(1)0,())t ϕϕ=∞所以在(1,+上不能恒小于0,不符合题意,舍去.综合(ⅰ)(ⅱ)得,若不等式112ex x λλ+<⋅恒成立,只须21.0,1λλλ≤>≤又所以0<.………12分(二)选考题 请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22. 选修4-4:坐标系与参数方程已知平面直角坐标系中,曲线C的参数方程为1()2x y ααα⎧=⎪⎨=+⎪⎩为参数,直线1:0l x =,直线 2:0l x y -=,以原点O 为极点,x 轴的正半轴为极轴(取相同的长度单位)建立极坐标系.(1)求曲线C 和直线12,l l 的极坐标方程;(2)若直线1l 与曲线C 交于,O A 两点,直线2l 与曲线C 交于,O B 两点,求线段AB 的长.23. 选修4-5:不等式选讲已知0a >,0b >,且222a b +=. (1)若2214|21||1|x x a b+≥---恒成立,求x 的取值范围; (2)证明:5511()()4a b ab++≥.【解析】(1)设,1,1|21||1|32,1,21,.2x x y x x x x x x ⎧⎪≥⎪⎪=---=-≤<⎨⎪⎪-<⎪⎩由222a b +=,得221()12a b +=,故22222222221411414()()(14)22b a a b a b a b a b +=++=+++2222149(142)22b a a b ≥++⋅=, 所以9|21||1|2x x ≥---. 当1x ≤时,92x ≤,得912x ≤≤; 当112x ≤<时,9322x -≤,解得136x ≤,故112x ≤<; 当12x <时,92x -≤,解得92x ≥-,故9122x -≤<. 综上,9922x -≤≤. (2)55554411()()b a a b a b a b a b ++=+++5522222222()2()=4b a a b a b a b a b=+++-≥+。

【附加15套高考模拟试卷】湖北省黄冈市2020届高三5月适应性考试理科数学试题含答案

【附加15套高考模拟试卷】湖北省黄冈市2020届高三5月适应性考试理科数学试题含答案

湖北省黄冈市2020届高三5月适应性考试理科数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.执行如图所示的程序框图,若输入的,a b 的值分别为1,2,则输出的S 是( )A .70B .29C .12D .52.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)...(2018)f f f f ++++=( )A .50B .2C .0D .-20183.设12,F F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,P 为双曲线右支上一点,若1290F PF ︒∠=,c=2,213PF F S ∆=,则双曲线的两条渐近线的夹角为( )A .5πB .4πC .6πD .3π4.已知,a b ∈R ,则使a b >成立的一个充分不必要条件是( )A .33a b > B .11a b <C .22a b > D .||a b b >+5.已知1tan 2α=,且3,2παπ⎛⎫∈ ⎪⎝⎭,则cos 2πα⎛⎫-= ⎪⎝⎭( ) A .5B .5C .25D .256.已知双曲线()2222:10,0x y C a b a b-=>>的右焦点与抛物线220y x =的焦点重合,且其渐近线方程为34y x =±,则该双曲线的方程为( )A.221 916x y-=B.221169x y-=C.2216436x y-=D.2213664x y-=7.定义区间[],a b,(),a b,(],a b,[),a b的长度为b a-.如果一个函数的所有单调递增区间的长度之和为m(其中(]0,m e∈,e为自然对数的底数),那么称这个函数为“m函数”.下列四个命题:①函数()lnxf x e x=+不是“m函数”;②函数()ln xg x x e=-是“m函数”,且1mme=;③函数()ln xh x e x=是“m函数”;④函数()lnxxxeϕ=是“m函数”,且ln1m m=.其中正确的命题的个数为()A.4个B.3个C.2个D.1个8.已知实数x,y满足约束条件133xx yy x≥⎧⎪+≤⎨⎪≥-⎩,则2z x y=-+的最小值为( )A.-6 B.-4 C.-3 D.-19.某几何体的正视图和侧视图如图1所示,它的俯视图的直观图是''''A B C DY,如图2所示.其中24A'B'A'D'==,则该几何体的表面积为()A.1612+πB.168+πC.1610+π D.8π10.已知()f x是定义在[2,1]b b-+上的偶函数,且在[2,0]b-上为增函数,则(1)(2)f x f x-≤的解集为()A.2[1,]3-B.1[1,]3-C.[1,1]-D.1[,1]311.已知锐角ABCV的角A,B,C的对边分别为a,b,c,且1c=,三角形ABC的面积1ABCS=△,则22a b+的取值范围为()A.17,2⎡⎫+∞⎪⎢⎣⎭B.()9,+∞C.17,92⎡⎤⎢⎥⎣⎦D.17,92⎡⎫⎪⎢⎣⎭12.若a,b,c,满足23a=,2log5b=,32c=,则()A.c a b<<B.b c a<<C.a b c<<D.c b a<<二、填空题:本题共4小题,每小题5分,共20分。

湖北省黄冈中学2020届高三5月二模考试数学(理)试卷(含答案)

湖北省黄冈中学2020届高三5月二模考试数学(理)试卷(含答案)
D.
27
11. 实数 x , y 满足约束条件
x 3y≤3 x y≥1 ,它表示的平面区域为 y≥0
C ,目标函数 z
x 2y
的最小值为 p1 . 由曲线 y2 3x y≥0 ,直线 x 3 及 x 轴围成的平面区域为 D ,向区域
D 内任投入一个质点,该质点落入 C 的概率为 p2 ,则 2 p1 4 p2 的值为 ( )
的值为
(
)
3
A. 4 3
B. 8 4 3
C. 12 4 3
D. 20 4 3
10. 已 知 三 棱 锥 S ABC 的 底 面 是 以 AB 为 斜 边 的 等 腰 直 角 三 角 形 , 且 AB SA SB SC 2 ,则该三棱锥的外接球的体积为 ( )
A. 8 6 27
43
B.
9
43
C.
27
32 3
19. (本小题满分 12 分) IC 芯片堪称“国之重器”,其制作流程异常繁琐,制作
IC 芯片
核心部分首先需要制造单晶的晶圆, 此过程主要是加入碳, 以氧化还原的方式, 将氧
化硅转换为高纯度的硅 . 为达到这一高标准要求,研究工作人员曾就是否需采用西门
子制程( Siemens process )这一工艺标准进行了反复比较,在一次实验中,工作人
作的多晶的晶圆很难达到理想状态,研究人员根据以往的数据与经验得知在实验生
产多晶的晶圆的过程中,前三个环节每个环节生产正常的概率为
2 ,每个环节出错 3
需要修复的费用均为 20 元,第四环节生产正常的概率为
3 ,此环节出错需要修复的
4
费用为 10 元,问:一次试验生产出来的多晶的晶圆要成为合格品大约还需要消耗多

2019-2020年湖北省黄冈中学高三5月二模考试数学(理)试卷word版有答案

2019-2020年湖北省黄冈中学高三5月二模考试数学(理)试卷word版有答案

黄冈中学高三5月第二次模拟考试数学(理科)试卷试卷满分:150分一.选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}223,1,0,1,2,3A x y x x B ==--=-,则()R C A B =I ( )A .{}0,1B .{}0,1,2C .{}1,0,1-D .{}1,3- 2. 若复数232018|34|134i z i i i i i-=++++++-…,则z 的共轭复数的虚部为( )A .15-B .95-C .95D .95i -3. 设537535714(),(),log 755a b c -===,则c b a ,,的大小关系是( )A .c a b <<B .b a c <<C .a c b <<D .a b c <<4.一个几何体的三视图如图所示,那么这个几何体的表面积是( ) A .1623+ B .1625+C .2023+D .2025+5. 下列命题正确的个数是( )1:p 若,m n 是两条不同的直线,,αβ是两个不同的平面,若,,,m n m n ααββ⊂⊂∥∥,则αβ∥2:p 命题“32000,10x x x ∃∈-+≤R ”的否定是“32,10x R x x ∀∈-+≥”3:p 函数sin()6y x πω=+在2x =处取得最大值,则正数ω的最小值为6π4:p 若随机变量()2~,Z N μσ,则()0.6826P Z μσμσ-<≤+=,()220.9544P Z μσμσ-<≤+=.已知随机变量()~6,4X N ,则()280.8185P X <≤=A .1个B .2个C .3个D .4个6. 过双曲线22:1x y Γ-=上任意点P 作双曲线Γ的切线,交双曲线Γ两条渐近线分别交于,A B 两点,若O 为坐标原点,则AOB ∆的面积为( )A .4B .3C .2D .1 7. 函数2sin()xxf x e=在[,]ππ-的图像大致为( )8. 大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的 推论,如图一,主要用于解释中国传统文化中的太极衍生原理. 数列中的每一项,都代表太极衍生过程中曾经经历过的两仪 数量总和.它是中华传统文化中隐藏着的世界数学史上第一道数 列题,0,2,4,8,12,18,…,如图二,是求大衍数列 前n 项和的程序框图,执行该程序框图,输入10m =,则输 出的S 为( )A. 100B. 250C. 140D. 1909.已知ABC ∆所在平面内有两点,P Q ,满足0,PA PC QA QB QC BC +=++=u u u r u u u r r u u u r u u u r u u u r u u u r,若n=1,S=0 1 结束是n 为奇数?否 输入正整数ma=n 22开始 n=n+1a=n 2-12S=S+an ≥m? 输出S是否图二4,2AB AC ==u u u r u u u r ,23APQ S ∆=,则2AB AC BC ⋅+u u u r u u u r u u u r的值为( )A. ±B. 8±C. 12±D. 20±10.已知三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形,且2AB SA SB SC ====,则该三棱锥的外接球的体积为( )11.实数x ,y 满足约束条件3310x y x y y +⎧⎪-⎨⎪⎩≤≥≥,它表示的平面区域为C ,目标函数2z x y =-的最小值为1p .由曲线()230y x y =≥,直线3x =及x 轴围成的平面区域为D ,向区域D 内任投入一个质点,该质点落入C 的概率为2p ,则1224p p -的值为( )A .12B .23C .35D .4312. 若函数2()ln ln x f x ax x x x=+--有三个不同的零点,则实数a 的取值范围是( )A. 1(1,)1e e e --B. 1[1,]1e e e --C. 1(,1)1e e e ---D. 1[,1]1e e e ---二.填空题:本大题共4小题,每小题5分,共20分.13.若()6111ax x ⎛⎫+- ⎪⎝⎭的展开式中的常数项是11-,则实数a 的值为_________.14.已知椭圆22221(0)x y a b a b+=>>的左焦点1F ,过点1F 作倾斜角为30︒的直线与圆222x y b +=相交的,则椭圆的离心率为_________.15.已知正项等比数列{}n a 的前n 项和为n S 且8426S S -=,则9101112a a a a +++的最小值为_________.16.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知6a c +=,(3cos )tan sin 2BA A -=,则ABC ∆的面积的最大值为 .三.解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤.(一)必考题17.(本小题满分12分)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且22()(23)a b c bc --=-. (1)求角A 的大小;(2)若等差数列{}n a 的公差不为零,且1sin 1=A a ,且2a 、4a 、8a 成等比数列,求14n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n S .18.(本小题满分12分)如图,在四棱锥S ABCD -中,SCD ∆为钝角三角形,侧面SCD 垂直于底面ABCD ,CD SD =,点M 是SA 的中点,AD BC ∥,90ABC ∠=︒,12AB AD BC ==.(1)求证:平面MBD ⊥平面SCD ;(2)若直线SD 与底面ABCD 所成的角为60o ,求二面角B MD C --余弦值.19.(本小题满分12分)IC 芯片堪称“国之重器”,其制作流程异常繁琐,制作IC 芯片核心部分首先需要制造单晶的晶圆,此过程主要是加入碳,以氧化还原的方式,将氧化硅转换为高纯度的硅.为达到这一高标准要求,研究工作人员曾就是否需采用西门子制程(Siemens process )这一工艺标准进行了反复比较,在一次实验中,工作人员对生产出的50片单晶的晶圆进行研究,结果发现使用了该工艺的30片单晶的晶圆中有28片达标,没有使用该工艺的20片单晶的晶圆中有12片达标.(1)用列联表判断:这次实验是否有99.5%的把握认为单晶的晶圆的制作效果与使用西门子制程(Siemens process )这一工艺标准有关?(2)在得到单晶的晶圆后,接下来的生产制作还需对单晶的晶圆依次进行金属溅镀,涂布光阻,蚀刻技术,光阻去除这四个环节的精密操作,进而得到多晶的晶圆,生产出来的多晶的晶圆经过严格的质检,确定合格后才能进入下一个流程.如果生产出来的多晶的晶圆在质检中不合格,那么必须依次对前四个环节进行技术检测并对所有的出错环节进行修复才能成为合格品.在实验的初期,由于技术的不成熟,生产制作的多晶的晶圆很难达到理想状态,研究人员根据以往的数据与经验得知在实验生产多晶的晶圆的过程中,前三个环节每个环节生产正常的概率为23,每个环节出错需要修复的费用均为20元,第四环节生产正常的概率为34,此环节出错需要修复的费用为10元,问:一次试验生产出来的多晶的晶圆要成为合格品大约还需要消耗多少元费用?(假设质检与检测过程不产生费用)参考公式:22()=,()()()()n ad bc K n a b c d a b c d a c b d -=+++++++参考数据:20.(本小题满分12分)已知抛物线C 顶点在原点,焦点在y 轴上,抛物线C 上一点(),2Q a 到焦点的距离为3,线段AB 的两端点()11,A x y , ()22,B x y 在抛物线C 上. (1)求抛物线C 的方程;(2)在抛物线C 上存在点()33,D x y ,满足312x x x <<,若ABD ∆是以角A 为直角的等腰直角三角形,求ABD ∆面积的最小值.21.(本小题满分12分)已知函数2()ln ,()().2a f x x x g x x x a a R ==+-∈ (1)若直线(0)()(),x t t y f x y g x A B =>==与曲线和分别交于两点,且曲线()y fx =在A 处的切线与()y g x =在B 处的切线相互平行,求a 的取值范围;(2)设()()()h x f x g x =-在其定义域内有两个不同的极值点12,,x x 且12.0,x x λ>>已知若不等式112e x x λλ+<⋅恒成立,求λ的取值范围.(二)选考题 请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-4:坐标系与参数方程已知平面直角坐标系中,曲线C 的参数方程为1()2x y ααα⎧=⎪⎨=+⎪⎩为参数,直线1:0l x =,直线 2:0l x y -=,以原点O 为极点,x 轴的正半轴为极轴(取相同的长度单位)建立极坐标系.(1)求曲线C 和直线12,l l 的极坐标方程;(2)若直线1l 与曲线C 交于,O A 两点,直线2l 与曲线C 交于,O B 两点,求线段AB 的长.23.(本小题满分10分)选修4-5:不等式选讲 已知0a >,0b >,且222a b +=. (1)若2214|21||1|x x a b+≥---恒成立,求x 的取值范围;(2)证明:5511()()4a b a b++≥.黄冈中学高三5月第二次模拟考试数学(理科)答案 试卷满分:150分一.选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{{},1,0,1,2,3A x y B ===-,则()R C A B =I ( )A .{}0,1B .{}0,1,2C .{}1,0,1-D .{}1,3- 【答案】B2.若复数232018|34|134i z i i i i i-=++++++-…,则z 的共轭复数的虚部为( )A .15- B .95-C .95D .95i -【答案】B3.设537535714(),(),log 755a b c -===,则c b a ,,的大小关系是( )A .c a b <<B .b a c <<C .a c b <<D .a b c <<【答案】D4. 一个几何体的三视图如图所示,那么这个几何体的表面积是( )A .16+B .16+C .20+D .20+【答案】B5.下列命题正确的个数是( )1:p 若,m n 是两条不同的直线,,αβ是两个不同的平面,若,,,m n m n ααββ⊂⊂∥∥,则αβ∥【错误】2:p 命题“32000,10x x x ∃∈-+≤R ”的否定是“32,10x R x x ∀∈-+≥”【错误】3:p 函数sin()6y x πω=+在2x =处取得最大值,则正数ω的最小值为6π【正确】4:p 若随机变量()2~,Z N μσ,则()0.6826P Z μσμσ-<≤+=,()220.9544P Z μσμσ-<≤+=.已知随机变量()~6,4X N ,则()280.8185P X <≤=【正确】 A .1个 B .2个 C .3个 D .4个【答案】B6. 过双曲线22:1x y Γ-=上任意点P 作双曲线Γ的切线,交双曲线Γ两条渐近线分别交于,A B 两点,若O 为坐标原点,则AOB ∆的面积为( )A .4B .3C .2D .1【答案】D 7. 函数2sin ()xxf x e=在[,]ππ-的图像大致为( )8. 大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的 推论,如图一,主要用于解释中国传统文化中的太极衍生原理. 数列中的每一项,都代表太极衍生过程中曾经经历过的两仪 数量总和.它是中华传统文化中隐藏着的世界数学史上第一道数 列题,0,2,4,8,12,18,…,如图二,是求大衍数列 前n 项和的程序框图,执行该程序框图,输入10m =,则输 出的S 为( )A. 100B. 250C. 140D. 190【答案】D9.已知ABC ∆所在平面内有两点,P Q ,满足0,PA PC QA QB QC BC +=++=u u u r u u u r r u u u r u u u r u u u r u u u r,若4,2AB AC ==u u u r u u u r ,23APQ S ∆=,则2AB AC BC ⋅+u u u r u u u r u u u r的值为( )A. 43±B. 843±C. 1243±D. 2043±【答案】D【解析】因为0PA PC +=u u u r u u u r r,所以P 为AC 中点,又因为QA QB QC BC ++=u u u r u u u r u u u r u u u r 即QA QB BC QC BQ +=-=u u u r u u u r u u u r u u u r u u u r ,所以2QA BQ =u u u r u u u r ,所以Q 为线段AB 的靠近B 的三等分点.所以13APQ ABC S S ∆∆=,所以1sin 22ABCS AB AC A ∆==u u u r u u u r ,所以1sin 2A =,3cos A =或3-.故cos 43AB AC AB AC A ⋅=⋅=±u u u r u u u r u u u r u u u r .10.已知三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形,且2AB SA SB SC ====,则该三棱锥的外接球的体积为( ) A.86π B.43π C.43π D.323π 【答案】D11.实数x ,y 满足约束条件3310x y x y y +⎧⎪-⎨⎪⎩≤≥≥,它表示的平面区域为C ,目标函数2z x y =-的最小值为1p .由曲线()230y x y =≥,直线3x =及x 轴围成的平面区域为D ,向区域D 内任投入一个质点,该质点落入C 的概率为2p ,则1224p p -的值为( )A .12B .35C .23D .43【答案】C【解析】画出可行域如下图所示,由图可知,目标函数在点31,22A ⎛⎫ ⎪⎝⎭处取得最小值,且最小值为12z =,即112p =.区域C 的面积为1112222⨯⨯=,平面区域D 的面积为33320233d 63x x x ⎛⎫== ⎪ ⎪⎝⎭⎰,故2112612p ==,所以121224133p p -=-=.12. 若函数2()ln ln x f x ax x x x=+--有三个不同的零点,则实数a 的取值范围是( )A. 1(1,)1e e e -- B.1[1,]1e e e -- C. 1(,1)1e e e --- D. 1[,1]1e e e --- 【解析】由题意可得ln ,(0,)ln x xa x x x x=-∈+∞-有3个不同解,令ln (),ln x xg x x x x=--22221ln 1ln ln (1ln )(2ln )(0,),'(),(ln )(ln )x x x x x x x g x x x x x x x ----∈+∞=-=--则当(0,)x ∈+∞时,令2ln y x x =-,则1211'2,(0,),'0,2x y x y y x x -=-=∈<当递减;当1(,),'0,2x y y ∈+∞>递增,则min 11ln1ln 20,(0,)2y x =-=+>∈+∞则当时,恒有2ln 0.'()0,x x g x ->=令得1x =或,(0,1),'()0,()x e x g x g x =∈<且时递减;(1,),'()0,()x e g x g x ∈>时递增;(,)x e ∈+∞时,'()0,()g x g x <递减,则()g x 的极小值为(1)1,()g g x =的极大值为1(),1e g e e e=--结合函数图象可得实数a 的取值范围是1(1,)1e e e--.[答案]A 二.填空题:本大题共4小题,每小题5分,共20分.13. 若()6111ax x ⎛⎫+- ⎪⎝⎭的展开式中的常数项是11-,则实数a 的值为_________. 【答案】214.已知椭圆22221(0)x y a b a b+=>>的左焦点1F ,过点1F 作倾斜角为30︒的直线与圆222x y b +=相交的,则椭圆的离心率为_________.15.已知正项等比数列{}n a 的前n 项和为n S 且8426S S -=,则9101112a a a a +++的最小值为_________. 【解析】由题意可得:9101112128a a a a S S +++=-,由8426S S -=可得8446S S S -=+,由等比数列的性质可得:484128,,S S S S S --成等比数列,则()()2412884S S S S S -=-,综上可得:249101112128444(6)361224S a a a a S S S S S ++++=-==++≥当且仅当46S =时等号成立.综上可得,则9101112a a a a +++的最小值为24.16.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知6a c +=,(3cos )tan sin 2BA A -=,则ABC ∆的面积的最大值为 .【答案】 Q (3cos )tansin 2B A A -=,∴sin (3cos )sin 1cos B A A B-=+,整理得 3sin sin sin B A C =+,则3b a c =+ 又6a c +=,∴2b =.又2222cos b a c ac B =+-,则24()22cos 362(1cos )a c ac ac B ac B =+--=-+,∴16cos 1B ac=-∴11cos 22ABC S ac B ∆===,Q 6a c +=,∴9ac ≤∴ABC S ∆=,当且仅当3a c ==时取等号.三.解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤. (一)必考题17. 在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c,且22()(2a b c bc --=.(1)求角A 的大小;(2)若等差数列{}n a 的公差不为零,且1sin 1=A a ,且2a 、4a 、8a 成等比数列,求14n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n S .【解析】(1)由22()(23)a b c bc --=-,2223a b c bc --=-,所以2223cos 2b c a A bc +-==6A π∴=(2)设{}n a 的公差为d ,由得21=a ,且2428a a a =,∴2111(3)()(7)a d a d a d +=++.又0d ≠,∴2d =,∴2n a n =.∴14111(1)1n n a a n n n n +==-++, ∴11111111(1)()()()122334111n n S n n n n =-+-+-++-=-=+++… 18. 如图,在四棱锥S ABCD -中,SCD ∆为钝角三角形,侧面SCD 垂直于底面ABCD ,CD SD =,点M 是SA 的中点,AD BC ∥,90ABC ∠=︒,12AB AD BC ==. (1)求证:平面MBD ⊥平面SCD ;(2)若直线SD 与底面ABCD 所成的角为60o ,求二面角B MD C --余弦值.【解析】(1)证明:取BC 中点E ,连接DE ,设AB AD a ==,2BC a =, 依题意得,四边形ABED 为正方形,且有BE DE CE a ===,2BD CD a ==,所以222BD CD BC +=,所以BD CD ⊥,又平面SCD ⊥底面ABCD ,平面SCD I 底面ABCD CD =,BD ⊂底面ABCD , 所以BD ⊥平面SCD . 又BD ⊂平面MBD ,所以平面MBD ⊥平面SCD (2)过点S 作CD 的垂线,交CD 延长线于点H ,连接AH ,因为平面SCD ⊥底面ABCD ,平面SCD I 底面ABCD CD =,SH CD ⊥SH ⊂平面SCD ,所以SH ⊥底面ABCD ,故DH 为斜线SD 在底面ABCD 内的射影, SDH ∠为斜线SD 与底面ABCD 所成的角,即60SDH ∠=︒由(1)得,2SD a =,所以在Rt SHD ∆中,2SD a =,22DH a =,6SH =,在ADH ∆中,45ADH ∠=︒,AD a =,22DH a =,由余弦定理得22AH a =, 所以222AH DH AD +=,从而90AHD ∠=︒,过点D 作DF SH ∥,所以DF ⊥底面ABCD ,所以,,DB DC DF 两两垂直,如图,以点D 为坐标原点,DB uuu r 为x 轴正方向,DC uuu r 为y 轴正方向,DF uuu r为z轴正方向建立空间直角坐标系,则()2,0,0Ba ,()2,0C a ,260,S ⎛⎫⎪ ⎪⎝⎭,22,,022A a a ⎛⎫- ⎪ ⎪⎝⎭,226,42M a ⎛⎫- ⎪ ⎪⎝⎭, 设平面MBD 的法向量(),,n x y z =r00n DB n DM ⎧⋅=⎪⎨⋅=⎪⎩r uu u r r uuu u r 得202260424x x y z =-+=⎩ 取1z =得3n ⎛⎫= ⎪ ⎪⎝⎭r ,设平面MCD 的法向量(),,m x y z '''=u r00m DC m DM ⎧⋅=⎪⎨⋅=⎪⎩u r uuu r u r uuu u r 得202260424y x y z ⎧'=⎪'''-+=⎪⎩,取1z '=得,()3,0,1m =-u r , 所以17cos ,724n mn m n m⋅===⋅⋅r u rr u r r u r 故所求的二面角B MD C --的余弦值为77.19. IC 芯片堪称“国之重器”,其制作流程异常繁琐,制作IC 芯片核心部分首先需要制造单晶的晶圆,此过程主要是加入碳,以氧化还原的方式,将氧化硅转换为高纯度的硅.为达到这一高标准要求,研究工作人员曾就是否需采用西门子制程(Siemens process )这一工艺标准进行了反复比较,在一次实验中,工作人员对生产出的50片单晶的晶圆进行研究,结果发现使用了该工艺的30片单晶的晶圆中有28片达标,没有使用该工艺的20片单晶的晶圆中有12片达标.(1)用列联表判断:这次实验是否有99.5%的把握认为单晶的晶圆的制作效果与使用西门子制程(Siemens process )这一工艺标准有关?(2)在得到单晶的晶圆后,接下来的生产制作还需对单晶的晶圆依次进行金属溅镀,涂布光阻,蚀刻技术,光阻去除这四个环节的精密操作,进而得到多晶的晶圆,生产出来的多晶的晶圆经过严格的质检,确定合格后才能进入下一个流程.如果生产出来的多晶的晶圆在质检中不合格,那么必须依次对前四个环节进行技术检测并对所有的出错环节进行修复才能成为合格品.在实验的初期,由于技术的不成熟,生产制作的多晶的晶圆很难达到理想状态,研究人员根据以往的数据与经验得知在实验生产多晶的晶圆的过程中,前三个环节每个环节生产正常的概率为23,每个环节出错需要修复的费用均为20元,第四环节生产正常的概率为34,此环节出错需要修复的费用为10元,问:一次试验生产出来的多晶的晶圆要成为合格品大约还需要消耗多少元费用?(假设质检与检测过程不产生费用)参考公式:22()=,()()()()n ad bc K n a b c d a b c d a c b d -=+++++++ 参考数据:【解析】(1)由题意列列表为:故250(288212)257.879302040103K ⨯-⨯==>⨯⨯⨯ 故有99.5%的把握认为晶圆的制作效果与使用西门子制程这一工艺技术有关(2)设i A 表示检测到第i 个环节有问题,(1,2,3,4)i =,X 表示成为一个合格的多晶圆需消耗的费用,则X 的可能取值为:0,10,20,30,40,50,60,700X =,表明四个环节均正常312342324(0)()()34108P X P A A A A ====g10X =表明第四环节有问题31234218(10)()()34108P X P A A A A ====g20X =表明前三环节有一环节有问题12312336(20)()()334108P X C ===g g 30X =表明前三环节有一环节及第四环节有问题12312112(30)()()334108P X C ===g g 40X =,表明前三环节有两环节有问题22312318(40)()()334108P X C ===g g50X =表明前三环节有两环节及第四环节有问题2231216(50)()()334108P X C ===g g60X =表明前三环节有问题31234133(60)()()34108P X P A A A A ====g70X =四环节均有问题31234111(70)()()34108P X P A A A A ====g费用X 分布列为:X 0 10 20 30 40 50 60 70 P241088108361081210818108610831081108故:108542EX ===(元)故大约需要耗费452元20. 已知抛物线C 顶点在原点,焦点在y 轴上,抛物线C 上一点(),2Q a 到焦点的距离为3,线段AB 的两端点()11,A x y , ()22,B x y 在抛物线C 上. (1)求抛物线C 的方程;(2)在抛物线C 上存在点()33,D x y ,满足312x x x <<,若ABD ∆是以角A 为直角的等腰直角三角形,求ABD ∆面积的最小值.【答案】(1)24x y =;(2)最小值为16.【解析】(1)设抛物线的方程为22x py =,抛物线的焦点为F ,则322pQF ==+,所以1p =,则抛物线C 的方程为24x y =.(2)如图所示,设211,4x A x ⎛⎫ ⎪⎝⎭, 222,4x B x ⎛⎫ ⎪⎝⎭,233(,)4x D x ,根据抛物线关于y 轴对称,取10x ≥,记1AB k k =, 2AD k k =,则有2114x x k +=, 3124x x k +=,所以2114x k x =-, 3214x k x =-, 121k k ⋅=-, 又因为ABD ∆是以A 为顶点的等腰直角三角形,所以AB AD =,2212123111k x x k x x +-=+-,将23,x x 代入得:221112211212k k x k k x +-=+- 化简求出1x ,得: 3112114422k x k k -=+,则()2222112114411||122ABDk S AB k k k ∆⎛⎫+=⋅=⨯+⨯ ⎪+⎝⎭,可以先求AB 的最小值即可, 2211211441k AB k k k +=+⋅+,令()3222222111t t y t t t t t++=+⋅=++, 则()()()()()1322222223122112t t t t t t y t t+⋅⋅+-+++'=()()()()()()11233223222222213322111t tt t t t tt t t t tt t ++----+-+-==++()()()()122222111tt t t t +-+=+所以可以得出当1t =即11k =时, AB 最小值为42,此时10x =,即当()0,0A , ()4,4B , ()4,4D -时, ABD ∆为等腰直角三角形,且此时面积最小,最小值为16.21. 已知函数2()ln ,()().2a f x x x g x x x a a R ==+-∈ (1)若直线(0)()(),x t t y f x y g x A B =>==与曲线和分别交于两点,且曲线()y f x = 在A 处的切线与()y g x =在B 处的切线相互平行,求a 的取值范围;(2)设()()()h x f x g x =-在其定义域内有两个不同的极值点12,,x x 且12.0,x x λ>>已知 若不等式112e x x λλ+<⋅恒成立,求λ的取值范围.【解析】(1)依题意,函数()f x 的定义域为(0,+∞),'()ln 1,'() 1.f x x g x ax =+=+因为曲线()y f x =在A 处的切线与()y g x =在B 处的切线相互平行,所以'()'()(0,)f t g t =+∞在有解,即方程ln 0(0,)t at -=+∞在有解.……………………2分方程ln 0(0,)t at -=+∞在有解转化为函数ln y x y ax ==与函数的图像在(0,)+∞上有交点,如图,令过原点且与函数ln y x =的图像相切的直线的斜率为k ,只须.a k ≤令切点为000000ln 1(,ln ),'|,x x x A x x k y k x x ====则又,所以000ln 1,x x x =解得01,x e k e ==于是,所以1.a e≤………………………………………5分(2)2()()()ln (0),'()ln .2a h x f x g x x x x x a x h x x ax =-=--+>=-所以 因为12,()x x h x 为在其定义域内有两个不同的极值点,所以12,ln 0x x x ax -=是方程的两个根,即12112212ln ln ln ,ln ,.x x x ax x ax a x x -===-作差得……………………………6分因为120,0,,x x λ>>>所以112121ln ln 1e x x x x λλλλλ+<⋅⇔+<+⇔+<1212121()ax ax a x x a x x λλλλ++=+⇔>+⇔121121212212ln ln (1)()1ln x x x x x x x x x x x x λλλλ-+-+>⇔>-++⇔112122(1)(1)ln .x xx x x x λλ+->+……8分令12x t x =,则(1,)t ∈+∞,由题意知,不等式(1)(1)ln (1,)t t t t λλ+->∈+∞+在上恒成立. 令2222(1)(1)1(1)(1)()()ln ,'().()()t t t t t t t t t t t λλλϕϕλλλ+-+--=-=-=+++则 (ⅰ)若21,(1,),'()0,t t λϕ≥∈+∞>对一切所以()(1,)t ϕ+∞在上单调递增,又(1)0,ϕ=所以()0t ϕ>(1,)+∞在上恒成立,符合题意.……………………………10分(ⅱ)若221,(1,)t λλ>∈当时,2'()0;(,),t t ϕλ<∈+∞当时2'()0,()(1,)t t ϕϕλ>所以在上单调递减,在2(,)λ+∞上单调递增,又(1)0,())t ϕϕ=∞所以在(1,+上不能恒小于0,不符合题意,舍去.综合(ⅰ)(ⅱ)得,若不等式112ex x λλ+<⋅恒成立,只须21.0,1λλλ≤>≤又所以0<.………12分(二)选考题 请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22. 选修4-4:坐标系与参数方程已知平面直角坐标系中,曲线C的参数方程为1()2x y ααα⎧=⎪⎨=+⎪⎩为参数,直线1:0l x =,直线 2:0l x y -=,以原点O 为极点,x 轴的正半轴为极轴(取相同的长度单位)建立极坐标系.(1)求曲线C 和直线12,l l 的极坐标方程;(2)若直线1l 与曲线C 交于,O A 两点,直线2l 与曲线C 交于,O B 两点,求线段AB 的长.23. 选修4-5:不等式选讲已知0a >,0b >,且222a b +=. (1)若2214|21||1|x x a b+≥---恒成立,求x 的取值范围; (2)证明:5511()()4a b ab++≥.【解析】(1)设,1,1|21||1|32,1,21,.2x x y x x x x x x ⎧⎪≥⎪⎪=---=-≤<⎨⎪⎪-<⎪⎩由222a b +=,得221()12a b +=,故22222222221411414()()(14)22b a a b a b a b a b +=++=+++2222149(142)22b a a b ≥++⋅=, 所以9|21||1|2x x ≥---. 当1x ≤时,92x ≤,得912x ≤≤; 当112x ≤<时,9322x -≤,解得136x ≤,故112x ≤<; 当12x <时,92x -≤,解得92x ≥-,故9122x -≤<. 综上,9922x -≤≤. (2)55554411()()b a a b a b a b a b ++=+++5522222222()2()=4b a a b a b a b a b=+++-≥+。

理数答案

理数答案

2020年黄冈市五月调考题参考答案(理科)一,选择题A 卷1﹑C 2﹑B 3﹑C 4﹑D 5﹑D 6﹑B 7﹑B 8﹑B 9﹑A 10﹑A B 卷1﹑C 2﹑A 3﹑C 4﹑D 5﹑D 6﹑A 7﹑A 8﹑A 9﹑B 10﹑B简解:10 解:设()a B e a A AM ,0,0,,⎪⎭⎫ ⎝⎛-=由题意得λ. 由⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=a b y c x b ya x a ex y 22222,1得 ⎪⎪⎩⎪⎪⎨⎧==-⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛+-∴=⎪⎪⎭⎫ ⎝⎛-∴a ab e ac e a a e a a b e a c AB AM a b c M λλλλ222,,,,,,即Θ,而 222221,011,e ABAMe e b a c -=>--=∴-=故且λ 二,填空题 11﹑ 6512﹑ 9 13﹑(,0))λ∈-∞+∞U 14﹑33或210 15﹑ 6 14 解: 当b >0时由2721a b a b +=⎧⎨-=⎩,得a =2,b =3,此时e =3331=; 当b <0时,由2127a b a b +=⎧⎨-=⎩,得a =2,b =-3,此时e =21025=. 三,解答题16 解:⑴在ACE ∆中,215327532cos 222222-=⨯⨯-+=-+=ACAE CE AE AC A , 在ABC ∆中,2110321032cos 222222-=⨯⨯-+=-+=BC ACAB BC AB AC A 139=∴BC ……………6分⑵∵2222cos b a c ac B =+-,∴224a c ac =++,23ac ac ac ≥+=.∴43ac ≤,………………8分∴114sin 22323ABC S ac B ∆=≤⨯⨯=.………………10分当且仅当3a c ==时取得等号.……………………12分 17 解:(1)所求的概率为1P =1-(1-50%)• (1-90%)•(1-80%)=1-0.01=0.99 …………………… (6分)(2)P 2=(1-50%)(1-90%)(1-80%)=0.01,因为每人从三种乳制品中各取一件,三件恰好都是不合格乳制品的概率为0.01,所以三人分别从中各取一件,恰好有一人取到三件都是不合格品的事件,可看做三次独立重复试验问题.∴P=123(10.01)0.01c -•=0.027403…………………………12分18解:⑴取CD 的中点F ,连结BF 并延长交AD 的延长线于G 点.设正方体棱长为a 2,则a DF DE ==,a DG 2=,过D 点作FG DH ⊥于H ,有a DH 52=,连EH ,由三垂线定理知,FG EH ⊥, 即DHE ∠为所求二面角的平面角.其正切值为25=DH ED .……………… 6分 ⑵分别取111D C CC 的中点M ﹑N 并连结MN ,有MN ∥B A 1,M B 1∥E A 1,从而,平面BE A MN B 11//平面,由题意知:P 点在线段MN 上移动.又a P C a ≤≤122,直线P B 1与平面11C CDD 所成角的正切值为P C C B 111,[]222111,∈PC CB …………………… 12分 19 解:(1)由已知,得(S n+1-S n )-(S n -S n-1)=1(n ≥2,n ∈N *),即a n+1-a n =1(n ≥2,n ∈N *),且a 2-a 1=1,∴数列{a n }是以a 1=2为首项,公差为1的等差数列.∴a n =n+1. ………………………………… 5分 (2)∵a n =n+1,∴b n =4n +(-1)n-1λ·2n+1,要使b n+1>b n 恒成立.∴b n+1-b n =4n+1-4n +(-1)n λ·2n+2-(-1)n-1λ·2n+1>0恒成立, 即3·4n -3λ·(-1)n-12n+1>0恒成立.∴(-1)n-1λ<2n-1恒成立. ……………………………9分 ①当n 为奇数时,即λ<2n-1恒成立,当且仅当n =1时,2n-1有最小值为1,∴λ<1. ②当n 为偶数时,即λ>-2n-1恒成立,当且仅当n =2时,-2n-1有最大值-2,∴λ>-2, 即-2<λ<1.又λ为非零整数,则λ=-1.综上所述,存在λ=-1,使得对任意n ∈N *,都有b n+1>b n . ………………12分20 解:⑴易知)0,1(1-F ,)0,1(2F ,)1,0(-A 设点),(11y x P , 则212121212122)2(2121)1()1(-=-+-=+-=x x x y x PF ,又⊙M 的面积为8π,所以21)2(88-=x ππ 解得11=x )22,1(±∴P 故PA 所在直线的方程为1)221(-+=x y 或1)221(--=x y …………… 4分 ⑵直线1AF 的方程为01=++y x ,且)2,21(11y x M +到直线1AF 的距离为: 111422221221x y x -=+++ 化简得1121x y --= 联立方程组⎪⎩⎪⎨⎧=+--=1221212111y x x y 解得01=x 或981-=x 当01=x 时, 可得)21,21(-M , ∴⊙M 的方程为21)21()21(22=++-y x 当981-=x 时,可得)187,181(M ,∴⊙M 的方程为162169)187()181(22=-+-y x ;………………9分⑶⊙M 始终和以原点为圆心,半径为21=r (长半轴)的圆(记作⊙O )相切.证明:12121212142228414)1(44)1(x x x y x OM +=-++=++=,又⊙M 的半径1224222x MF r -==, 21r r OM -=∴,即⊙M 与⊙O 相切. …………………13分(3)法二 122PF PF a +=,∴2OM MF a +==∴2OM MF =∴⊙M 总与以原点为圆心以椭圆半长轴为半径的圆相内切21 解:⑴假设函数xx f 1)(=有派驻点0x ,则111100+=+x x ,即01020=++x x ,而此方程无实根,矛盾.所以函数xx f 1)(=没有派驻点. ………………… 4分 ⑵令)12(2122)1(2)1()()1()(1221-+=----++=--+=-+x x x f x f x f x h x x x ,又1)0(-=h ,2)1(=h , ∴0)1()0(<⋅h h ,所以0)(=x h 在()1,0上至少有一个实根0x ,即函数22)(x x f x+=有派驻点0x . ……………………………… 9分 ⑶若函数1ln)(2+=x ax f 有派驻点0x ,即有:2ln 1ln 1)1(ln 2020a x a x a ++=++成立.211)1(2020ax a x a ⋅+=++∴ 又0>a 22)1(202020+++=∴x x x a 设22)1(2)(22+++=x x x x g ,则由0)22()1(4)(222=++-+='x x x x x g 得251±-=x ,列表:又极大值为53)251(+=--=g y ;极小值为53)251(-=+-=g y ; 222)1(2lim 22=+++→∝x x x n ,所以)(x g 的值域为[]53,53+-, 即a的范围是[]53,53+-. …………………………… 14分命题人 黄梅一中 王卫华 方耀光 审稿人 黄冈教科院 丁明忠黄冈中学 张智 程继承y=2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄冈市黄州区西湖中学2020年5月高三压轴考试理科数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷50分,第Ⅱ卷100分,卷面共计150分,时间120分钟.第Ⅰ卷(选择题 共50分)一.选择题:本题共有10个小题,每小题5分,共50分;在每小题给出的四个选项中只有一项是正确的 1.集合{}12A x Nx *=∈-<的真子集的个数为 ( )A .3B .4C .7D .8 2.复数(ii -12)2(其中i 为虚数单位)的虚部等于 ( ) A .-i B .1 C .-1 D .03.设函数()()()()2 01 153 1x x f x a x x x ⎧⎪⎪⎨⎪⎪⎩≤<==->在区间[)+∞,0上连续,则实数a 的值为 ( ) A .2 B .1 C .0 D .34.已知n展开式中,各项系数的和与其各项二项式系数的和之比为64,则展开式中的常数项等于 ( ) A . 135 B . 270 C . 540 D . 12155.下面四个命题:①“直线a ∥直线b ”的充要条件是“a 平行于b 所在的平面”;②“直线l ⊥平面α内所有直线”的充要条件是“l ⊥平面α”;③“直线a 、b 为异面直线”的充分不必要条件是“直线a 、b 不相交”;④“平面α∥平面β”的必要不充分条件是“α内存在不共线三点到β的距离相等”; 其中正确命题的序号是 ( )A .①②B .②③C .③④D .②④6.已知)1(3cos 3)1(3sin )(+-+=x x x f ππ,则(1)(2)(2008)+++=L f f f ( )A .23B .3C .1D .07.已知O ,A ,B ,C 是不共线的四点,若存在一组正实数1λ,2λ,3λ,使1λ+2λ+3λ= 0r,则三个角∠AOB ,∠BOC ,∠COA ( )A .都是锐角B .至多有两个钝角C .恰有两个钝角D .至少有两个钝角。

8.由数字0,1,2,3,4,5组成没有重复数字的五位数,所得的数是大于20000的偶数的概率为 ( ) A .2512 B .52 C .256 D .100219.如图过抛物线x y 42=焦点的直线依次交抛物线与圆()1122=+-y x 于A ,B ,C ,D ,则AB CD ⨯=A.4 B.2 C.1 D.2110.f (x )是定义在(0,+∞)上的非负可导函数 ,且满足()()'≤xf x f x ,对任意的正数 a ﹑b ,若a < b ,则必有 ( ) A .a f (a )≤b f (b ) B .a f (a )≥b f (b ) C .a f (b )≤b f (a ) D .a f (b )≥b f (a )第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中横线上. 11.已知在平面直角坐标系中,O (0,0), M (1,21), N (0,1), Q (2,3), 动点P (x,y )满足: 0≤OPu u r⋅OM u u u r≤1,0≤OP ⋅ON ≤1,则OP ⋅OQ 的最大值为_____.12. 已知函数y =f(x) (x ∈R)满足f(x +3)=f(x +1),且x ∈[-1,1]时,f(x)=|x|,则y =f(x)与y =log 5x 的图象交点的个数是 13.已知0lim→x x xsin =1,则2lim π→x x x 2cos -π=_____.14.若两条异面直线所成的角为600,则称这对异面直线为“理想异面直线对”,在连接正方体各顶点的所有直线中,“理想异面直线对”的对数为_____. 15.已知抛物线的方程为22(0)y px p =>,直线l 与抛物线交于A,B 两点,且以弦AB为直径的圆M 与抛物线的准线相切,则弦AB 的中点M 的轨迹方程为 ;当直线l 的倾斜角为3π时,圆M 的半径为 .三、解答题:本大题共6小题,共75分,解答题应写出文字说明、证明过程或演算步骤。

16.(本小题满分12分)已知220()2cos 3sin 2()f x a x a x a a a =+++为不等于的常数(1)若x R ∈,求()f x 的最小正周期;(2)若对任意x R ∈时,()12f x <恒成立,求a 的取值范围。

17.(本小题满分12分)某大型体育网站对2020年北京奥运会部分体育竞技项目进行预测,其中进入女子羽毛球团体决赛的队伍可能是中国女羽与印尼女羽,由于奥运会女羽冠军争夺是以“五局三胜”制进行,根据以往战况,中国女羽每一局赢的概率为34,倘若在比赛中,第一局印尼女羽先胜一局,在这个条件下:(1)求中国女羽取胜的概率(用分数作答);(2)设决赛中比赛总的局数ξ,求ξ的分布列及E ξ(用分数作答)。

18.(本小题满分12分)如图,在直三棱柱ABC -A 1B 1C 1中,底面△ABC 为等腰直角三角形,∠B = 900,D 为棱BB 1上一点,且面DA 1 C ⊥面AA 1C 1C . (1)求证:D 点为棱BB 1的中点; (2)若二面角A -A 1D - C 的平面角为600,求ABAA 1的值。

19.(本小题满分12分)设正项数列{n a }的前项和为S n ,q 为非零常数。

已知对任意正整数n , m ,当n > m时,m n mm n S q S S -⋅=-总成立。

(1)求证数列{n a }是等比数列; (2)若正整数n , m , k 成等差数列,求证: n S 1+k S 1≥mS 2。

20.(本小题满分13分)已知椭圆C :22ax +22b y =1(a >b >0)的离心率为36,过右焦点F 且斜率为1的直线交椭圆C 于A ,B 两点,N 为弦AB 的中点。

(1)求直线ON (O 为坐标原点)的斜率K ON ; (2)对于椭圆C 上任意一点M ,试证:总存在角θ(θ∈R )使等式:=cos θ+sin θOB 成立。

21.(本小题满分14分)我们知道:函数y =f (x )如果存在反函数y =f -1 (x ),则y =f (x)的图像与y =f -1 (x )图像关于直线y =x 对称。

若y =f (x)的图像与y =f -1 (x )的图像有公共点,其公共点却不一定都在直线y =x 上;例如函数f (x )=1x。

(1)若函数y =f (x )在其定义域上是增函数,且y =f (x)的图像与其反函数y =f -1 (x )的图像有公共点,证明这些公共点都在直线y =x 上;(2)对问题:“函数f (x )=a x (a >1)与其反函数f -1 (x )=log a x 的图像有多少个公共点?”有如下观点: 观点①:“当a >1时两函数图像没有公共点,只有当0<a <1时两函数图像才有公共点”。

观点②:“利用(1)中的结论,可先讨论函数f (x )=a x (a >1)的图像与直线y =x 的公共点的个数,为此可构造函数F (x )=a x-x (a >1),然后可利用F (x )的最小值进行讨论”。

请参考上述观点,讨论函数f (x )=a x (a >1)与其反函数f -1 (x )=log a x 图像公共点的个数。

黄冈市黄州区西湖中学2020年5月高三压轴考试参考答案一.选择题1-10.ACACD BDBCC 二.填空题11. 4. 12. 4个13.21。

14. 24. 15. )2(2P x P y -=(3分)、34P(2分)。

三.解答题16.解:(1)由已知,有;2)62sin(22sin 3)2cos 1()(22ππ最小正周期为∴+++=++++=aa x a a a x a x a x f(2)依题意得:⎩⎨⎧<++-<⎩⎨⎧<++>122201222022a a a a a a a a 或 ).2,0()0,32(.03220:Y -∴<<-<<的取值范围为或解得a a a17.解:(1)中国女羽取胜的情况有两种: ①中国女羽连胜三局②中国女羽在第2局到第4局中赢两局,且第5局赢故中国女羽取胜的概率为2561894341)43()43(2233=⨯⋅+=C P 故所求概率为256189; (2)比赛局数ξ:.64274341)43(41)43(41)5(,2:33:2,5;6433)43(414143)4(,1:33:1,4;161)41()3(,3:0,32232133122=⋅⋅+⋅⋅⋅====+⋅⋅⋅=======C C P C P P ξξξξξξ赢输或中国女羽以时当则赢输或中国女羽以时当则输中国女羽以时当ξ的分布列为:.64645644163=⨯+⨯+⨯=ξE18.解: 1)过点D 作DE ⊥ A 1 C 于E 点,取AC 的中点F ,连BF ﹑EF 。

∵面DA 1 C ⊥面AA 1C 1C 且相交于A 1 C ,面DA 1 C 内的直线DE ⊥ A 1 C∴直线DE ⊥面AA 1C 1C ………3分 又∵面BA C ⊥面AA 1C 1C 且相交于AC ,易知BF ⊥AC , ∴BF ⊥面AA 1C 1C由此知:DE ∥BF ,从而有D ,E ,F ,B 共面,又易知BB 1∥面AA 1C 1C ,故有DB ∥EF ,从而有EF ∥AA 1, 又点F 是AC 的中点,所以DB = EF =21 AA 1 = 21BB 1, 所以D 点为棱BB 1的中点; ………6分2)解法1:延长A 1 D 与直线AB 相交于G ,易知CB ⊥面AA 1B 1B ,过B 作BH ⊥A 1 G 于点H ,连CH ,由三垂线定理知:A 1 G ⊥CH ,由此知∠CHB 为二面角A -A 1D - C 的平面角; ………9分 设AA 1 = 2b ,AB =BC =a ;在直角三角形A 1A G 中,易知 AB = BG 。

在直角三角形DB G 中,BH =DG BGBD ⋅ = 22ba ab +⋅,在直角三角形CHB 中,tan ∠CHB = BH BC= b b a 22+,据题意有:bb a 22+ = tan 600 =3 ,解得:22=ab, 所以ABAA 1=2 。

………12分 2)解法2:建立如图所示的直角坐标系,设AA 1 = 2b ,AB =BC =a ,则D (0,0,b ), A 1 (a ,0,2b ), C (0,a ,0)所以,),,0(),,0,(1b a b a DA -==8分A 1 C 1B 1 A CB D H EF GA 1设面DA 1C 的法向量为),,(z y x = 则0,00=-+⋅=+⋅+bz ay x bz y ax可取),,(a b b --=又可取平面AA 1DB 的法向量)0,,0(a ==cos 〈,〉222222200ab b aa b a ba b +-=⋅+⋅--⋅==………10分据题意有:21222=+a b b,解得: AB AA 1=22=ab ………12分 说明:考生的其他不同解法,请参照给分。

相关文档
最新文档