高考数学一轮复习 AB小练习 第十五章解析几何第三节圆的标准方程和一般方程

合集下载

2024届高考数学一轮复习第八章《平面解析几何》第三节+圆的方程

2024届高考数学一轮复习第八章《平面解析几何》第三节+圆的方程

[解析] , 或 .当 时,原方程为 , ,没有意义,不符合题意;当 时,原方程为 , ,表示一个圆,满足题意.故 .
关键能力·突破
考点一 圆的方程
1. (2022黑龙江哈尔滨哈三中高三联考)已知圆的圆心为点 ,一条直径的两个端点分别在 轴和 轴上,则此圆的方程是( )
若圆过 , , 三点,则 解得 所以圆的方程为 ,即 .
方法感悟求圆的方程的两种方法1.直接法:通过研究圆的性质,求得圆的圆心和半径,进而求得其方程.
2.待定系数法:根据题意选择圆的方程的形式(标准形式或一般形式),利用条件列出关于 , , (或 , , )的方程组,解出 , , (或 , , ) ,代入标准方程(或一般方程)即可.
[解析] 原方程可化为 ,表示以 为圆心, 为半径的圆. 可看作直线 在 轴上的截距,当直线 与圆相切时,纵截距 取得最大值或最小值,此时 ,解得率,设 ,即 .当直线 与圆相切时,斜率 取得最大值或最小值,此时 ,解得 ,所以 的最大值为 .
选择圆的方程的形式的关键:若已知圆上三点,则选用圆的一般方程;若已知条件与圆心及半径有关,则选用圆的标准方程.
考点二 与圆有关的最值问题
例1
(1) 若点 是圆 上的一个动点,点 , 为两个定点,则 的最大值为( )
A. B. C. D.
B
[解析] 易知 , ,又 ,当且仅当 时取等号, ,即 的最大值为 .
迁移应用
1. (2021河北衡水中学模拟)若实数 、 满足条件 ,则 的取值范围是( )
×
(3) 表示以 为圆心, 为半径的圆.( )
×
(4) 圆 的圆心是 .( )
×
(5) 若点 在圆 外,则 .( )

2. (2022安徽合肥高三模拟)圆 的圆心坐标和半径分别为( )

高三一轮复习圆与方程复习课 ppt课件

高三一轮复习圆与方程复习课 ppt课件
y
o
x
21
2021/3/30
圆系方程 x 2 y 2 D 1 x E 1 y F 1 0 x 2 y 2 D 2 x E 2 y F 2 0
过两圆的交点的圆的方程:
x 2 y 2 D 1 x E 1 y F 1(x 2 y 2 D 2 x E 2 y F 2 ) 0 ( 1 )
22
交于P、Q两点, (1)当 | P Q | 最短时,求直线 l 的方程; (2)当OPQ 的面积最大时,求直线 l 的方程。
(1)2xy50
yP
C
o
x
Q
28
2021/3/30
练习:
1、已知圆O:x2+y2=9及点C(2,1),过点C的直线 l 与圆O
交于P、Q两点, (1)当 | P Q | 最短时,求直线 l 的方程; (2)当OPQ 的面积最大时,求直线 l 的方程。
(1)2xy50
yP
C
o
x
(2 )x y 3 0 或 7 x y 1 5 0
Q
29
2021/3/30
练习:
2 、 点 P 在 直 线 2 x+y+10=0 上 , PA、PB 与 圆 O : x2+y2=9 分 别 相 切 于 A、B 两 点 , 求 四 边 形 PAOB 面
积的最小值. 3 1 1
2021/3/30
圆系方程 x2y2Dx Ey F 0
axbyc0
过直线与圆的交点的圆的方程:
x 2 y 2 D x E y F ( a x b y c ) 0
23
题型一:求圆的方程
2021/3/30
例 1 根据下列条件,求圆的方程: (1)经过 P(-2,4)、Q(3,-1)两点,并且在 x 轴上截得的弦 长等于 6; (2)圆心在直线 y=-4x 上,且与直线 l:x+y-1=0 相切于 点 P(3,-2).

高三数学一轮复习第八章解析几何第3课时圆的方程课件

高三数学一轮复习第八章解析几何第3课时圆的方程课件

√ √
跟进训练3 (2024·山东潍坊高三模拟)已知圆心为C的圆经过点A(1,1)和B(2, -2),且圆心C在直线l:x-y+1=0上. (1)求圆C的方程; (2)线段PQ的端点P的坐标是(5,0),端点Q在圆C上运动,求线段PQ的中点M的 轨迹方程.
【教师备用】 设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM,ON为两边作平行四边 形MONP,求点P的轨迹.
位置关系
几何法
判断方法 代数法
点M(x0,y0)在圆A内 |MA|<r
<
<
点M(x0,y0)在圆A上 |MA|=r


点M(x0,y0)在圆A外 |MA|>r
>
>
点拨 求圆的方程的两种方法
跟进训练1 如图,在四边形ABCD中,AB=6,CD=3,且AB∥CD,AD=BC, AB与CD间的距离为3.求等腰梯形ABCD的外接圆的方程,并求这个圆的圆心坐 标和半径.
提示:对于求点的轨迹或轨迹方程的问题,在求出轨迹方程后,应判断一下 题目中的条件有没有特殊的限制或要求,是否需要排除掉某些特殊点.本题 中容易忽略掉O,M,P三点共线时的情况,因此得到轨迹为整个圆的错误结 论.
【教师备用】 拓展视野1 阿波罗尼斯圆
如图,点A,B为两定点,动点P满足|PA|=λ|PB|. 则λ=1时,动点P的轨迹为直线;当λ>0且λ≠1时,动点P的轨迹为圆,后世称 之为阿波罗尼斯圆.
第八章 解析几何 第3课时 圆的方程
考点一 圆的方程 1.圆的定义及方程
定义 标准方程
平面定上点到____的距离等于_定___长的点的集合(轨迹)
(x-a)2+(y-b)2=r2(r>0)

2024年高考数学一轮复习(新高考版)《圆的方程》课件ppt

2024年高考数学一轮复习(新高考版)《圆的方程》课件ppt

设动点P的坐标为(x,y), 因为 M(1,0),N(2,0),且|PN|= 2|PM|, 所以 x-22+y2= 2· x-12+y2,
整理得x2+y2=2, 所以动点P的轨迹C的方程为x2+y2=2.
(2)已知点B(6,0),点A在轨迹C上运动,求线段AB上靠近点B的三等分点Q 的轨迹方程.
(3)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B
=0,D2+E2-4AF>0.( √ )
(4)若点 M(x0,y0)在圆 x2+y2+Dx+Ey+F=0 外,则 x20+y20+Dx0+Ey0+
F>0.( √ )
教材改编题
1.圆心为(1,1)且过原点的圆的方程是 A.(x-1)2+(y-1)2=1 B.(x+1)2+(y+1)2=1 C.(x+1)2+(y+1)2=2
若过(0,0),(4,0),(4,2),
F=0,
则16+4D+F=0, 16+4+4D+2E+F=0,
F=0,
解得D=-4, E=-2,
满足 D2+E2-4F>0,
所以圆的方程为x2+y2-4x-2y=0,
即(x-2)2+(y-1)2=5;
若过(0,0),(4,2),(-1,1),
F=0,
则1+1-D+E+F=0, 16+4+4D+2E+F=0,
方法二 设 AB 的中点为 D,由中点坐标公式得 D(1,0),由直角三角 形的性质知|CD|=12|AB|=2.由圆的定义知,动点 C 的轨迹是以 D(1,0) 为圆心,2 为半径的圆(由于 A,B,C 三点不共线,所以应除去与 x 轴 的交点). 所以直角顶点C的轨迹方程为(x-1)2+y2=4(y≠0).
设圆心坐标为(a,-2a+3),则圆的半径 r= a-02+-2a+3-02

2025高考数学一轮复习-2.1.2-圆的一般方程【课件】

2025高考数学一轮复习-2.1.2-圆的一般方程【课件】

[跟进训练] 2.已知圆 C:x2+y2+Dx+Ey+3=0,圆心在直线 x+y-1=0 上,且圆心在第二象限,半径长为 2,求圆的一般方程. [解] 圆心 C-D2 ,-E2, ∵圆心在直线 x+y-1=0 上, ∴-D2 -E2-1=0, 即 D+E=-2.①
又∵半径长 r= D2+2E2-12= 2, ∴D2+E2=20.② 由①②可得DE==-2,4 或ED==2-. 4, 又∵圆心在第二象限,∴-D2 <0,即 D>0. 则DE==-2,4. 故圆的一般方程为 x2+y2+2x-4y+3=0.
+Ey0+F>0.
()
[解析] (1)正确.圆的方程都能写成一个二元二次方程. (2)正确.圆的一般方程和标准方程是可以互化的. (3)错误.当 a2+(2a)2-4(2a2+a-1)>0,即-2<a<23时才表示圆. (4) 正 确 . 因 为 点 M(x0 , y0) 在 圆 外 , 所 以 x0+D2 2 + y0+E2 2 >D2+E42-4F,即 x20+y20+Dx0+Ey0+F>0. [答案] (1)√ (2)√ (3)× (4)√
方程
条件
图形
D2+E2-4F<0
不表示任何图形
x2+y2+ Dx+Ey+
F=0
D2+E2-4F=0 D2+E2-4F>0
表示一个点-D2 ,-E2



-D2 ,-E2





1 2
D2+E2-4F为半径的圆
么?
方程 Ax2+Bxy+Cy2+Dx+Ey+F=0 表示圆的条件是什
[提示] A=C≠0,B=0 且 D2+E2-4F>0.
(2)圆心坐标和半径. [解] (2)将方程 x2+y2+2mx-2y+m2+5m=0 写成标准方程为(x +m)2+(y-1)2=1-5m, 故圆心坐标为(-m,1),半径 r= 1-5m.

圆的解析几何方程

圆的解析几何方程

〖圆的解析几何方程〗圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。

圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0.和标准方程对比,其实D=—2a,E=-2b,F=a^2+b^2。

圆的离心率e=0,在圆上任意一点的曲率半径都是r。

〖圆与直线的位置关系判断〗平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1。

由Ax+By+C=0,可得y=(—C—Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。

利用判别式b^2—4ac的符号可确定圆与直线的位置关系如下:如果b^2-4ac〉0,则圆与直线有2交点,即圆与直线相交.如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。

如果b^2-4ac〈0,则圆与直线有0交点,即圆与直线相离.2。

如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y—b)^2=r^2。

令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:当x=-C/A〈x1或x=—C/A〉x2时,直线与圆相离;当x1<x=-C/A<x2时,直线与圆相交;半径r,直径d在直角坐标系中,圆的解析式为:(x—a)^2+(y-b)^2=r^2x^2+y^2+Dx+Ey+F=0=> (x+D/2)^2+(y+E/2)^2=D^2/4+E^2/4-F=〉圆心坐标为(-D/2,-E/2)1.点与圆的位置关系设圆C∶(x—a)2+(y-b)2=r2,点M(x0,y0)到圆心的距离为d,则有:(1)d>r 点M在圆外;(2)d=r 点M在圆上;(3)d<r 点M在圆内.2.直线与圆的位置关系设圆C∶(x-a)2+(y-b)=r2,直线l的方程为Ax+By+C=0,圆心(a,b)判别式为△,则有: (1)d<r 直线与圆相交; (2)d=r 直线与圆相切;(3)d<r 直线与圆相离,即几何特征;或(1)△>0 直线与圆相交;(2)△=0 直线与圆相切;(3)△<0 直线与圆相离,即代数特征,3.圆与圆的位置关系设圆C1:(x-a)2+(y-b)2=r2和圆C2:(x-m)2+(y—n)2=k2(k≥r),且设两圆圆心距为d,则有:(1)d=k+r 两圆外切;(2)d=k-r 两圆内切;(3)d>k+r 两圆外离;(4)d<k+r 两圆内含;(5)k-r<d<k+r 两圆相交.4.其他(1)过圆上一点的切线方程:①圆x2+y2=r2,圆上一点为(x0,y0),则此点的切线方程为x0x+y0y=r2(课本命题).②圆(x-a)2+(y—b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0—a)(x—a)+(y0—b)(y-b)=r2(课本命题的推广).(2)相交两圆的公共弦所在直线方程:设圆C1∶x2+y2+D1x+E1y+F1=0和圆C2∶x2+y2+D2x+E2y+F2=0,若两圆相交,则过两圆交点的直线方程为(D1-D2)x+(E1—E2)y+(F1-F2)=0.(3)圆系方程:①设圆C1∶x2+y2+D1x+E1y+F1=0和圆C2∶x2+y2+D2x+E2y+F2=0.若两圆相交,则过交点的圆系方程为x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ为参数,圆系中不包括圆C2,λ=-1为两圆的公共弦所在直线方程).②设圆C∶x2+y2+Dx+Ey+F=0与直线l:Ax+By+C=0,若直线与圆相交,则过交点的圆系方程为x2+y2+Dx+Ey+F+λ(Ax+By+C)=0(λ为参数).1.求经过M(1,2)N(3,4),并且在Y轴上截得的弦长为1的圆的方程.解:设圆的方程为:x^2+y^2 +Dx+Ey+F=0 ,∴ 圆心为(- ,— ),半径r=由题意:圆心到y轴的距离为|- | , y轴上截得的弦长为1∴ r =( ) +()∴ (D +E −4F)= + D∴ E −4F=1 。

新教材高中数学课后素养落实十五2 3 2圆的一般方程含解析新人教B版选择性必修第一册

新教材高中数学课后素养落实十五2 3 2圆的一般方程含解析新人教B版选择性必修第一册

课后素养落实(十五) 圆的一般方程(建议用时:40分钟)一、选择题1.圆的方程为(x -1)(x +2)+(y -2)(y +4)=0,则圆心坐标为( ) A .(1,-1) B .⎝⎛⎭⎫12,-1 C .(-1,2)D .⎝⎛⎭⎫-12,-1 D 〖将圆的方程化为标准方程,得⎝⎛⎭⎫x +122+(y +1)2=454,所以圆心为⎝⎛⎭⎫-12,-1.〗 2.方程x 2+y 2-2x +4y +5=0表示的图形是( ) A .一个点 B .一个圆 C .一条直线 D .不存在 A 〖方程可化为(x -1)2+(y +2)2=0,故方程表示点(1,-2).〗3.方程x 2+y 2+Dx +Ey +F =0表示的圆过原点且圆心在直线y =x 上的条件是( ) A .D =E =0,F ≠0 B .D =F =0,E ≠0 C .D =E ≠0,F ≠0D .D =E ≠0,F =0D 〖∵圆过原点,∴F =0,又圆心在y =x 上,∴D =E ≠0.〗4.由方程x 2+y 2+x +(m -1)y +12m 2=0所确定的圆中,最大面积是( )A .32π B .34πC .3πD .不存在B 〖所给圆的半径为r =1+(m -1)2-2m 22=12-(m +1)2+3,所以当m =-1时,半径r 取最大值32,此时最大面积是34π.〗 5.若圆x 2+y 2-2ax +3by =0的圆心位于第三象限,则直线x +ay +b =0一定不经过( ) A .第一象限 B .第二象限 C .第三象限D .第四象限D 〖圆心⎝⎛⎭⎫a ,-32b 在第三象限,则a <0,b >0.直线x +ay +b =0的斜率k =-1a >0,在x 轴上的截距为-b <0,故直线过一、二、三象限,故选D .〗二、填空题6.若圆x 2+y 2+Dx +Ey +F =0关于直线Dx +Ey +2F +8=0对称,则该圆的半径为________.2 〖圆x 2+y 2+Dx +Ey +F =0的圆心坐标为⎝⎛⎭⎫-D 2,-E 2, 由题意有-D 22-E 22+2F +8=0,则D 2+E 2-4F =16.∴圆的半径为r =12D 2+E 2-4F =12×4=2.〗7.已知圆C :x 2+y 2+2x +ay -3=0(a 为实数)上任意一点关于直线l :x -y +2=0的对称点都在圆C 上,则a =________.-2 〖由题意可得圆C 的圆心⎝⎛⎭⎫-1,-a2在直线 x -y +2=0上,将⎝⎛⎭⎫-1,-a2代入直线方程得 -1-⎝⎛⎭⎫-a2+2=0,解得a =-2.〗 8.若直线l :ax +by +1=0始终平分圆M :x 2+y 2+4x +2y +1=0,则(a -2)2+(b -2)2的最小值为________.5 〖由题意,得直线l 恒过圆心M (-2,-1),则-2a -b +1=0,则b =-2a +1,所以(a -2)2+(b -2)2=(a -2)2+(-2a +1-2)2=5a 2+5≥5,所以(a -2)2+(b -2)2的最小值为5.〗三、解答题9.已知圆C :x 2+y 2+Dx +Ey +3=0,圆心在直线x +y -1=0上,且圆心在第二象限,半径为2,求圆的一般方程.〖解〗 圆心C ⎝⎛⎭⎫-D 2,-E2, 因为圆心在直线x +y -1=0上, 所以-D 2-E2-1=0,即D +E =-2,①又r =D 2+E 2-122=2,所以D 2+E 2=20,②由①②可得⎩⎪⎨⎪⎧ D =2,E =-4,或⎩⎪⎨⎪⎧D =-4,E =2.又圆心在第二象限,所以-D2<0,即D >0,所以⎩⎪⎨⎪⎧D =2,E =-4,所以圆的一般方程为x 2+y 2+2x -4y +3=0.10.已知关于x ,y 的方程为x 2+y 2-2x -4y +m =0. (1)若此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线x +2y -4=0相交于M ,N 两点,且OM ⊥ON (O 为坐标原点),求m 的值.〖解〗 (1)方程x 2+y 2-2x -4y +m =0, 整理得(x -1)2+(y -2)2=5-m , 由题意知5-m >0,解得m <5.(2)设直线x +2y -4=0与圆:x 2+y 2-2x -4y +m =0的交点为M (x 1,y 1),N (x 2,y 2),则⎩⎪⎨⎪⎧x +2y -4=0,x 2+y 2-2x -4y +m =0,整理得5y 2-16y +8+m =0,则y 1+y 2=165,y 1y 2=8+m 5,又OM ⊥ON (O 为坐标原点),则x 1x 2+y 1y 2=0,x 1=4-2y 1,x 2=4-2y 2,则(4-2y 1)·(4-2y 2)+y 1y 2=0,解得m =85.故m 的值为85.1.(多选题)已知圆M 的一般方程为x 2+y 2-8x +6y =0,则下列说法正确的是( ) A .圆M 的圆心为(4,-3) B .圆M 被x 轴截得的弦长为8 C .圆M 的半径为25D .圆M 被y 轴截得的弦长为6ABD 〖圆M 的标准方程为(x -4)2+(y +3)2=25.圆的圆心坐标为(4,-3),半径为5,令x =0,则y 2+6y =0,∴|y 1-y 2|=6;令y =0,x 2-8x =0,|x 1-x 2|=8.〗2.已知点A (-1,1)和圆C :x 2+y 2-10x -14y +70=0,一束光线从点A 出发经过x 轴反射到圆周上的最短路程是( )A .6B .8C .10D .12B 〖易知点A 在圆C 外,找出点A (-1,1)关于x 轴的对称点A ′(-1,-1),则最短路程为|CA ′|-r .又圆的方程可化为(x -5)2+(y -7)2=4,则圆心C (5,7),半径r =2, 则|CA ′|-r =(5+1)2+(7+1)2-2=10-2=8.故所求的最短路程为8.〗3.若圆x 2+y 2-4x +2y +m =0与y 轴交于A ,B 两点,且∠ACB =90°(其中C 为已知圆的圆心),则实数m =________,圆的面积为________.-3 8π 〖设A (0,y 1),B (0,y 2),在圆方程中令x =0得y 2+2y +m =0,y 1,y 2即为该方程的两根,由根与系数的关系及判别式得⎩⎪⎨⎪⎧Δ=4-4m >0,y 1+y 2=-2,y 1·y 2=m ,又由∠ACB =90°,C (2,-1),知k AC ·k BC =-1, 即y 1+1-2·y 2+1-2=-1, 即y 1y 2+(y 1+y 2)+1=-4, 代入上面的结果得m -2+1=-4, ∴m =-3,符合m <1的条件. r =1216+4-4×(-3)=22,∴圆的面积为πr 2=π×(22)2=8π.〗4.已知点A (-2,0),B (0,2),若点C 是圆x 2+y 2-2x =0上的动点,则△ABC 面积的最小值为________.3-2 〖如图所示,△ABC 的面积最小时,点C 到直线AB 的距离最短,该最短距离其实就是圆心到直线AB 的距离减去圆的半径.直线AB 的方程为x -y +2=0,|AB |=22,x 2+y 2-2x =0可化为(x -1)2+y 2=1,易知该圆的圆心为(1,0),半径为1,圆心(1,0)到直线AB 的距离d =32=322,故△ABC 面积的最小值为12×22×⎝⎛⎭⎫322-1=3-2.〗在平面直角坐标系xOy 中,设二次函数f (x )=x 2+2x +b (x ∈R )的图像与两条坐标轴有三个交点,经过这三个交点的圆记为C .(1)求实数b 的取值范围; (2)求圆C 的方程;(3)圆C 是否经过某定点(其坐标与b 无关)?请证明你的结论.〖解〗 (1)显然b ≠0,否则二次函数f (x )=x 2+2x +b 的图像与两坐标轴只有两个交点(0,0),(-2,0),这与题设不符.由b ≠0知,二次函数f (x )=x 2+2x +b 的图像与y 轴有一个非原点的交点(0,b ),故它与x 轴必有两个交点,从而方程x 2+2x +b =0有两个非零的不相等的实数根,因此方程的判别式4-4b >0且b ≠0,即b <1且b ≠0.所以b 的取值范围是(-∞,0)∪(0,1).(2)由方程x 2+2x +b =0得x =-1±1-b .于是二次函数f (x )=x 2+2x +b 的图像与坐标轴的交点是(-1-1-b ,0),(-1+1-b ,0),(0,b ).设圆C 的方程为x 2+y 2+Dx +Ey+F =0(D 2+E 2-4F >0).因圆C 过上述三点,将它们的坐标分别代入圆C 的方程, 则⎩⎪⎨⎪⎧(-1-1-b )2+D (-1-1-b )+F =0,(-1+1-b )2+D (-1+1-b )+F =0,b 2+Eb +F =0.解上述方程组,因b ≠0,得⎩⎪⎨⎪⎧D =2,E =-(b +1),F =b .所以圆C 的方程为x 2+y 2+2x -(b +1)y +b =0.(3)圆C 必过定点.证明如下:假设圆C 过定点(x 0,y 0)(x 0,y 0不依赖于b ),将该点的坐标代入圆C 的方程,并变形为x 20+y 20+2x 0-y 0+b (1-y 0)=0 (*).为使(*)式对所有满足b <1且b ≠0的b 都成立,必须有1-y 0=0,结合(*)式得x 20+y 20+2x 0-y 0=0,解得⎩⎪⎨⎪⎧ x 0=0,y 0=1或⎩⎪⎨⎪⎧x 0=-2,y 0=1.经检验,知点(0,1),(-2,1)均在圆C 上,因此圆C 过定点.。

高考数学一轮复习 圆的标准方程、圆的一般式方程2

高考数学一轮复习 圆的标准方程、圆的一般式方程2

2008高考数学一轮复习圆的标准方程、圆的一般式方程【复习目标】1.掌握圆的标准方程和一般方程;2.能判断点和圆的位置关系;会由圆的方程和直线方程讨论圆与直线的位置相关性质,会由圆的方程讨论两圆的位置关系;3.会求圆的切线方程。

【重点难点】建立数形结合的概念,(1)能用配方法,由圆的一般方程求出圆心坐标和半径;(2)能用待定系数法求一般方程,掌握直线和圆的位置关系的讨论以及圆的相关性质,掌握用代数方法研究几何问题的方法并解决相应的具体问题。

【知识结构】【基础知识】【课前预习】1.写出下列各圆的方程:(1)圆心在原点,半径是3;(2)圆心在点(3,b);(3)经过点P(5,1),圆心在点O(8,-3).(4)圆心在x 轴上且过点O(-1,1)和D(1,3)的圆的方程 (5)求以O(1,3)为圆心,且和直线3x-4y-7=0相切的圆的方程 2. x 2+y 2-x+y+F=0表示一个圆,则实数F 的取值范围是3. 经过圆C :x 2+y 2 =1上一点(1,2)的切线方程4.过原点与x 轴、y 轴的交点分别是(a,0)、(0,b)(ab ≠0)的圆的方程为5. “a=b ”是“直线y=x+2与圆(x-a)2+(y-b)2=2”相切的 ( ) (A) 充分不必要条件 (B)必要不充分条件 (C )充分必要条件 (D) 既不充分又不必要条件6.设直线l 过点(-2,0),且与圆相切,则l 的斜率是 ( )(A) ±1 (B) ±12(C (D) 【例题分析】【例1】求以C(-1,2)为圆心,且和直线l:2x-3y-5=0相切的圆的方程.【例2】当M(x 0,y 0)在(x-a)2+(y-b)2=r 2上时,求过M(x 0,y 0),圆的切线方程。

【例3】经过点A(3,2)、圆心在直线y=2x 上且和直线y=2x+5相切的圆的方程【例4】(1) 已知直线x-y+b=0与圆x 2+y 2=8相切,求b 的值.(2)求圆心在x 轴上且过点O(-1,1)和D(1,3)的圆的方程.(3) 点M 在圆(x-5)2+(y-3)2=9上,则M 点到直线3x+4y-2=0的最短距离为 ( )A .9B .8C .5D .2(4)圆0104422=---+y x y x 上的点到直x +y -14=0的距离的最大值与最小值的差是( )A .36B .18C .62D .52【例5】(1)圆的弦AB的中点为P(3,1),求直线AB的方程.(2) 求过点M(2,x2+y2=4相切的直线方程.(3)求过点M(-3,1)且与圆x2+y2-4x-8y+18=0相切的直线方程.【例6】求与x轴相切于电(2,0)且在y轴上截取的弦长是4的圆的方程.【例7】(1)已知定点A(0,0)和圆x2+y2=1上的动点,求线段的中点的轨迹方程.(2)已知定点A(1,1)和圆(x-2)2+(y+1)2=4上的动点,求线段的中点的轨迹方程.【例8】求满足下列条件的圆的方程:(1)求过点M(4,-1)且与已知圆C:x2+y2+2x-6y+5=0相切于点B(1,2)的圆的方程.(2)求圆C:x2+y2-2y-1=0关于直线2x-y+3=0对称的圆的方程.(3)求与直线x+y-2=0和圆C:x2+y2—12x-12y-54=0都相切的半径最小的圆的方程.【例9】圆M的圆心在直线l1:x-y-1=0上,且和直线l2:4x+3y+14=0相切,又截直线l3:3x+4y+10=0所得的弦长为6,求圆M的方程.【例10】如图,圆O1与圆O2的半径都是1,O1O2=4,过动点P分别作圆O1、圆O2的切线PM、PN(M、N分别为切点),使得.PM 试建立适当的坐标系,并求动点P的轨迹方程.[分析]:本题是解析几何中求轨迹方程问题,由题意建立坐标系,写出相关点的坐标,由几何关系式:PM=NPN 2,即 PM2=2PN2,结合图形由勾股定理转化为:)1(212221-=-PO PO ,设P(x,y)由距离公式写出代数关系式,化简整理得出所求轨迹方程.[解析]:以O 1O 2的中点O 为原点,O 1O 2所在直线为x 轴,建立如图所示平面直角坐标系,则O 1(-2,0),O 2(2,0),由已知:PM=PN 2,即PM2=2PN2,因为两圆的半径都为1,所以有:)1(212221-=-PO PO ,设P (x,y )则(x+2)2+y 2-1=2[(x-2)2+y 2-1], 即33)6(22=+-y x综上所述,所求轨迹方程为:33)6(22=+-y x (或031222=+-+x y x ) [评析]:本题命题意图是考查解析几何中求轨迹方程的方法,考查建立坐标系,数形结合数学思想方法,勾股定理,两点间距离公式等相关知识点,及分析推理、计算化简技能、技巧等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学一轮复习 AB 小练习 第十五章解析几何第三节圆的标准方程和一般方程A 组1.若圆x 2+y 2-2kx +2y +2=0(k >0)与两坐标轴无公共点,那么实数k 的取值范围为________.解析:圆的方程为(x -k )2+(y +1)2=k 2-1,圆心坐标为(k ,-1),半径r =k 2-1,若圆与两坐标无公共点,即⎩⎨⎧k 2-1<|k |k 2-1<1,解得1<k < 2.2.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是________.解析:由题意,设圆心(x 0,1),∴|4x 0-3|42+(-3)2=1,解得x 0=2或x 0=-12(舍), ∴所求圆的方程为(x -2)2+(y -1)2=1. 3.(2010年广东汕头调研)已知D是由不等式组⎩⎪⎨⎪⎧x -2y ≥02x +y ≥0,所确定的平面区域,则圆x2+y 2=4在区域D 内的弧长为________.答案:π4.(2009年高考宁夏、海南卷改编)已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为________________.解析:圆C 1:(x +1)2+(y -1)2=1的圆心为(-1,1).圆C 2的圆心设为(a ,b ),C 1与C 2关于直线x -y -1=0对称,∴⎩⎪⎨⎪⎧b -1a +1=-1,a -12-b +12-1=0,解得⎩⎪⎨⎪⎧a =2,b =-2,圆C 2的半径为1,∴圆C 2的方程为(x -2)2+(y +2)2=1.5.(原创题)圆x 2+y 2-4x +2y +c =0与y 轴交于A 、B 两点,其圆心为P ,若∠APB =90°,则实数c 的值是________.解析:当∠APB =90°时,只需保证圆心到y 轴的距离等于半径的22倍.由于圆的标准方程为(x -2)2+(y +1)2=5-c ,即2=22×5-c ,解得c =-3. 6.已知点A (-3,0),B (3,0),动点P 满足|PA |=2|PB |.(1)若点P 的轨迹为曲线C ,求此曲线的方程;(2)若点Q 在直线l :x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求|QM |的最小值,并求此时直线l 2的方程.解:(1)设点P 的坐标为(x ,y ),则(x +3)2+y 2=2(x -3)2+y 2,化简可得(x -5)2+y 2=16即为所求.(2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图则直线l 2是此圆的切线,连结CQ ,则|QM |=错误!=|CQ |2-16,当CQ ⊥l 1时,|CQ |取最小值,|CQ |=|5+3|2=42,此时|QM |的最小值为32-16=4,这样的直线l 2有两条,设满足条件的两个公共点为M 1,M 2,易证四边形M 1CM 2Q 是正方形,∴l 2的方程是x =1或y =-4.B 组1.(2010年福州质检)圆心在直线2x -3y -1=0上的圆与x 轴交于A (1,0),B (3,0)两点,则圆的方程为________________.解析:所求圆与x 轴交于A (1,0),B (3,0)两点,故线段AB 的垂直平分线x =2过所求圆的圆心,又所求圆的圆心在直线2x -3y -1=0上,所以两直线的交点坐标即为所求圆的圆心坐标,解之得圆心坐标为(2,1),进一步可求得半径为2,所以圆的标准方程为(x -2)2+(y-1)2=2.2.(2010年扬州调研)若直线ax +by =1过点A (b ,a ),则以坐标原点O 为圆心,OA 长为半径的圆的面积的最小值是___.解析:∵直线ax +by =1过点A (b ,a ),∴ab +ab =1,∴ab =12,又OA =a 2+b 2,∴以O 为圆心,OA 长为半径的圆的面积:S =π·OA 2=(a 2+b 2)π≥2ab ·π=π,∴面积的最小值为π.3.(2009年高考上海卷改编)点P (4,-2)与圆x 2+y 2=4上任一点连线的中点轨迹方程是________________.解析:设圆上任一点坐标为(x 0,y 0),则x 02+y 02=4,连线中点坐标为(x ,y ), 则⎩⎪⎨⎪⎧ 2x =x 0+4,2y =y 0-2,⇒⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2,代入x 02+y 02=4中得(x -2)2+(y +1)2=1. 4.已知点P (1,4)在圆C :x 2+y 2+2ax -4y +b =0上,点P 关于直线x +y -3=0的对称点也在圆C 上,则a =________,b =________.解析:点P (1,4)在圆C :x 2+y 2+2ax -4y +b =0上,所以2a +b +1=0,点P 关于直线x +y -3=0的对称点也在圆C 上,所以圆心 (-a,2)在直线x +y -3=0上,即-a +2-3=0,解得a =-1,b =1.5.已知圆的方程为x 2+y 2-6x -8y =0.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为___________.解析:由题意知,圆心坐标为(3,4),半径r =5,故过点(3,5)的最长弦为AC =2r =10,最短弦BD =252-12=46,四边形ABCD 的面积为20 6.6.过圆x 2+y 2=4外一点P (4,2)作圆的两条切线,切点为A 、B ,则△ABP 的外接圆的方程是____________________.解析:∵圆心为O (0,0),又∵△ABP 的外接圆就是四边形OAPB 的外接圆.其直径d =OP =25,∴半径r = 5.而圆心C 为(2,1),∴外接圆的方程为(x -2)2+(y -1)2=5.7.已知动点P (x ,y )满足x 2+y 2-|x |-|y |=0,O 为坐标原点,则PO 的取值范围是______.解析:方程x 2+y 2-|x |-|y |=0可化为(|x |-12)2+(|y |-12)2=12. 所以动点P (x ,y )的轨迹如图:为原点和四段圆孤,故PO 的取值范围是{0}∪[1, 2 ].8.(2010年安徽合肥质检)曲线f (x )=x ln x 在点P (1,0)处的切线l 与坐标轴围成的三角形的外接圆方程是____________.解析:曲线f (x )=x ln x 在点P (1,0)处的切线l 方程为x -y -1=0,与坐标轴围成的三角形的外接圆圆心为(12,-12),半径为22,所以方程为(x -12)2+(y +12)2=12.答案:(x -12)2+(y +12)2=129.设实数x 、y 满足x 2+(y -1)2=1,若对满足条件的x 、y ,不等式yx -3+c ≥0恒成立,则c 的取值范围是________.解析:由题意,知-c ≤yx -3恒成立,又y x -3=y -0x -3表示圆上的点与定点(3,0)连线的斜率,范围为[-34,0],所以-c ≤-34,即c 的取值范围是c ≥34.10.如图,在平面直角坐标系xOy 中,A (a,0)(a >0),B (0,a ),C (-4,0),D (0,4),设△AOB 的外接圆圆心为E .(1)若⊙E 与直线CD 相切,求实数a 的值;(2)设点P 在圆E 上,使△PCD 的面积等于12的点P 有且只有三个,试问这样的⊙E 是否存在,若存在?求出⊙E 的标准方程;若不存在,说明理由.解:(1)直线CD 方程为y =x +4,圆心E (a 2,a 2),半径r =22a .由题意得|a 2-a2+4|2=22a ,解得a =4.(2)∵|CD |=(-4)2+42=42,∴当△PCD 面积为12时,点P 到直线CD 的距离为3 2.又圆心E 到直线CD 距离为22(定值),要使△PCD 的面积等于12的点P 有且只有三个,只须圆E 半径2a2=52,解得a =10,此时,⊙E 的标准方程为(x -5)2+(y -5)2=50.11.在Rt△ABO 中,∠BOA =90°,OA =8,OB =6,点P 为它的内切圆C 上任一点,求点P 到顶点A 、B 、O 距离的平方和的最大值和最小值.解:如图所示,以O 为原点,OA 所在直线为x 轴,OB 所在直线为y 轴,建立直角坐标系xOy ,则A (8,0),B (0,6),内切圆C 的半径r =12(OA +OB -AB )=8+6-102=2.∴内切圆C 的方程为(x -2)2+(y -2)2=4.设P (x ,y )为圆C 上任一点,点P 到顶点A 、B 、O 的距离的平方和为d ,则d =PA 2+PB 2+PO 2=(x -8)2+y 2+x 2+(y -6)2+x 2+y 2=3x 2+3y 2-16x -12y +100=3[(x -2)2+(y -2)2]-4x +76.∵点P (x ,y )在圆C 上,∴(x -2)2+(y -2)2=4.∴d =3×4-4x +76=88-4x . ∵点P (x ,y )是圆C 上的任意点,∴x ∈[0,4]. ∴当x =0时,d max =88;当x =4时,d min =72.12.(2008年高考江苏卷)在平面直角坐标系xOy 中,设二次函数f (x )=x 2+2x +b (x ∈R )的图象与两个坐标轴有三个交点,经过这三个交点的圆记为C .(1)求实数b 的取值范围; (2)求圆C 的方程;(3)问圆C 是否经过某定点(其坐标与b 无关)?请证明你的结论.解:(1)显然b ≠0.否则,二次函数f (x )=x 2+2x +b 的图象与两个坐标轴只有两个交点(0,0),(-2,0),这与题设不符.由b ≠0知,二次函数f (x )=x 2+2x +b 的图象与y 轴有一个非原点的交点(0,b ),故它与x 轴必有两个交点,从而方程x 2+2x +b =0有两个不相等的实数根,因此方程的判别式4-4b >0,即b <1.所以b 的取值范围是(-∞,0)∪(0,1).(2)由方程x 2+2x +b =0,得x =-1±1-b .于是,二次函数f (x )=x 2+2x +b 的图象与坐标轴的交点是(-1-1-b ,0),(-1+1-b ,0),(0,b ).设圆C 的方程为x 2+y 2+Dx +Ey +F =0.因圆C 过上述三点,将它们的坐标分别代入圆C 的方程,得⎩⎨⎧(-1-1-b )2+D (-1-1-b )+F =0,(-1+1-b )2+D (-1+1-b )+F =0,b 2+Eb +F =0.解上述方程组,因b ≠0,得⎩⎪⎨⎪⎧D =2,E =-(b +1),F =b .所以,圆C 的方程为x 2+y 2+2x -(b +1)y +b =0.(3)圆C 过定点.证明如下:假设圆C 过定点(x 0,y 0)(x 0,y 0不依赖于b ),将该点的坐标代入圆C 的方程,并变形为x 02+y 02+2x 0-y 0+b (1-y 0)=0.(*)为使(*)式对所有满足b <1(b ≠0)的b 都成立,必须有1-y 0=0,结合(*)式得x 02+y 02+2x 0-y 0=0.解得⎩⎪⎨⎪⎧x 0=0,y 0=1,或⎩⎪⎨⎪⎧x 0=-2,y 0=1.经检验知,点(0,1),(-2,1)均在圆C 上,因此,圆C 过定点.。

相关文档
最新文档