三极管
三极管字母代用符号

三极管字母代用符号
三极管的符号表示通常由三个线条组成,代表了三个电极:基极(B),集电极(C)和发射极(E)。
在电路图中,三极管的符号表示可以用以下几种方式来表示:
1. 可以用字母U来表示,其中U的第三部分表示功能。
具体来说,U的下部分表示放大或开关电路中的低频小功率管;U的上部分表示高频小功率管;U的整个表示低频大功率管;带一个斜杠的U表示高频大功率管。
2. 也可以用图形符号表示,其中NPN型三极管的符号中箭头指向表示发射结处在正向偏置时的电流流向。
此外,根据三极管的功能和类型,还有其他一些符号表示方式,例如PNP型三极管,场效应管等。
三极管

Q点的影响因素有很多,如电源波动、偏
置电阻的变化、管子的更换、元件的老化等等,
不过最主要的影响则是环境温度的变化。三极
管是一个对温度非常敏感的器件,随温度的变 化,三极管参数会受到影响,具体表现在以下 几个方面。
• 1.温度升高,三极管的反向电流增大
• 2.温度升高,三极管的电流放大系数β增大
• 3.温度升高,相同基极电流IB下,UBE减小,
2.2 共射放大电路
一、 放大的概念
电子学中放大的目的是将微弱的变化信号放大成
较大的信号。这里所讲的主要是电压放大电路。
电压放大电路可以用有输入口和输出口的四端网
络表示,如图。
ui
Au
uo
1、放大体现了信号对能量的控制作用,放大的信
号是变化量。
2、放大电路的负载所获得的随信号变化的能量要
比信号本身所给出的能量大得多,这个多出的
②电感视为短路
共射电路的直流通路
用图解法分析放大器的静态工作点
直流负载线 UCE=UCC–ICRC
U CC RC
ICQ
IC Q
IB UCE
与IB所决 定的那一 条输出特 性曲线的 交点就是 Q点
UCEQ UCC
2、动态分析
计算动态参数Au、Ri、Ro时必须依据交流通路。 交流通路:是指ui单独作用(UCC=0)时,电路 中交流分量流过的通路。 画交流通路时有两个要点:
有以下两种。
IC
IB A RB
V
mA C
B E
UBE
RC USC V
UC(1)输入特性曲线
它是指一定集电极和发射极电压UCE下,三极管 的基极电流IB与发射结电压UBE之间的关系曲线。实 验测得三极管的输入特性曲线如下图所示。
三极管的特征

三极管的特征三极管是一种常用的电子元件,具有许多独特的特征和功能。
本文将详细介绍三极管的特征,包括三极管的结构、工作原理和应用领域。
一、结构特征三极管由三个不同类型的半导体材料(N型、P型或P型、N型)组成,通常被称为发射极、基极和集电极。
这三个区域分别构成了三极管的结构,决定了其特性。
二、工作原理三极管的工作原理基于PN结的导电性。
当三极管的基极-发射极结正向偏置时,发射极和基极之间形成一个正向偏压,从而形成了一个导通通道。
这时,集电极和基极之间的结反向偏置,集电极基本上不导电。
当基极电流增加时,发射极电流也会相应增加。
三、特性1. 放大功能:三极管是一种双极型放大器件,可以将微弱的信号放大为较大的信号。
通过控制输入信号的大小,可以实现放大倍数的调节。
2. 开关功能:三极管可以作为电子开关使用。
当三极管处于截止状态时,集电极和基极之间的电流非常小;当三极管处于饱和状态时,集电极和基极之间的电流较大。
通过控制输入信号的大小,可以控制三极管的导通与截止,实现开关的功能。
3. 高频特性:三极管具有良好的高频特性,可以在射频和微波领域中使用。
由于其短开关时间和高频特性,三极管在无线电通信、雷达和卫星通信等领域中得到广泛应用。
4. 可控性:通过调节基极电流,可以精确地控制三极管的放大倍数和工作状态。
这使得三极管成为电路设计中的重要元件,可用于各种应用中。
四、应用领域1. 放大器:三极管可以用作放大器,将微弱的信号放大为较大的信号。
在音频放大器、射频放大器和功率放大器等领域中广泛应用。
2. 开关:三极管的开关功能使其在数字电子电路中得到广泛应用。
例如,在计算机内存、逻辑门和计数器等电路中使用。
3. 振荡器:三极管可以作为振荡器的关键元件,产生稳定的振荡信号。
在无线电、通信和计算机等领域中,振荡器被广泛应用。
4. 放电管:三极管可以用作电子放电管,用于控制和保护电路中的电压和电流。
五、总结三极管是一种重要的电子元件,具有放大、开关、高频特性和可控性等特点。
三极管手册介绍

三极管手册介绍
三极管,也称为晶体三极管,是一种常用的电子器件,被广泛应用于电子电路中。
它由三个区域相互夹杂的半导体材料构成,通常被标记为E(发射极)、B(基极)和C(集电极)。
三极管是一种双极型晶体管,其主要特点是能够控制电流放大倍数。
通过控制基极电流,可以控制集电极电流的放大倍数。
因此,三极管广泛用于放大、开关、电子开关、振荡器等电路中。
三极管手册是一本关于三极管的详细介绍和应用指南。
该手册通常包括以下内容:
1. 三极管的基础知识:介绍三极管的结构、工作原理和基本参数。
包括器件标记和引脚配置,以及不同类型的三极管(如NPN型和PNP型)。
2. 三极管的电路应用:包括放大电路、开关电路、电源电路、振荡电路和稳压电路等。
每个电路应用都会介绍其原理、设计方法、常用电路图和计算公式。
3. 三极管的参数与曲线特性:包括直流参数(如最大集电流、最大功耗、最大电压等)和交流参数(如频率响应、增益、噪声系数等)。
手册中通常会给出参数的定义、测量方法和典型数值。
4. 三极管的选型与应用:介绍如何根据特定的应用需求选择合
适的三极管。
包括选择参数的考虑因素、常用的选型指南和技术手段。
5. 三极管的常见故障排除:介绍三极管常见的故障原因及排除方法。
包括电压过高、电流过大、温度过高等故障的检测和解决方法。
综上所述,三极管手册是一本提供关于三极管结构、工作原理、电路应用、参数与曲线特性、选型与应用和故障排除等方面知识的参考指南,旨在帮助工程师和电子爱好者更好地理解和应用三极管。
三极管

Vceo
在选择晶体管时, 大约为所用电源电压2倍 在选择晶体管时,Vceo大约为所用电源电压 倍 S8050的Vceo为25V 的
S8050 NPN型三极管参数 型三极管参数
c
Ic
b
Ib Ie
Vce
+
e
最大集电极电流, 最大集电极电流,即流过三极管集电极的最大电流
Icm
在选择晶体管时, 在选择晶体管时,Icm大约为三极管正常工作时流过 集电极最大电流的2倍 集电极最大电流的 倍 S8050的Icm为0.5A 的
Ec = Ic x Rc + Vce
三极管仿真电路分析
Ib、Ic、Vce 波形 波形?
集电极电压V 集电极电压 c
NPN 型 集电极电源Ec 集电极电源
基极电源E 基极电源 b
三极管仿真电路分析
Vo 集电极电压(V) 集电极电压( Ic 集电极电流(mA) 集电极电流(
集电极电压V 集电极电压 c
驱动继电器(工作原理 驱动继电器 工作原理) 工作原理
+Vcc
3.R1、R2电阻取值
D IN4007
例如: 例如: 若Vcc=+5V,Ics=50mA,β=100, 且R2=4.7kΩ,计算R1取值。 Vcc-Vbe . . I . b= R 1 5V-0.7V R1 . . . Vbe R2 Ic > β
+Vcc
释放
D IN4007
继电器
c
输入Vi 输入 +Vcc OFF 0V R2 4.7K R1
续流二极管
S8050
b e
用NPN三极管驱动继电器电路图 三极管驱动继电器电路图
驱动继电器(工作原理 驱动继电器 工作原理) 工作原理
三极管的工作原理

三极管的工作原理
三极管是一种常用的电子器件,其工作原理是基于PN结的导电特性。
它由三个控制端分别为基极(B)、发射极(E)和集电极(C)构成。
当三极管的基极与发射极之间施加一个正向电压时,即基极的电势高于发射极,此时PN结会被正向偏置。
由于PN结的导电特性,电子会从N区域注入到P区域,并与P区域中的空穴重新组合。
在基极注入的电子数量足够多时,P区域会形成一个“电子云”,这就是基区。
基区的电荷状态会对P区和N
区的导电特性产生影响。
当外部施加的电压继续增大,足够大以让基极与发射极之间的电压达到饱和值时,三极管就进入了饱和区。
在饱和区,电流可以从集电极流向发射极,这时三极管的电流放大特性可以得到利用。
当外部电压减小时,三极管将退出饱和区。
另一种情况是,当基极与发射极之间施加一个反向电压时,即基极的电势低于发射极,此时PN结会被反向偏置。
在这种情况下,三极管处于截止区,几乎没有电流通过。
总之,通过控制三极管的基极电压,可以实现对集电极和发射极之间电流的控制和调节。
这使得三极管成为了很多电子电路中非常重要的元件之一。
三极管工作原理详解
03
电流放大作用是三极管最基本 的特性,也是其在电子电路中 广泛应用的原因之一。
载流子的传
1
在三极管中,载流子主要包括空穴和电子。
2
当基极电压发生变化时,基极中的载流子会受到 电场力的作用而发生运动,形成基极电流。
3
集电极电流的形成是由于基极电流在集电结上产 生电场,使得集电极中的载流子发生运动而形成 的。
三极管工作原理详解
目录
• 三极管简介 • 三极管的工作原理 • 三极管的特性曲线 • 三极管的应用 • 三极管的常见问题与解决方案
01
三极管简介
定义与类型
定义
三极管是一种半导体器件,具有 电流放大和开关控制的功能。
类型
根据结构和工作原理的不同,三 极管可分为NPN型和PNP型。
三极管的结构
组成
在振荡电路中的应用
振荡器
三极管可以作为振荡电路中的核心元 件,通过正反馈和选频网络实现高频 或低频振荡,用于产生特定频率的信 号。
波形发生器
调频/调相
在无线通信系统中,利用三极管的振 荡功能可以实现信号的调频和调相, 用于实现无线信号的调制和解调。
利用三极管的振荡特性,可以产生三 角波、矩形波等波形,用于信号处理、 测试测量等领域。
在开关电路中的应用
逻辑门电路
三极管可以作为逻辑门电 路中的开关元件,实现高 低电平的转换,用于构建 逻辑运算和电路控制。
继电器驱动
在自动化控制系统中,三 极管可以用于驱动继电器 或其他开关元件,实现电 路的通断控制。
电机驱动
在电机驱动电路中,三极 管可以用于控制电机的启 动、停止和转向,实现自 动化控制。
三极管由三个区(发射区、基区和集 电区)和两个结(集电极与基极之间 的集电结和发射极与基极之间的发射 结)组成。
三极管
I / mA
600 0 20
60
40 20
0 0.4 0.8 U / V
iC
温度对输入特性的影响 600 200
负温度系数。
3、温度每升高 1C, 增 加 0.5%~1.0%。
结论:温度升高,三极 管输入特性曲线左移, 输出特性曲线上移且间 距增大。
iB
O
温度对输出特性的影
uCE
六、三极管的命名方法
三极管的命名由5部分组成,如图1.21所示。其中第二、三 部分各字母含义如表1.10所示。
表1.10 第 二 部 分
第二、三部分各字母含义 第 三 部 分
字
A B C D
母
在以后的计算中,一般作近似处理: = 。
2.集-基极反向截止电流 ICBO
ICBO –
A
+
EC
ICBO是由少数载流子的 漂移运动所形成的电流, 受温度的影响大。 温度ICBO
3.集-射极反向截止电流(穿透电流)ICEO – A + IB=0 ICEO ICEO受温度的影响大。 温度ICEO,所以IC 也相应增加。三极管的 温度特性较差。
截止
反偏 反偏
放大
正偏 反偏
饱和
正偏 正偏
解:
对NPN管而言,放大时VC > VB > VE 对PNP管而言,放大时VC < VB <VE (1)放大区 (2)截止区 (3)饱和区
五、 主要参数
表示晶体管特性的数据称为晶体管的参数,晶体管的参 数也是设计电路、选用晶体管的依据。
1. 电流放大系数,
三极管ppt课件
晶体管截止频率影响
晶体管的截止频率限制了其放大高频信号 的能力,当输入信号频率接近或超过截止 频率时,晶体管放大倍数急剧下降。
负载效应影响
在高频段,负载效应对信号产生较大的影 响,使得输出信号的幅度和相位发生变化 。
05
三极管功率放大电路设计 与应用
功率放大电路类型及特点
甲类功率放大电路
采用单电源供电,输出端通过大容量电容与负载耦合,具 有电路简单、成本低等优点,但电源功率利用率较低且存 在较大的非线性失真。
集成功率放大器简介与应用
集成功率放大器概述
将功率放大电路与必要的辅助电路集成在同一芯片上,具 有体积小、重量轻、可靠性高等优点。
集成功率放大器的应用
广泛应用于音响设备、电视机、计算机等电子设备中,用 于驱动扬声器、耳机等负载,提供足够的输出功率和良好 的音质效果。
工作点设置在截止区,主要用于高频功率放大,效率很高但非线性失 真严重。
OCL和OTL功率放大电路设计实例
要点一
OCL(Output Capacitor Less )功…
采用双电源供电,输出端与负载直接耦合,具有低失真、 高效率等优点,但需要较大的电源功率和输出电容。
要点二
OTL(Output Transformer Less…
02
三极管基本放大电路
共射放大电路组成及原理
组成
输入回路、输出回路、耦合电容、直 流电源
特点
电压放大倍数大,输出电阻较大,输 入电阻适中
原理
利用三极管的电流放大作用,将输入 信号放大并
共基放大电路组成及原理
01
02
03
组成
输入回路、输出回路、耦 合电容、直流电源
三极管 详解
三极管详解
三极管是一种具有三个电极的半导体器件,通常由两个PN结构成,共用的一个电极称为基极(用字母b表示),其他两个电极分别称为集电极(用字母c表示)和发射极(用字母e表示)。
根据PN结的组合方式,三极管可以分为NPN型和PNP型两种。
三极管的核心结构是两个背对背的PN结,其中一个PN结位于发射区和基区之间,称为发射结;另一个PN结位于集电区和基区之间,称为集电结。
三极管的工作原理基于电流控制,当在基极上施加一个微小的电流时,可以在集电极上得到一个放大了的电流,即集电极电流是基极电流的b倍(b为电流放大系数)。
集电极电流随基极电流的变化而变化,且基极电流微小的变化可以引起集电极电流很大的变化,这就是三极管的放大作用。
三极管有三种工作状态:截止、放大和饱和。
在放大状态下,三极管主要应用于模拟电路中。
此外,三极管还可以作为电子开关使用,配合其他元件构成振荡器等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ib
uo
2)饱和失真
Q点过高,信号进入饱和区 iC
ib
放大电路产生 饱和失真 输入波 形
uCE
输出波形
Hale Waihona Puke uo动态工作情况分析小结
波形的 失真
由于放大电路的工作点达到了三极管 的饱和区而引起的非线性失真。对于NPN管, 输出电压表现为底部失真。 由于放大电路的工作点达到了三极管 的截止区而引起的非线性失真。对于NPN管, 输出电压表现为顶部失真。
(负反馈控制)
• 2、静态分析:
+EC
RB1 I1 IB T RB2
算法:
RC
EC RB1 RB 2 RB 2 EC VB I 2 RB 2 RB1 RB 2
I 2 I B I1 I 2
I2
U BE VB VE VB I E RE
RE
U B U BE U B IC I E RE RE
饱和失真
截止失真
Q点合适,Ui幅度过大——双向失真(截止,饱和失真)
选择静态工作点 iC ib
可输出的 最大不失 真信号
uCE uo
§3.4 微变等效电路法
• 条件:指输入信号UI 变化量小(即小信号) 输入信号频率在低中频范围 • 原因:根据输入,输出特性曲线 • 在 如 上 条 件 下 : 小信号:——特性曲线近似直线性——可用等 效 的 线 性 电 路 代 替 T 管 低中频:晶体管中结电容的影响极小
• 一、BJT的微变等效电路
• rbe称为BJT的输入电阻,它表示BJT的输入特性近似计算公
式:rbe=△UBE/△IB=rb+(1+β)re
• rb----基区体电阻 , re——发射击区体电阻 • rbe =200+(1+B)26(mV)/IE(mA) • rce称为BJT的输出电阻,rce=uce/ic∣I ,一般rce>10k可忽略
iB /uA iB /uA
60 40 20
iC /mA iC /mA
交流负载线
Q` Q IBQ Q`` vBE/V vBE/V
ICQ t
Q` Q
60uA 40uA
Q`` 20uA vC E/V vC E/V
t
VBEQ t
VC EQ t
3. 非线性失真 1) 截止失真 Q点过低,信号进入截止区
iC 放大电路产生 截止失真 输入波形 uCE
Ib
rbe
R'B
Ic Ib
RL RC
Uo
RE1
§3.6 共集电极放大电路 和共基极放大电路
• 一、共集电极放大电路
• 1、静态工作点计算: • 直流通路
EC=RbIBQ+IEQRe+UBEQ EC=UCEQ+ReIEQ
又 IEQ=(1+β)IBQ IBQ=(EC-UBEQ)/(Rb+(1+β ) Re) ICQ=βIBQ UCEQ=EC-(1+β)IBQRe
RL rbe (1 ) Re
+EC
RB1 RC
C1
C2
RL ui RB2 RE CE
RE射极直流 负反馈电阻 CE 交流旁 路电容
uo
CE的作用:交流通路中, CE将RE短路, RE对交流不起作用,放大倍数不受影响。
• • • •
有旁路电容CE: R ' Av≈ r ri=Rb1∥Rb2∥rbe ro=RC
•
• • • •
(2)、利用输出特性画iC和uCE波形 交流负载线 a、空载时RL=∞ 交流负载线与直流负载线重合,动态工作点在 交流负线上移动,斜率——1/RC • uCE=EC-IC*RC
• b、RL不等于∞ / • 放大电路的交流负载电阻RL =RC‖RL • 交流负载线作法:过Q点作一条斜率 / 为-1/RL 的直线
§3.3 图解分析法
2. 用图解法确定Q点
• 1) 给出输入特性,输出特性曲线 • 2) 画出直流通路:标出IBQ,ICQ,UBEQ,UCEQ • 3) 利用输入特性曲线来确定IBEQ和UBEQ • 基极偏置线:UBE=EC-IB*RB 与输入特性曲线的交点对 应的IBQ,UBEQ • 4) 利用输出特性曲线来确定ICQ和UCEQ • 直流负载线:UCE=EC-IC*RC 与输出特性曲线中IBQ 线 的交点确定ICQ、UCEQ
对NPN管:VB<VE
特性:IC=ICEO (3) 饱和区 条件:发射结、集电结皆正偏 对NPN管:VCE>VBE 特性:IB增加,IC却不再增加,即 IC≠ßB ;而 I 且VCE很小。
四、BJT的主要参数
• 1 电流放大系数 • 共发射极直流电流、交流电流放大系数 • 例:书图3.1.7(b)为3DG6晶体三极管输出特性 曲线,求它的共发射极直流电流、交流电流放 大系数 • 2 极间反向电流 (1) ICBO (2) ICEO • 3 极限参数
§3.5 放大电路的工作点稳定问题
• 一、温度对工作点的影响 • 1)ICBO β VBE影响:T升, β升,输出特性曲线间隔宽, Q点上移,饱和区,放大能力减弱。 • 2) ICBO影响:T升, ICBO升,ICEO升,输出特性曲线向 上平移,Q点向饱和区移动,放大能力减弱。 • 硅管 ICBO很少,影响可忽略。锗管ICBO很大,造成工作 点不稳的主要因素。高温下应选硅管 • 3) VBE影响。T升,VBE降(导通电压),输入特性曲 线向左移动,IBQ升,工作点上移,ICQ不稳 • 归上述:T升,Q点,饱和区移动 • T降,Q点,截止区移动。
§3.2 共发射极放大电路
• 一、共发射极基本放大电路 教材图3.2.1 • T:NPN型晶体管,放大的核心部件
• VCC: 集电极回路直流电源提供集电结反偏 • RC: 集电极负载电阻,作用:将iC 转换成U0,反应在 输出端 • VBB,Rb:提供发射结正偏和合适的基极偏流
• C1,C2: 隔直流通交流
B
二、用H参数微变等效电路法分析共射极基
本放大电路
1、画出放大电路的微变等效电路 由BJT的微变等效电路和放大电路的交流通路 可得出放大电路的微变等效电路。
• • • • •
2、求电压增益AV :AV=UO/UI UI=IBRBE (1) 空载时:RL=∞ U0=I′ORC=-ICRC U0=-βIBRC 所以AV=UO/UI=-βIBRC/(IBRBE)=-βRC/RB
三 BJT静态特性曲线 • BJT静态特性曲线:是在伏安平面上作出的 反映晶体管各极直流电流电压关系的曲线。 • BJT静态特性曲线用途:
•
1、晶体三极管的组态
• 将晶体三极管视为双端口器件,分析其三种典型接法, 称为组态。 共基极接法(CB)
共射接法(CE) 共接接法(CC)
2、共射输入特性曲线
四、放大电路的基本分析方法
• 1、分析方法:1)图解法:在特性曲线上用作图来进 行分析 • 2)微变等效电路法:在一定条件下等效为线性 电路进行分析 • 3) 计算机仿真
• 一、直流通路,交流通路 • 电路分析的两种基本电路:1)直流通路:静 态 工 作 点 分 析 ( UBEQ ,UCEQ , IBQ , ICQ ) 2)交流电路:动态分析(AV,ri,r0)
电压增益: AV(db)=20lgAV 分贝 DB b.电流放大倍数 AI=IO/II 电流增益: AI (db)=20lgAI (分贝) c.功率放大倍数:功率增益 20lgAp 分贝 Ap=Po/PI
UO——输出电压(有效值)UI——输入电压(有效值)
2. 最大输出幅度:U0MAX,U0,U0PP(以正弦 为例子) 3.输入电阻: Ri 4.输出电阻:Ro 5. 通频带BW(Bf)
• 共射输入特性曲线是以输出电压VCE为参变量,输入口 基极电流iB随収射结电压vBE变化的曲线: • 共射输入特性曲线的特点:
• 3、共射输出特性曲线
• 共射输出特性曲线是在集电极电流IB一定的情况下,的 输出回路中集电极与収射极之间的电压VCE与集电极电流 IC之间的关系曲线。
工作区域划分: (1) 放大区(线性区) 条件:发射结正偏,集电结反偏 对NPN管:VC>VB>VE 特性:IC=ßB I (2) 截止区 条件:发射结反偏
二. 组成原则
(1) 发射结正偏 集电极反偏 使T管处于放大状 态 (2) 输入回路:Ui——产生ib 控制ic (3) 输出回路:使iC尽可能多流到RL上(减少其 他支路的分流) (4) 保证放大电路工作正常,T 处于放大状态,
合理设置静态工作点Q
三. 放大电路的性能指标 1、 放大倍数:输入信号若为正弦波 a. 电压放大倍数:AV=U0/UI
L be
如果电路如下图所示,如何分析?
+EC RB1 C1 RC C2
T
RL
ui
RB2 RE2
RE1 CE
uo
动态分析: +EC
RB1
C1
RC
C2 T RL
RB1 ui
RB2
RE1
RL
uo RC
ui
RB2 RE2
RE1 CE
uo
交流通路
交流通路:
ui
RB1
RB2
RE1
RL
uo RC
Ii
微变等效电路: Ui
• 1. 直流通路:直流信号通过的电路 • 原则:遇C——视为开路 • 遇L——视为短路
• 1. 交流通路:交流信号通过的电路 • 原则:遇C——(充分大)——近似视 为短路 • 遇L——(充分大)——近似视为开路 • 直流电源(内阻小):近似为短路。
• 一、静态分析 • 1静态工作点估算: • 从输入特性中知:晶体管导通时UBE变化很小 (硅管:0.6-0.8V;锗管:0.1-0.3V) • 一般情况UBEQ:(硅管:0.7V,锗管0.2V ) • 1) 从直流通路中:列KVL方程 • IBQ*RB+UBEQ-EC=0 • IBQ=(EC-UBEQ)/RB • 2) 从晶体管电流分配关系 • ICQ=βIBQ • 3) 从直流通路中:列负载回路的KVL方程 • ICQ*RC+UCEQ-EC=0 • UCEQ=EC-ICQ*RC