最新人教A版必修5高中数学 2.3等差数列的前n项和教案(一)(精品)
高中数学新人教A版必修5教案2.3等差数列的前n项和

等差数列的前n 项和一、教材剖析1.教课内容:本节课是高中人教 A 版必修 5 第二章第三节第一课时的内容。
主要研究等差数列的前n 项和公式的推导及其简单应用。
2.地位与作用本节课是前方所学知识的持续和深入,又是后边学习“等比数列及其前n 项和” 的基础和前奏。
学好了本节课的内容,既能加深对数列相关观点的理解,又能为后边学好等比数列及数列乞降供给方法。
同时还蕴涵着深刻的数学思想方法(倒序相加法、数形联合、方程思想),所以“等差数列的前n 项和”不论是在《数列》这一章中仍是在高中数学中都有极为重要的地点,拥有承前启后的重要作用。
二、学情剖析1.知识基础:高二年级学生已学习了数列及等差数列相关基础知识,而且在初中已认识特别的数列乞降及小高斯的故事。
2.认知水平与能力:高二学生已初步拥有抽象逻辑思想能力,能在教师的指引下独立地解决问题。
3.学生特色:平行班里有许多学生基础不差且思想较活跃,能带动其余学生踊跃学习,但办理抽象问题的能力还有待进一步提升。
三、目标剖析知识技术目标:1.掌握等差数列前 n 项和公式;2.掌握等差数列前 n 项和公式的推导过程 ;3. 会简单运用等差数列前n 项和公式 .过程与方法:1.经过平等差数列前n 项和公式的推导, 领会倒序相加乞降的思想方法;2.经过公式的运用领会方程的思想。
感情态度:习兴趣 , 并经过平等差数列乞降历史的认识, 浸透数学史和数学文化.教课要点、难点1、教课要点:等差数列前n 项和公式的推导和应用.2、教课难点:在等差数列前n 项和公式的推导过程中领会倒序相加的思想方法.3、要点、难点解决议略:本课在设计上采纳了由特别到一般、从详细到抽象的教课策略.利用数形联合、类比概括的思想,层层深入,经过学生自主研究,剖析、整理出推导公式的思路,同时,借助多媒体的直观演示,帮助学生理解,师生互动、讲练联合,进而突出要点、打破教课难点。
四. 教法、学法本课采纳“研究——发现”教课模式.教师的教法突出活动的组织设计与方法的指引 . 学生的学法突出研究、发现与沟通 .五 . 教课过程教课过程设计为六个教课环节:(以以下图)指导思想:就是从特别到一般,由详细到抽象,类比概括总结出指导等差数列前n 项和公式的倒序相加法,而后指引学生认识和熟记公式并活应用,同时在应用过程中领会方程的思想方法。
高中数学人教A版必修5第二章2.3 等差数列的前n项和教案

等差数列的前n 项和教学目标:1.知识目标: (1)掌握等差数列前n 项和公式及其推导过程; (2)会简单运用等差数列的前n 项和公式。
2.能力目标:经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,培养观察、分析、归纳问题的能力。
3.情感目标:通过生动具体的现实问题,激发学生探究的兴趣和欲望,增强学生学好数学,热爱数学的情感。
教学重、难点:1.教学重点:等差数列前n 项和公式的理解、推导与应用;2.教学难点:公式推导过程中的转化思想。
、课型课时:新授课、一课时教学方法:探究法、讲授法教学手段:多媒体教学过程一:知识回顾1、等差数列的通项公式:()d n a a n 11-+=2、在等差数列a n 中,若有m +n =p +q , m,n,p,q ∈N +,则a m +a n =a p +a q 二:创设情景,导入新知1、创设情境数学家高斯在上小学时就显示出极高的天赋。
据传说,老师在数学课上出了这样一道题:“1+2+3+……+100=?”,对于十岁左右的孩子来说这个题目是比较困难的,但高斯很快就得到了正确答案。
提问:高斯是采用了什么方法来巧妙地计算出来的呢?思考:1+2+3+.......+101=?2、导入新知①等差数列前n 项和——公式推导(倒序相加)n n a a a a S ......321+++= ①121......a a a a S n n n n +++=-- ②则①+②可得()n n a a n S +=12 即 ()21n n a a n S += 有因为()d n a a n 11-+= 所以()d n n na S n 211-+= 强调:在n n S a d n a ,,,,1五个量中,能知三求二。
(分析公式的特点,熟练记忆所学公式.三:应用举例,巩固新知例:在等差数列{n a }中,已知d=2,n=15,n a =-10,求1a 及n S 四:跟踪练习,巩固所学练:已知等差数列{n a }中,1a =1,n a =19,n S =100,求d 与n 五:小结归纳,扩展深化1、掌握等差数列的两个求和公式及简单应用。
高中数学2.3等差数列的前n项和教案新人教A版必修5

第二节 等差数列及其前n 项和学习目标:1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.(重点)3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题.4.了解等差数列与一次函数、二次函数的关系. 基础知识梳理(一)等差数列的有关概念1.等差数列:如果一个数列从 起,每一项与它的前一项的 都等于同一个常数,那么这个数列就叫做等差数列.符号表示为 (n ∈N *,d 为常数).2.等差中项:若数列a ,A ,b 成等差数列,则A 叫做a ,b 的 .且思考: A =a +b2是a ,A ,b 成等差数列的什么条件?(二)等差数列的有关公式1.通项公式:a n = .2.前n 项和公式:S n = = . (三)等差数列的性质1.通项公式的推广:a n = a m + ____________________ (n ,m ∈N*). 2.若m ,n ,p ,q ∈N *,且m +n =p +q ,{a n }为等差数列, 则 a m +a n =a p +a q . 特别地:若2,m n p +=则____________________3.若{a n }为等差数列,则S n ,S 2n -S n ,S 3n -S 2n ,…仍为等差数列.考点一 等差数列的判断与证明[例1] 在数列{a n }中,a 1=-3,a n =2a n -1+2n +3 (n ≥2,且n ∈N *). (1)求a 2,a 3的值;(2)设b n =a n +32n(n ∈N *),证明:{b n }是等差数列.练习:1.数列{a n }的前n 项和为S n ,若a 1=3,点(S n ,S n +1)在直线y =n +1nx +n +1(n ∈N *)上.(1)求证:数列{S nn}是等差数列; (2)求S n .2.数列{a n }中,a 1=2,a 2=1,2a n =1a n +1+1a n -1(n ≥2,n ∈N *),则a n =________.考点二、 等差数列的基本运算[例2] (2012·重庆高考)已知{a n }为等差数列,且a 1+a 3=8,a 2+a 4=12. (1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,若a 1,a k ,S k +2成等比数列,求正整数k 的值.练习.(1)在等差数列中,已知a 6=10,S 5=5,则S 8=______. (2)设等差数列{a n }的前n 项和为S n ,若S 412-S 39=1,则公差为________考点三、 等差数列的性质[例3]1.在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________{} _______n a a a S 481116112.在等差数列中,已知+=,则该数列前项和= 3.等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则前9项和S 9等于 ________102030{}________.n n a n S S S S 10304.已知等差数列的前项和为,且=,=,则=考点四、 等差数列前n 项和的最值例4.设等差数列{a n }满足a 3=5,a 10=-9. (1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值.练习: 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值.课堂小结1、等差数列的判定方法2、等差数列的性质3、等差数列的前n 项和和最值得解法 作业三维设计56页1,2题精美句子1、善思则能“从无字句处读书”。
人教A版高中数学必修五2.3等差数列的前n项和教案(最新整理)

例题 2
法 2: 由 题 意 知 s10 310 ,
s20 1220 代入公式
解:设从 2001 年起第 n 年投入的资金为
an,根据题意,数列{an}是一个等差数列, 其中 a1=500, d=50
sn
n(a1 an ) 得: 2
那么,到 2010 年(n=10),投入的资金
总额为
s10
10 500 10 9 50 2
三、教学策略及设计 本课在设计上采用了由特殊到一般、从具体到抽象的教学策略.利用数形结合、类
比归纳的思想,层层深入,通过学生自主探究,分析、整理出推导公式的思路,同时, 借助多媒体的直观演示,帮助学生理解,师生互动、讲练结合,从而突出重点、突破教 学难点。 四. 教法、学法
本课采用“探究——发现”教学模式. 教师的教法突出活动的组织设计与方法的引 导.
【设计意图】进一步引导学生 探究项数为偶数的等差数列求
深化认识
和时倒序相加是否可行。从而
得出任意项数的等差数列求和
都可用倒序相加法,确立倒序
相加的思想和方法!
奇数时,首尾配对出现了问题,通过动 画演示引导帮助学生思考解决问题的 办法,为引出倒序相加法做铺垫。
动画演示:假如再给你同样多的珠 宝,在原图的基础上你能设计出一个什 么样的图案呢?
sn
n(a1 an ) , 2
sn
na1
n(n 1) d;
2
4、前 n 项和公式的灵活应用及方程的 思想。
课后作业
1. 课本 P40 习题 2.2 A 组
第 4,5,B 组 第 2 题
2.配套练习
六、作业布置: (一)书面作业: 1.已知等差数列{an},其中 d=2,n=15,
高中数学 第二章 数列 2.3 等差数列的前n项和学案 新人教A版必修5-新人教A版高一必修5数学学

2.3 等差数列的前n项和(1)数列前n项和的定义是什么?通常用什么符号表示?(2)能否根据首项、末项与项数求出等差数列的前n项和?(3)能否根据首项、公差与项数求出等差数列的前n项和?[新知初探]1.数列的前n项和对于数列{a n},一般地称a1+a2+…+a n为数列{a n}的前n项和,用S n表示,即S n=a1+a2+…+a n.2.等差数列的前n项和公式已知量首项,末项与项数首项,公差与项数选用公式S n=n a1+a n2S n=na1+n n-12d[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)数列的前n项和就是指从数列的第1项a1起,一直到第n项a n所有项的和( )(2)a n=S n-S n-1(n≥2)化简后关于n与a n的函数式即为数列{a n}的通项公式( )(3)在等差数列{a n}中,当项数m为偶数2n时,则S偶-S奇=a n+1( )解析:(1)正确.由前n项和的定义可知正确.(2)错误.例如数列{a n}中,S n=n2+2.当n≥2时,a n=S n-S n-1=n2-(n-1)2=2n-1.又∵a1=S1=3,∴a1不满足a n=S n-S n-1=2n-1,故命题错误.(3)错误.当项数m为偶数2n时,则S偶-S奇=nd.预习课本P42~45,思考并完成以下问题答案:(1)√ (2)× (3)×2.等差数列{a n }中,a 1=1,d =1,则S n 等于( ) A .n B .n (n +1) C .n (n -1)D.n n +12解析:选 D 因为a 1=1,d =1,所以S n =n +n n -12×1=2n +n 2-n 2=n 2+n 2=n n +12,故选D.3.设等差数列{a n }的前n 项和为S n ,若a 1=12,S 4=20,则S 6等于( )A .16B .24C .36D .48解析:选D 设等差数列{a n }的公差为d , 由已知得4a 1+4×32d =20,即4×12+4×32d =20,解得d =3,∴S 6=6×12+6×52×3=3+45=48.4.在等差数列{a n }中,S 4=2,S 8=6,则S 12=________.解析:由等差数列的性质,S 4,S 8-S 4,S 12-S 8成等差数列,所以2(S 8-S 4)=S 4+(S 12-S 8),S 12=3(S 8-S 4)=12.答案:12等差数列的前n 项和的有关计算[典例] 已知等差数列{a n }.(1)a 1=56,a 15=-32,S n =-5,求d 和n ;(2)a 1=4,S 8=172,求a 8和d .[解] (1)∵a 15=56+(15-1)d =-32,∴d =-16.又S n =na 1+n n -12d =-5,解得n =15或n =-4(舍). (2)由已知,得S 8=8a 1+a 82=84+a 82=172, 解得a 8=39,又∵a 8=4+(8-1)d =39,∴d =5.等差数列中的基本计算(1)利用基本量求值:等差数列的通项公式和前n 项和公式中有五个量a 1,d ,n ,a n 和S n ,这五个量可以“知三求二”.一般是利用公式列出基本量a 1和d 的方程组,解出a 1和d ,便可解决问题.解题时注意整体代换的思想.(2)结合等差数列的性质解题:等差数列的常用性质:若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q ,常与求和公式S n =n a 1+a n2结合使用.[活学活用]设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 8=11,则S 9等于( ) A .13 B .35 C .49D .63解析:选D ∵{a n }为等差数列,∴a 1+a 9=a 2+a 8, ∴S 9=9a 2+a 82=9×142=63.已知S n 求a n 问题[典例] 已知数列{a n }的前n 项和S n =-2n 2+n +2.(1)求{a n }的通项公式; (2)判断{a n }是否为等差数列? [解] (1)∵S n =-2n 2+n +2, ∴当n ≥2时,S n -1=-2(n -1)2+(n -1)+2=-2n 2+5n -1, ∴a n =S n -S n -1=(-2n 2+n +2)-(-2n 2+5n -1) =-4n +3.又a 1=S 1=1,不满足a n =-4n +3,∴数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧1,n =1,-4n +3,n ≥2.(2)由(1)知,当n ≥2时,a n +1-a n =[-4(n +1)+3]-(-4n +3)=-4,但a 2-a 1=-5-1=-6≠-4,∴{a n }不满足等差数列的定义,{a n }不是等差数列.(1)已知S n 求a n ,其方法是a n =S n -S n -1(n ≥2),这里常常因为忽略条件“n ≥2”而出错. (2)在书写{a n }的通项公式时,务必验证n =1是否满足a n (n ≥2)的情形.如果不满足,则通项公式只能用a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2表示.[活学活用]1.已知数列{a n }的前n 项和为S n =-n 2,则( ) A .a n =2n +1 B .a n =-2n +1 C .a n =-2n -1D .a n =2n -1解析:选B 当n =1时,a 1=S 1=-1;n ≥2时,a n =S n -S n -1=-n 2+(n -1)2=-2n +1,此时满足a 1=-1.综上可知a n =-2n +1.2.已知S n 是数列{a n }的前n 项和,根据条件求a n . (1)S n =2n 2+3n +2;(2)S n =3n-1.解:(1)当n =1时,a 1=S 1=7,当n ≥2时,a n =S n -S n -1=(2n 2+3n +2)-[2(n -1)2+3(n -1)+2]=4n +1,又a 1=7不适合上式,所以a n =⎩⎪⎨⎪⎧7,n =1,4n +1,n ≥2.(2)当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=(3n-1)-(3n -1-1)=2×3n -1,显然a 1适合上式,所以a n =2×3n -1(n ∈N *).等差数列的前n 项和性质[典例] (1)等差数列前n 项的和为30,前2n 项的和为100,则它的前3n 项的和为( ) A .130 B .170 C .210D .260(2)等差数列{a n }共有2n +1项,所有的奇数项之和为132,所有的偶数项之和为120,则n 等于________.(3)已知{a n },{b n }均为等差数列,其前n 项和分别为S n ,T n ,且S n T n =2n +2n +3,则a 5b 5=________.[解析] (1)利用等差数列的性质:S n ,S 2n -S n ,S 3n -S 2n 成等差数列.所以S n +(S 3n -S 2n )=2(S 2n -S n ), 即30+(S 3n -100)=2(100-30), 解得S 3n =210.(2)因为等差数列共有2n +1项,所以S 奇-S 偶=a n +1=S 2n +12n +1,即132-120=132+1202n +1,解得n =10.(3)由等差数列的性质,知a 5b 5=a 1+a 92b 1+b 92=a 1+a 92×9b 1+b 92×9=S 9T 9=2×9+29+3=53. [答案] (1)C (2)10 (3)53等差数列的前n 项和常用的性质(1)等差数列的依次k 项之和,S k ,S 2k -S k ,S 3k -S 2k …组成公差为k 2d 的等差数列.(2)数列{a n }是等差数列⇔S n =an 2+bn (a ,b 为常数)⇔数列⎩⎨⎧⎭⎬⎫S n n 为等差数列.(3)若S 奇表示奇数项的和,S 偶表示偶数项的和,公差为d , ①当项数为偶数2n 时,S 偶-S 奇=nd ,S 奇S 偶=a na n +1; ②当项数为奇数2n -1时,S 奇-S 偶=a n ,S 奇S 偶=n n -1. [活学活用]1.设等差数列{a n }的前n 项和为S n ,若S 4=8,S 8=20,则a 11+a 12+a 13+a 14=( ) A .18 B .17 C .16D .15解析:选A 设{a n }的公差为d ,则a 5+a 6+a 7+a 8=S 8-S 4=12,(a 5+a 6+a 7+a 8)-S 4=16d ,解得d =14,a 11+a 12+a 13+a 14=S 4+40d =18.2.等差数列{a n }的通项公式是a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项和为________.解析:因为a n =2n +1,所以a 1=3, 所以S n =n 3+2n +12=n 2+2n ,所以S n n=n +2,所以⎩⎨⎧⎭⎬⎫S n n 是公差为1,首项为3的等差数列,所以前10项和为3×10+10×92×1=75.答案:75等差数列的前n 项和最值问题[典例] 在等差数列{a n }中,a 1=25,S 17=S 9,求前n 项和S n 的最大值. [解] 由S 17=S 9,得25×17+17×17-12d =25×9+9×9-12d ,解得d =-2, [法一 公式法]S n =25n +n n -12×(-2)=-(n -13)2+169.由二次函数性质得,当n =13时,S n 有最大值169. [法二 邻项变号法]∵a 1=25>0,由⎩⎪⎨⎪⎧a n =25-2n -1≥0,a n +1=25-2n ≤0,得⎩⎪⎨⎪⎧n ≤1312,n ≥1212,即1212≤n ≤1312.又n ∈N *,∴当n =13时,S n 有最大值169.求等差数列的前n 项和S n 的最值的解题策略(1)将S n =na 1+n n -12d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n 配方,转化为求二次函数的最值问题,借助函数单调性来解决.(2)邻项变号法:当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0的项数n 使S n 取最大值.当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a n ≤0,a n +1≥0的项数n 使S n 取最小值.[活学活用]已知{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最大值,那么当S n 取得最小正值时,n =( )A .11B .17C .19D .21解析:选C ∵S n 有最大值,∴d <0,则a 10>a 11,又a 11a 10<-1,∴a 11<0<a 10,a 10+a 11<0,S 20=10(a 1+a 20)=10(a 10+a 11)<0,S 19=19a 10>0,∴S 19为最小正值.故选C.层级一 学业水平达标1.已知数列{a n }的通项公式为a n =2-3n ,则{a n }的前n 项和S n 等于( ) A .-32n 2+n2B .-32n 2-n2C.32n 2+n 2D.32n 2-n 2解析:选A ∵a n =2-3n ,∴a 1=2-3=-1,∴S n =n -1+2-3n2=-32n 2+n2.2.等差数列{a n }的前n 项和为S n ,若a 7>0,a 8<0,则下列结论正确的是( ) A .S 7<S 8 B .S 15<S 16 C .S 13>0D .S 15>0解析:选 C 由等差数列的性质及求和公式得,S 13=13a 1+a 132=13a 7>0,S 15=15a 1+a 152=15a 8<0,故选C.3.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36D .27解析:选B ∵a 7+a 8+a 9=S 9-S 6,而由等差数列的性质可知,S 3,S 6-S 3,S 9-S 6构成等差数列,所以S 3+(S 9-S 6)=2(S 6-S 3),即a 7+a 8+a 9=S 9-S 6=2S 6-3S 3=2×36-3×9=45.4.已知等差数列{a n }的前n 项和为S n,7a 5+5a 9=0,且a 9>a 5,则S n 取得最小值时n 的值为( )A .5B .6C .7D .8解析:选B 由7a 5+5a 9=0,得a 1d =-173.又a 9>a 5,所以d >0,a 1<0.因为函数y =d 2x 2+⎝⎛⎭⎪⎫a 1-d 2x 的图象的对称轴为x =12-a 1d =12+173=376,取最接近的整数6,故S n 取得最小值时n 的值为6.5.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于( )A .1B .-1C .2D.12解析:选A S 9S 5=92a 1+a 952a 1+a 5=9×2a 55×2a 3=9a 55a 3=95×59=1. 6.若等差数列{a n }的前n 项和为S n =An 2+Bn ,则该数列的公差为________. 解析:数列{a n }的前n 项和为S n =An 2+Bn ,所以当n ≥2时,a n =S n -S n -1=An 2+Bn -A (n -1)2-B (n -1)=2An +B -A ,当n =1时满足,所以d =2A .答案:2A7.设等差数列{a n }的前n 项和为S n ,且S m =-2,S m +1=0,S m +2=3,则m =________. 解析:因为S n 是等差数列{a n }的前n 项和,所以数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,所以S m m +S m +2m +2=2S m +1m +1,即-2m +3m +2=0,解得m =4. 答案:48.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.解析:设等差数列{a n }的项数为2n +1,S 奇=a 1+a 3+…+a 2n +1=n +1a 1+a 2n +12=(n +1)a n +1,S 偶=a 2+a 4+a 6+…+a 2n =n a 2+a 2n2=na n +1,所以S 奇S 偶=n +1n =4433,解得n =3,所以项数2n +1=7, S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项.答案:11 79.已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n +1,求数列{a n }的通项公式. 解:由已知条件,可得S n +1=2n +1,则S n =2n +1-1.当n =1时,a 1=S 1=3, 当n ≥2时,a n =S n -S n -1=(2n +1-1)-(2n -1)=2n,又当n =1时,3≠21,故a n =⎩⎪⎨⎪⎧3,n =1,2n,n ≥2.10.在等差数列{a n }中,S n 为其前n 项的和,已知a 1+a 3=22,S 5=45. (1)求a n ,S n ;(2)设数列{S n }中最大项为S k ,求k .解:(1)由已知得⎩⎪⎨⎪⎧2a 2=22,5a 3=45, 即⎩⎪⎨⎪⎧a 2=11,a 3=9,所以⎩⎪⎨⎪⎧a 1=13,d =-2,所以a n =-2n +15,S n =-n 2+14n .(2)由a n ≥0可得n ≤7,所以S 7最大,k =7.层级二 应试能力达标1.已知等差数列{a n }的前n 项和为S n ,S 4=40,S n =210,S n -4=130,则n =( ) A .12 B .14 C .16D .18解析:选B 因为S n -S n -4=a n +a n -1+a n -2+a n -3=80,S 4=a 1+a 2+a 3+a 4=40,所以4(a 1+a n )=120,a 1+a n =30,由S n =n a 1+a n2=210,得n =14.2.在等差数列{a n }中,S n 是其前n 项和,且S 2 011=S 2 014,S k =S 2 009,则正整数k 为( ) A .2 014 B .2 015 C .2 016D .2 017解析:选C 因为等差数列的前n 项和S n 是关于n 的二次函数,所以由二次函数的对称性及S 2 011=S 2 014,S k =S 2 009,可得2 011+2 0142=2 009+k 2,解得k =2 016.故选C. 3.已知S n 为等差数列{a n }的前n 项和,S 1<0,2S 21+S 25=0,则S n 取最小值时,n 的值为( )A .11B .12C .13D .14解析:选A 设等差数列{a n }的公差为d ,由2S 21+S 25=0得,67a 1+720d =0,又d >0,∴67a 11=67(a 1+10d )=67a 1+670d <0,67a 12=67(a 1+11d )=67a 1+737d >0,即a 11<0,a 12>0.故选A.4.已知等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a n b n为整数的正整数n 的个数是( )A .2B .3C .4D .5解析:选D ∵a n b n =a 1+a 2n -12b 1+b 2n -12=a 1+a 2n -122n -1b 1+b 2n -122n -1=A 2n -1B 2n -1=72n -1+452n -1+3=14n +382n +2=7+12n +1,∴当n 取1,2,3,5,11时,符合条件,∴符合条件的n 的个数是5. 5.若数列{a n }是等差数列,首项a 1<0,a 203+a 204>0,a 203·a 204<0,则使前n 项和S n <0的最大自然数n 是________.解析:由a 203+a 204>0⇒a 1+a 406>0⇒S 406>0,又由a 1<0且a 203·a 204<0,知a 203<0,a 204>0,所以公差d >0,则数列{a n }的前203项都是负数,那么2a 203=a 1+a 405<0,所以S 405<0,所以使前n 项和S n <0的最大自然数n =405.答案:4056.已知等差数列{a n }的前n 项和为S n ,若S 4≤4,S 5≥15,则a 4的最小值为________. 解析:S 4=2(a 1+a 4)≤4⇒2a 3-d ≤2,S 5=5a 3≥15⇒a 3≥3.因为2a 3-d ≤2,所以d -2a 3≥-2,又因为a 3≥3,所以2a 3≥6,所以d ≥4,所以a 4=a 3+d ≥7,所以a 4的最小值为7.答案:77.已知等差数列{a n }的公差d >0,前n 项和为S n ,且a 2a 3=45,S 4=28.(1)求数列{a n }的通项公式;(2)若b n =S n n +c (c 为非零常数),且数列{b n }也是等差数列,求c 的值. 解:(1)∵S 4=28,∴a 1+a 4×42=28,a 1+a 4=14,a 2+a 3=14,又a 2a 3=45,公差d >0,∴a 2<a 3,∴a 2=5,a 3=9,∴⎩⎪⎨⎪⎧ a 1+d =5,a 1+2d =9,解得⎩⎪⎨⎪⎧ a 1=1,d =4,∴a n =4n -3. (2)由(1),知S n =2n 2-n ,∴b n =S n n +c =2n 2-n n +c, ∴b 1=11+c ,b 2=62+c ,b 3=153+c . 又{b n }也是等差数列,∴b 1+b 3=2b 2,即2×62+c =11+c +153+c, 解得c =-12(c =0舍去).8.在等差数列{a n }中,a 10=23,a 25=-22.(1)数列{a n }前多少项和最大?(2)求{|a n |}的前n 项和S n .解:(1)由⎩⎪⎨⎪⎧ a 1+9d =23,a 1+24d =-22,得⎩⎪⎨⎪⎧ a 1=50,d =-3,∴a n =a 1+(n -1)d =-3n +53.令a n >0,得n <533, ∴当n ≤17,n ∈N *时,a n >0; 当n ≥18,n ∈N *时,a n <0,∴{a n }的前17项和最大.(2)当n ≤17,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =na 1+n n -12d =-32n 2+1032n .当n ≥18,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 17-a 18-a 19-…-a n =2(a 1+a 2+…+a 17)-(a 1+a 2+…+a n )=2⎝ ⎛⎭⎪⎫-32×172+1032×17-⎝ ⎛⎭⎪⎫-32n 2+1032n =32n 2-1032n +884. ∴S n =⎩⎪⎨⎪⎧ -32n 2+1032n ,n ≤17,n ∈N *,32n 2-1032n +884,n ≥18,n ∈N *.。
高中数学 2.3等差数列及其前n项和教案新人教A版必修5

《等差数列及其前n 项和》导学案教学目的:掌握等差数列及其前n 项和应用教学重点:掌握等差数列及其前n 项和教学难点:应用教学过程:知识梳理1.等差数列的有关概念(1)等差数列的定义(2)等差中项2.通项公式34已知数列{a n }是等差数列,S n 是其前n 项和.(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }的公差为d ,则{a 2n }也是等差数列,公差为2d .(4)若{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列.二课前热身1.等差数列{a n }中,a 2=3,a 3+a 4=9,则a 1a 6的值为( )A .1B .18C .21D .272.在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( )A .5B .8C .10D .143.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为( )A .S 7B .S 6C .S 5D .S 44.设S n 为公差不为零的等差数列{a n }的前n 项和,若S 9=3a 8,则S 153a 5=________. 5.在等差数列40,37,34,…中,第一个负数项是________. 三、考点剖析:1、考点一 :等差数列的判断与证明____例1、已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,且a n a n +1=4S n +λ(λ为常数).(1)求证:数列{a 2k -1}是等差数列,并求出这个数列的通项公式;(2)是否存在λ,使得{a n }是等差数列,并说明理由.[规律方法]随堂练:1.已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:{b n }是等差数列;(2)求数列{a n }中的最大项与最小项,并说明理由.2、考点二:_等差数列基本量的计算________________例2、 (1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为( )A .5B .10 C.52 D .54(2)等差数列{a n }中,已知a 1=-12,S 13=0,使得a n >0的最小正整数n 为( )A .7B .8C .9D .10[规律方法]随堂练:2.已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36.(1)求d 及S n ;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65.3、考点三:等差数列的性质及最值________________例3、已知数列{a n }是等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,{a n }的前n 项和为S n ,则使得S n 达到最大的n 是( )A .18B .19C .20D .21[规律方法]随堂练:3.等差数列{a n }前17项的和S 17=51,则a 5-a 7+a 9-a 11+a 13等于( )A .3B .6C .17D .514.数列{a n }中,a 1=-23,a n +1-a n -3=0.(1)求数列的前n 项和S n ;(2)求使得数列{S n }是递增数列的n 的取值范围.四、课堂小结:画思维导图五、当堂落实:1.设等差数列{a n }的前n 项和为S n ,若a 1a 5a 9=15,且1a 1a 5+1a 5a 9+1a 9a 1=35,则S 9=( ) A .27 B .24C .21D .182.设数列{a n }是公差d <0的等差数列,S n 为其前n 项和,若S 6=5a 1+10d ,则S n 取最大值时,n =( )A .5B .6C .5或6D .6或73.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.4.已知{a n }是递增的等差数列,a 1=2,a 22=a 4+8.(1)求数列{a n }的通项公式;(2)若b n =a n +2a n ,求数列{b n }的前n 项和S n .。
高中数学《2.3等差数列的前n项和》第1课时教案 新人教A版必修5
高中数学《2.3等差数列的前n 项和》第1课时教案新人教A 版必修5课题:2.3.1等差数列的前n项和(1)主备人:执教者:【学习目标】掌握等差数列前n项和公式及其获取思路;会用等差数列的前n项和公式解决一些简单的与前n项和有关的问题.【学习重点】等差数列前n项和公式的理解、推导及应用.【学习难点】灵活运用等差数列前n项公式解决一些简单的有关问题.【授课类型】新授课【教具】多媒体电脑、实物投影仪、电子白板。
【学习方法】诱思探究法【学习过程】 一、复习引入: “小故事”:高斯是伟大的数学家,天文学家,高斯十岁时,有一次老师出了一道题目,老师说: “现在给大家出道题目: 1+2+…100=?”过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时,高 )()()()(223121nnn n nna a a a a a a a S ++++++++=-- ∵ =+=+=+--23121n n n a a a a a a∴)(21nna a n S+= 由此得:2)(1n na a n S+=从而我们可以验证高斯十岁时计算上述问题的正确性2. 等差数列的前n 项和公式2:2)1(1dn n na S n-+= 用上述公式要求nS 必须具备三个条件:na a n ,,1但dn a an)1(1-+= 代入公式1即得:2)1(1d n n na S n -+=此公式要求nS 必须已知三个条件:个性设计da n ,,1 (有时比较有用) 三、 特例示范课本P49-50的例1、例2、例3 由例3得与na 之间的关系:由nS 的定义可知,当n=1时,1S =1a ;当n ≥2时,na =nS -1-n S ,即na =⎩⎨⎧≥-=-)2()1(11n S S n S n n .四、课堂小结1.等差数列的前n 项和公式1:2)(1n n a a n S +=2.等差数列的前n 项和公式2:2)1(1dn n na S n-+= 五、作业布置: 课时作业2.3.1六、课后反思:。
等差数列前n项和教学设计
在数学课堂中播种“生态文明”的种子——等差数列的前n项教学设计一、教材分析:等差数列的前n项和是人教A版必修5“数列”第2节的内容,一方面它是“等差数列”内容的延续、与前面学习的函数等知识也有着密切的联系,另一方面它又为进一步学习“等比数列与等比数列前n和”等内容作准备.等差数列与实际生活有千丝万缕的练习,把教学内容融入到生活的背景中,可以实现学科价值与育人价值的双目标。
数列是从现实问题中抽象出来的一个模型,在公式推导中所蕴涵的数学思想方法如方程的思想等在各种数列问题中有着广泛的应用;另外它在实际问题的计算中也经常涉及到. 就内容的人文价值上来看,等差数列的前n项和公式的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体。
二、学生分析:学生学习了等差数列第一节,掌握了等差数列的定义以及通项公式以及相关的性质,有了较好的计算能力,但学生的观察能力、归纳推理、思维的严谨性等能力还有待提高,所以本节课从具体实例引入,降低起点,循序渐进,让不同的学生有不同的收获。
三、教法分析:德育与学科知识相互融合是实现立德树人根本任务的重要途径,结合等差数列在与实际生活的密切联系性,我把本节课的教学过程融入到生态文明建设的大背景下,从情境引入到知识应用都能与德育目标相辅相成,以期达到通过学科教学进行德育的目的。
四、教学目标[知识与技能]1、理解等差数列的推导过程,理解“倒序相加法”的原理。
2、理解公式,能用公式解决简单的问题;通过公式运用进一步体会方程的思想;发展学生的计算能力。
[过程与方法]1、启发式教学。
让学生主动发现问题,得到公式推导的思路,并能自觉地得到解决办法;指导学生合情推理,加深认识,正确运用。
2、探究式学习。
从高斯算法到倒序相加法,从特殊数列到一般数列求和,从公式的认识到运用,都是以学生探究为主,老师适当指导,总结。
[情感态度与价值观]1、让学生体会到学科知识与生态文明的关系,利用数学知识可以解决实际问题。
高中数学人教A版必修5课件:2.3.1 等差数列的前n项和
-4-
第1课时 等差数列的 前n项和
1 2
M 目标导航
UBIAODAOHANG
Z 知识梳理
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
2.等差数列{an}的前 n 项和 设等差数列{an}的公差是 d,则 Sn=
������(������1+������������ ) 2
������(������1 +������������ ) 2
=
������ 6-2 2
53
= −5, 解得n=15.∴a15 =
=
8(4+������8 ) 2
= 172, 解得a8=39.
又 a8=4+(8-1)d=39,∴d=5. (3)由 ������������ = ������1 + (������-1)������, ������������ = ������������1 + ������ = 7, ������ = 5, 解方程组得 或 ������1 = 3 ������1 = -1.
-12-
第1课时 等差数列的 前n项和
题型一 题型二 题型三
M 目标导航
题型四
UBIAODAOHANG
Z 知识梳理
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
(2)设数列{an}的前 n 项和为 Sn,点
������
������������ ������, ������
D典例透析
IANLI TOUXI
【变式训练1】 (1)已知数列{an}的前n项和为Sn,且Sn=3· 2n+1,则 an= . 解析:当n=1时,a1=S1=7; 当n≥2时,an=Sn-Sn-1=3· 2n+1-3· 2n-1-1=3· 2n-3· 2n-1=3· 2n-1(21)=3· 2n-1. 当n=1时,不满足上式. 7,������ = 1, ∴an= 3· 2������ -1 ,������ ≥ 2. 7,������ = 1, 答案: 3· 2������ -1 ,������ ≥ 2
最新人教A版必修5高中数学 2-3 等差数列的前n项和教案(精品)
知识与技能
理解并掌握等差数列前 n 项和公式 通过尝试猜 想公式, 与师生合作论证,
学习目标
过程与方法
进而运用公式解决问题,并上升到学 科思想高度。
情感态度价值观 学习重点 学习难点 教学环节 理 解并掌握等差数列前 n 项和公式 严格证明与推导公式 教学内容 泰姬陵寝宝石问题(请看大屏幕)
1 (2) d , n 37 , S n 629 , 求a1及a n ; 3 5 1 (3) a1 , d , S n 5, 求n及a n ; 6 6
(4) d 2,n 15, an 10, 求a1及S n . 美学角度:对称美与抽象美
10 分钟
课堂小结
数学知识:等差数列前 n 项和公式 学科思想:方程思想与对称思想。
1 分钟
3
感受数学对称的美
备注
这个问题实质是计算: 1+2+3+· · · · · · 100 的问题, 而 {1, 导语 2,3, · · · · · ·100}构成数列,这就是我们这节课要学习 的等差数列前 n 项和的问题。 完成如下计算,并思想后面的问题: 1、1 +3+5+7+9+11+13+15+17+19= 2、2+4+6+8+10+12+14+16+18= 独立完成 尝试与猜想 3、1+4+7+10+13+16+19+22+25+28= (3 分钟) 4、27+24+21+18+15+12+9+6+3= 如果求等差数列 an 的前 10 项的 和应该怎么算?如果 是前 9 项应该怎么算?如果求前 n 项的和呢?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以 S n
n(a1 an ) .(Ⅰ) 2
生2 对于问题(2),我是这样来求的: 因为Sn=a1+(a1+d)+(a1+2d)+(a1+3d)+…+[a1+(n-1)×d],
所以Sn=na1+[1+2+3+…+(n-1)]d=na1+
n(n 1) d, 2
即Sn=na1+
n(n 1) d.(Ⅱ) 2
生 只要计算出1+2+3+…+100的结果就是这些宝石的总数. 师 对,问题转化为求这100个数的和.怎样求这100个数的和呢? [合作探究]
1
师 我们再回到前面的印度泰姬陵的陵寝中的等边三角形图案中,在图中我们取下第1层到第21层, 得到右图,则图中第1层到第21层一共有多少颗宝石呢? 生 这是求“1+2+3+…+21”奇数个项的和的问题,高斯的方法不能用了.要是偶数项的数求和就好 首尾配成对了. 师 高斯的这种“首尾配对”的算法还得分奇、偶个项的情况求和,适用于偶数个项,我三角形倒置 ,与原图补成平行四边形.平行四边形中的每行宝
生 (1)1+2+3+…+n=
n(n 1) n(1 n 1) 2 ;(2)1+3+5+…+(2n-1)= =n ;(3)2+4+6+…+2n= 2 2
n(2n 2) =n(n+1). 2
师 第(4)小题数列共有几项?是否为等差数列?能否直接运用Sn公式求解?若不能,那应如何解答 ?(小组讨论后,让学生发言解答) 生 (4)中的数列共有2n项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以原式 = [1+3+5+…+(2n-1)]-(2+4+6+…+2n)=n2-n(n+1)=-n.
2.3 等差数列的前n项和
第一课时 推进新课 教师出示投影胶片1:
印度泰姬陵(Taj Mahal)是世界七大建筑奇迹之一,所在地阿格拉市,泰姬陵是印度古代建筑史上的经典之作 ,这个古陵墓融合了古印度、阿拉伯和古波斯的建筑风格,是印度伊斯兰教文化的象征. 陵寝以宝石镶饰,图案之细致令人叫绝.传说当时陵寝中有一个等边三角形图案,以相同大 小的圆宝石镶饰而成,共有100层(如下图),奢华之程度,可见一斑.你知道这个图案中一共有 多少颗宝石吗?(这问题赋予了课堂人文历史的气息,缩短了数学与现实之间的距离,引领学生 步入探讨高斯算法的阶段)
4
生 上题虽然不是等差数列,但有一个规律,两项结合都为-1,故可得另一解法:原式=(-1)+(1)+(-1)+…+(-1)=-n. 师 很好!在解题时我们应仔细观察,寻找规律,往往会寻找到好的方法.注意在运用求和公式时, 要看清等差数列的项数,否则会引起错解. 【例2】 (课本第49页例1) 分析:这是一道实际应用题目,同学们先认真阅读此题,理解题意.你能发现其中的一些有用信 息吗? 生 由题意我发现了等差数列的模型,这个等差数列的首项是500 ,记为a1,公差为50,记为d,而 从2001年到2010年应为十年,所以这个等差数列的项数为10.再用公式就可以算出来了. 师 这位同学说得很对,下面我们来完成此题的解答.(按课本解答示范格式) 【例3】 (课本第50页例2)已知一个等差数列的前10项的和是310,前20项的和是1 220,由此可以确定求其前n项和的公式吗? 分析:若要确定其前n项求和公式,则必须确定什么? 生 必须要确定首项a1与公差d. 师 首项与公差现在都未知,那么应如何来确定? 生 由已知条件,我们已知了这个等差数列中的S10与S20,于是可从中获得两个关于a1和d的关系式 ,组成方程组便可从中求得. (解答见课本第50页) 师 通过上面例题3我们发现了在以上两个公式中,有5个变量.已知三个变量, 可利用构造方程或 方程组求另外两个变量(知三求二).运用方程思想来解决问题. [合作探究]
2
(1)求1到n的正整数之和,即求1+2+3+…+(n1)+n.(注:这问题在前面思路的引导下可由学生轻松解决) (2)如何求等差数列{an}的前n项的和Sn? 生1 对于问题(2),我这样来求:因为Sn=a1+a2+a3+…+an, Sn=an+an-1+…+a2+a1, 再将两式相加,因为有等差数列的通项的性质:若m+n=p+q,则am+an=ap+aq,
石的个数均为22个,共21行.则三角形中的宝石个数就是
(1 21) 21 . 2
师 妙得很!这种方法不需分奇、偶个项的情况就可以求和,真是太好了!我将他的几何法写成式子 就是: 1+2+3+…+21, 21+20+19+…+1, 对齐相加(其中下第二行的式子与第一行的式子恰好是倒序) 这实质上就是我们数学中一种求 和的重要方法——“倒序相加法”. 现在我将求和问题一般化:
an,高是项数n,有利于我们的记忆.
[方法引导] 师 如果已知等差数列的首项a1,项数为n,第n项为an,则求这数列的前n项和用公式(Ⅰ)来进行, 若已知首项a1,项数为n,公差d,则求这数列的前n项和用公式(Ⅱ)来进行. 引导学生总结:这些公式中出现了几个量?
3
生 每个公式中都是5个量. 师 如果我们用方程思想去看这两个求和公式,你会有何种想法? 生 已知其中的三个变量,可利用构造方程或方程组求另外两个变量(知三求二). 师 当公差d≠0时,等差数列{an}的前n项和Sn可表示为n的不含常数项的二次函数,且这二次函数 的二次项系数的2倍就是公差. [知识应用] 【例1】 (直接代公式)计算: (1)1+2+3+…+n; (2)1+3+5+…+(2n-1); (3)2+4+6+…+2n; (4)1-2+3-4+5-6+…+(2n-1)-2n. (让学生迅速熟悉公式,即用基本量观点认识公式)请同学们先完成(1)~(3),并请一位同学回 答.
[教师精讲] 两位同学的推导过程都很精彩,一位同学是用“倒序相加法”,后一位同学用的是基本量来转 化为用我们前面求得的结论,并且我们得到了等差数列前n项求和的两种不同的公式.这两种求 和公式都很重要,都称为等差数列的前n项和公式.其中公式( Ⅰ)是基本的,我们可以发现,它 可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项a1,下底是第n项