离散数学第10章

合集下载

编译原理和离散数学

编译原理和离散数学

2011年考研,离散数学和编译原理怎么复习2010-06-23 10:37离散数学和编译原理前阵子很多人在议论说2010年如果加考离散数学怎么办。

其实,在本科阶段,这两门课是典型的学起来很难而考试出题比较简单的科目。

就算2010年添了离散数学,也肯定占不了太多的分,认真把定义搞懂搞熟,拿个七八成的分不是多大问题。

离散数学蛮多的内容出题和解题的思路都是死的,不像高数有那么多的定理和公式,遇到难题还要拆来凑去啥的。

尤其要注意的一点是——紧扣定义!!打个易懂的比喻,高等数学是求值,线性代数是求解的个数,那么离散数学的一个核心要素就是求元素以及集合之间的相互关系。

不要抱着一种求具体值的思想来解离散数学题。

离散数学和编译原理是学好了很有用的两门课,要钻进去,而不是逃避,因为你当初义无反顾地选择了计算机科学与技术这个振奋人心的专业。

离散数学中的集合论思想对我们思考问题的方式有着巨大帮助,而编译原理是要写出高效能软件所必须掌握的课程。

中国科学技术大学2009年计算机学院考研复试就以笔试形式考了这两门课,100分,占了复试的半壁江山了,可见它们的重要性。

\计算机基础综合的大纲到8月初左右公布,如果真要考的话,我推荐下参考书:<<离散数学>>——方世昌编著西安电子科技大学出版社配套有本绿色的习题解答,写的很详细。

我本科是西电计算机学院的,做过这2本书,感觉不错。

而它更是被指定为这次中科大复试的参考书目,多少具备了一定的权威性。

方世昌老师是个不折不扣的牛人,国内第一本外文算法书教材就是他翻译过来的,我读过一本<<算法设计技巧与分析>>也是他翻译的。

编译原理有些学校复试可能会考,认真研究一下陈意云老师的<<编译原理>>和配套那本薄薄的习题精选(高等教育出版社),就没啥问题了。

关于政治改革和报辅导班听说2010年政治变动蛮大,也不必惊慌,第一次改革一般出题都不会很难。

离散数学知识点总结

离散数学知识点总结

总结离散数学知识点第二章命题逻辑1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假;2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积;3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反;4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假;5.求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写;6.真值表中值为1的项为极小项,值为0的项为极大项;7.n个变元共有n2个极小项或极大项,这n2为(0~n2-1)刚好为化简完后的主析取加主合取;8.永真式没有主合取范式,永假式没有主析取范式;9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假)10.命题逻辑的推理演算方法:P规则,T规则①真值表法;②直接证法;③归谬法;④附加前提法;第三章谓词逻辑1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质;多元谓词:谓词有n个个体,多元谓词描述个体之间的关系;2.全称量词用蕴含→,存在量词用合取^;3.既有存在又有全称量词时,先消存在量词,再消全称量词;第四章集合1.N,表示自然数集,1,2,3……,不包括0;2.基:集合A中不同元素的个数,|A|;3.幂集:给定集合A,以集合A的所有子集为元素组成的集合,P(A);4.若集合A有n个元素,幂集P(A)有n2个元素,|P(A)|=||2A=n2;5.集合的分划:(等价关系)①每一个分划都是由集合A的几个子集构成的集合;②这几个子集相交为空,相并为全(A);6.集合的分划与覆盖的比较:分划:每个元素均应出现且仅出现一次在子集中;覆盖:只要求每个元素都出现,没有要求只出现一次;第五章关系1.若集合A有m个元素,集合B有n个元素,则笛卡尔A×B的基数为2种不同的关系;mn,A到B上可以定义mn2.若集合A有n个元素,则|A×A|=2n,A上有22n个不同的关系;3.全关系的性质:自反性,对称性,传递性;空关系的性质:反自反性,反对称性,传递性;全封闭环的性质:自反性,对称性,反对称性,传递性;4.前域(domR):所有元素x组成的集合;后域(ranR):所有元素y组成的集合;5.自反闭包:r(R)=RUI;x对称闭包:s(R)=RU1-R;传递闭包:t(R)=RU2R U3R U……6.等价关系:集合A上的二元关系R满足自反性,对称性和传递性,则R称为等价关系;7.偏序关系:集合A上的关系R满足自反性,反对称性和传递性,则称R是A上的一个偏序关系;8.covA={<x,y>|x,y属于A,y盖住x};9.极小元:集合A中没有比它更小的元素(若存在可能不唯一);极大元:集合A中没有比它更大的元素(若存在可能不唯一);最小元:比集合A中任何其他元素都小(若存在就一定唯一);最大元:比集合A中任何其他元素都大(若存在就一定唯一);10.前提:B是A的子集上界:A中的某个元素比B中任意元素都大,称这个元素是B的上界(若存在,可能不唯一);下界:A中的某个元素比B中任意元素都小,称这个元素是B的下界(若存在,可能不唯一);上确界:最小的上界(若存在就一定唯一);下确界:最大的下界(若存在就一定唯一);第六章函数2种不同的关系,有m n种不同的函1.若|X|=m,|Y|=n,则从X到Y有mn数;2.在一个有n个元素的集合上,可以有22n种不同的关系,有n n种不同的函数,有n!种不同的双射;3.若|X|=m,|Y|=n,且m<=n,则从X到Y有A m n种不同的单射;4.单射:f:X-Y,对任意x,2x属于X,且1x≠2x,若f(1x)≠f(2x);1满射:f:X-Y,对值域中任意一个元素y在前域中都有一个或多个元素对应;双射:f:X-Y,若f既是单射又是满射,则f是双射;5.复合函数:fºg=g(f(x));6.设函数f:A-B,g:B-C,那么①如果f,g都是单射,则fºg也是单射;②如果f,g都是满射,则fºg也是满射;③如果f,g都是双射,则fºg也是双射;④如果fºg是双射,则f是单射,g是满射;第七章代数系统1.二元运算:集合A上的二元运算就是2A到A的映射;2.集合A上可定义的二元运算个数就是从A×A到A上的映射的个数,即从从A×A到A上函数的个数,若|A|=2,则集合A上的二元运算的个数为2*22=42=16种;3.判断二元运算的性质方法:①封闭性:运算表内只有所给元素;②交换律:主对角线两边元素对称相等;③幂等律:主对角线上每个元素与所在行列表头元素相同;④有幺元:元素所对应的行和列的元素依次与运算表的行和列相同;⑤有零元:元素所对应的行和列的元素都与该元素相同;4.同态映射:<A,*>,<B,^>,满足f(a*b)=f(a)^f(b),则f为由<A,*>到<B,^>的同态映射;若f是双射,则称为同构;第八章群1.广群的性质:封闭性;半群的性质:封闭性,结合律;含幺半群(独异点):封闭性,结合律,有幺元;群的性质:封闭性,结合律,有幺元,有逆元;2.群没有零元;3.阿贝尔群(交换群):封闭性,结合律,有幺元,有逆元,交换律;4.循环群中幺元不能是生成元;5.任何一个循环群必定是阿贝尔群;第十章格与布尔代数1.格:偏序集合A中任意两个元素都有上、下确界;2.格的基本性质:1) 自反性a≤a 对偶: a≥a2) 反对称性a≤b ^ b≥a => a=b对偶:a≥b ^ b≤a => a=b3) 传递性a≤b ^ b≤c => a≤c对偶:a≥b ^ b≥c => a≥c4) 最大下界描述之一a^b≤a 对偶 avb≥aA^b≤b 对偶 avb≥b5)最大下界描述之二c≤a,c≤b => c≤a^b对偶c≥a,c≥b =>c≥avb6) 结合律a^(b^c)=(a^b)^c对偶 av(bvc)=(avb)vc7)等幂律a^a=a 对偶 ava=a8) 吸收律a^(avb)=a 对偶 av(a^b)=a9) a≤b <=> a^b=a avb=b10) a≤c,b≤d => a^b≤c^d avb≤cvd11) 保序性b≤c => a^b≤a^c avb≤avc12)分配不等式av(b^c)≤(avb)^(avc)对偶 a^(bvc)≥(a^b)v(a^c)13)模不等式a≤c <=> av(b^c)≤(avb)^c3.分配格:满足a^(bvc)=(a^b)v(a^c)和av(b^c)=(avb)^(avc);4.分配格的充要条件:该格没有任何子格与钻石格或五环格同构;5.链格一定是分配格,分配格必定是模格;6.全上界:集合A中的某个元素a大于等于该集合中的任何元素,则称a为格<A,<=>的全上界,记为1;(若存在则唯一)全下界:集合A中的某个元素b小于等于该集合中的任何元素,则称b为格<A,<=>的全下界,记为0;(若存在则唯一)7.有界格:有全上界和全下界的格称为有界格,即有0和1的格;8.补元:在有界格内,如果a^b=0,avb=1,则a和b互为补元;9.有补格:在有界格内,每个元素都至少有一个补元;10.有补分配格(布尔格):既是有补格,又是分配格;11.布尔代数:一个有补分配格称为布尔代数;第十一章图论1.邻接:两点之间有边连接,则点与点邻接;2.关联:两点之间有边连接,则这两点与边关联;3.平凡图:只有一个孤立点构成的图;4.简单图:不含平行边和环的图;5.无向完全图:n个节点任意两个节点之间都有边相连的简单无向图;有向完全图:n个节点任意两个节点之间都有边相连的简单有向图;6.无向完全图有n(n-1)/2条边,有向完全图有n(n-1)条边;7.r-正则图:每个节点度数均为r的图;8.握手定理:节点度数的总和等于边的两倍;9.任何图中,度数为奇数的节点个数必定是偶数个;10.任何有向图中,所有节点入度之和等于所有节点的出度之和;11.每个节点的度数至少为2的图必定包含一条回路;12.可达:对于图中的两个节点v,j v,若存在连接i v到j v的路,则称i vi与v相互可达,也称i v与j v是连通的;在有向图中,若存在i v到j v的j路,则称v到j v可达;i13.强连通:有向图章任意两节点相互可达;单向连通:图中两节点至少有一个方向可达;弱连通:无向图的连通;(弱连通必定是单向连通)14.点割集:删去图中的某些点后所得的子图不连通了,如果删去其他几个点后子图之间仍是连通的,则这些点组成的集合称为点割集;割点:如果一个点构成点割集,即删去图中的一个点后所得子图是不连通的,则该点称为割点;15.关联矩阵:M(G),m是i v与j e关联的次数,节点为行,边为列;ij无向图:点与边无关系关联数为0,有关系为1,有环为2;有向图:点与边无关系关联数为0,有关系起点为1终点为-1,关联矩阵的特点:无向图:①行:每个节点关联的边,即节点的度;②列:每条边关联的节点;有向图:③所有的入度(1)=所有的出度(0);16.邻接矩阵:A(G),a是i v邻接到j v的边的数目,点为行,点为列;ij17.可达矩阵:P(G),至少存在一条回路的矩阵,点为行,点为列; P(G)=A(G)+2A(G)+3A(G)+4A(G)可达矩阵的特点:表明图中任意两节点之间是否至少存在一条路,以及在任何节点上是否存在回路;A(G)中所有数的和:表示图中路径长度为1的通路条数;2A(G)中所有数的和:表示图中路径长度为2的通路条数;3A(G)中所有数的和:表示图中路径长度为3的通路条数;4A(G)中所有数的和:表示图中路径长度为4的通路条数;P(G)中主对角线所有数的和:表示图中的回路条数;18.布尔矩阵:B(G),v到j v有路为1,无路则为0,点为行,点为列;i19.代价矩阵:邻接矩阵元素为1的用权值表示,为0的用无穷大表示,节点自身到自身的权值为0;20.生成树:只访问每个节点一次,经过的节点和边构成的子图;21.构造生成树的两种方法:深度优先;广度优先;深度优先:①选定起始点v;②选择一个与v邻接且未被访问过的节点1v;③从v出发按邻接方向继续访问,当遇到一个节点所1有邻接点均已被访问时,回到该节点的前一个点,再寻求未被访问过的邻接点,直到所有节点都被访问过一次;广度优先:①选定起始点v;②访问与v邻接的所有节点1v,2v,……,k v,这些作为第一层节点;③在第一层节点中选定一个节点v为起点;1④重复②③,直到所有节点都被访问过一次;22.最小生成树:具有最小权值(T)的生成树;23.构造最小生成树的三种方法:克鲁斯卡尔方法;管梅谷算法;普利姆算法;(1)克鲁斯卡尔方法①将所有权值按从小到大排列;②先画权值最小的边,然后去掉其边值;重新按小到大排序;③再画权值最小的边,若最小的边有几条相同的,选择时要满足不能出现回路,然后去掉其边值;重新按小到大排序;④重复③,直到所有节点都被访问过一次;(2)管梅谷算法(破圈法)①在图中取一回路,去掉回路中最大权值的边得一子图;②在子图中再取一回路,去掉回路中最大权值的边再得一子图;③重复②,直到所有节点都被访问过一次;(3)普利姆算法①在图中任取一点为起点v,连接边值最小的邻接点2v;1②以邻接点v为起点,找到2v邻接的最小边值,如果最小边值2比v邻接的所有边值都小(除已连接的边值),直接连接,否则退回1v,1连接v现在的最小边值(除已连接的边值);1③重复操作,直到所有节点都被访问过一次;24.关键路径例2 求PERT图中各顶点的最早完成时间, 最晚完成时间, 缓冲时间及关键路径.解:最早完成时间TE(v1)=0TE(v2)=max{0+1}=1TE(v3)=max{0+2,1+0}=2TE(v4)=max{0+3,2+2}=4TE(v5)=max{1+3,4+4}=8TE(v6)=max{2+4,8+1}=9TE(v7)=max{1+4,2+4}=6TE(v8)=max{9+1,6+6}=12 最晚完成时间TL(v8)=12TL(v7)=min{12-6}=6TL(v6)=min{12-1}=11TL(v5)=min{11-1}=10TL(v4)=min{10-4}=6TL(v3)=min{6-2,11-4,6-4}=2 TL(v2)=min{2-0,10-3,6-4}=2 TL(v1)=min{2-1,2-2,6-3}=0 缓冲时间TS(v1)=0-0=0TS(v2)=2-1=1TS(v3)=2-2=0TS(v4)=6-4=2TS(v5=10-8=2TS(v6)=11-9=2TS(v7)=6-6=0TS(v8)=12-12=0关键路径: v1-v3-v7-v825.欧拉路:经过图中每条边一次且仅一次的通路;欧拉回路:经过图中每条边一次且仅一次的回路;欧拉图:具有欧拉回路的图;单向欧拉路:经过有向图中每条边一次且仅一次的单向路;欧拉单向回路:经过有向图中每条边一次且仅一次的单向回路;26.(1)无向图中存在欧拉路的充要条件:①连通图;②有0个或2个奇数度节点;(2)无向图中存在欧拉回路的充要条件:①连通图;②所有节点度数均为偶数;(3)连通有向图含有单向欧拉路的充要条件:①除两个节点外,每个节点入度=出度;②这两个节点中,一个节点的入度比出度多1,另一个节点的入;度比出度少1;(4)连通有向图含有单向欧拉回路的充要条件:图中每个节点的出度=入度;27.哈密顿路:经过图中每个节点一次且仅一次的通路;哈密顿回路:经过图中每个节点一次且仅一次的回路;哈密顿图:具有哈密顿回路的图;28.判定哈密顿图(没有充要条件)必要条件:任意去掉图中n个节点及关联的边后,得到的分图数目小于等于n;充分条件:图中每一对节点的度数之和都大于等于图中的总节点数;29.哈密顿图的应用:安排圆桌会议;方法:将每一个人看做一个节点,将每个人与和他能交流的人连接,找到一条经过每个节点一次且仅一次的回路(哈密顿图),即可;30.平面图:将图形的交叉边进行改造后,不会出现边的交叉,则是平面图;31.面次:面的边界回路长度称为该面的次;32.一个有限平面图,面的次数之和等于其边数的两倍;33.欧拉定理:假设一个连通平面图有v个节点,e条边,r个面,则 v-e+r=2;34.判断是平面图的必要条件:(若不满足,就一定不是平面图)设图G是v个节点,e条边的简单连通平面图,若v>=3,则e<=3v-6;35.同胚:对于两个图G1,G2,如果它们是同构的,或者通过反复插入和除去2度节点可以变成同构的图,则称G1,G2是同胚的;36.判断G是平面图的充要条件:图G不含同胚于K3.3或K5的子图;37.二部图:①无向图的节点集合可以划分为两个子集V1,V2;②图中每条边的一个端点在V1,另一个则在V2中;完全二部图:二部图中V1的每个节点都与V2的每个节点邻接;判定无向图G为二部图的充要条件:图中每条回路经过边的条数均为偶数;38.树:具有n个顶点n-1条边的无回路连通无向图;39.节点的层数:从树根到该节点经过的边的条数;40.树高:层数最大的顶点的层数;41.二叉树:①二叉树额基本结构状态有5种;②二叉树内节点的度数只考虑出度,不考虑入度;③二叉树内树叶的节点度数为0,而树内树叶节点度数为1;④二叉树内节点的度数=边的总数(只算出度);握手定理“节点数=边的两倍”是在同时计算入度和出度的时成立;⑤二叉树内节点的总数=边的总数+1;⑥位于二叉树第k层上的节点,最多有12 k个(k>=1);⑦深度为k的二叉树的节点总数最多为k2-1个,最少k个(k>=1);⑧如果有n个叶子,2n个2度节点,则0n=2n+1;42.二叉树的节点遍历方法:先根顺序(DLR);中根顺序(LDR);后根顺序(LRD);43.哈夫曼树:用哈夫曼算法构造的最优二叉树;44.最优二叉树的构造方法:①将给定的权值按从小到大排序;②取两个最小值分支点的左右子树(左小右大),去掉已选的这两个权值,并将这两个最小值加起来作为下一轮排序的权值;③重复②,直达所有权值构造完毕;45.哈夫曼编码:在最优二叉树上,按照左0右1的规则,用0和1代替所有边的权值;每个节点的编码:从根到该节点经过的0和1组成的一排编码;欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求。

(完整版)洪帆《离散数学基础》(第三版)课后习题答案

(完整版)洪帆《离散数学基础》(第三版)课后习题答案

(完整版)洪帆《离散数学基础》(第三版)课后习题答案第1章集合1、列举下列集合的元素 (1) ⼩于20的素数的集合 (2) ⼩于5的⾮负整数的集合 (3) 2{|,10240515}i i I i i i ∈--<≤≤且答:(1) {1,3,5,7,11,13,17,19}(2) {0,1,2,3,4} (3) {5,6,7,8,9,10,11}2、⽤描述法表⽰下列集合 (1) 12345{,,,,}a a a a a 答:{|,15}i a i I i ∈≤≤ (2) {2,4,8,}L 答:{2|}i i N ∈ (3) {0,2,4,100}L答:{2|,050}i i Z i ∈≤≤3、下⾯哪些式⼦是错误的? (1) {}{{}}a a ∈答:正确 (2) {}{{}}a a ? 答:错误 (3) {}{{},}a a a ∈答:正确 (4) {}{{},}a a a ? 答:正确4、已给{2,,{3},4}S a =和{{},3,4,1}R a =,指出下⾯哪些论断是正确的?哪些是错误的? (1) {}a S ∈错误(2) {}a R ∈正确 (3) {,4,{3}}a S ? 正确 (4) {{},1,3,4}a R ? 正确 (5)R S = 错误 (6) {}a S ? 正确 (7) {}a R ?错误 (8) R φ?正确 (9) {{}}a R φ?? 正确 (10) {}S φ?错误 (11) R φ∈错误 (12) {{3},4}φ?正确5、列举出集合,,A B C 的例⼦,使其满⾜A B ∈,B C ∈且A C ?答:{}A a =,{{}}B a =,显然A B ∈,{{{}}}C a =,显然B C ∈,但是A C ?。

6、给出下列集合的幂集 (1) {,{}}a b答:幂集{,{},{{}},{,{}}a b a b φ (2) {,,{}}a a φ答:幂集{,{},{},{{}},{,},{,{}},{,{}},{,,{}}}a a a a a a a a φφφφφ 7、设{}A a =,给出A 和2A 的幂集答:2{,{}}A a φ= 22{,{{}},{{}},{,{}}}Aa a φφφ=8、设128{,,,}A a a a =L 由17B 和31B 所表⽰的A 的⼦集各是什么?应如何表⽰⼦集2,67{,}a a a 和13{,}a a 答:170001000148{,}B B a a ==310001111145678{,,,,}B B a a a a a ==2,670100011070{,}a a a B B ==,1310100000160{,}a a B B ==9、设{1,2,3,4,5}U =,{1,4}A =,{1,2,5}B =,{2,4}C =,确定集合: (1) A B '? (2) ()A B C '?? (3) ()A B C ?? (4)()()A B A C (5) ()A B '? (6) A B ''? (7) ()B C '? (8)B C ''? (9) 22A C - (10)22A C ? 答:(1) {3,4}B '=,{4}A B '?=(2) {1}A B ?=,{1,3,5}C '=,(){1,3,5}A B C '??= (3) {2}B C ?=,(){1,2,4}A B C ??=(4) {1,2,4,5}A B ?=,{1,2,4}A C ?=,()(){1,2,4}A B A C = (5) (){2,3,4,5}A B '?= (6) {2,3,5}A '=,{2,3,4,5}A B ''?= (7){1,2,4,5}B C ?=,(){3}B C '?= (8) {3,4}B '=,{1,3,5}C '=,{3}B C ''?=(9) 2{,{1},{4},{1,4}}A φ=,2{,{2},{4}{24}}C φ=,,,22{{1},{1,4}}A C -= (10) 22{,{4}}A C φ?=10、给定⾃然数集N 的下列⼦集:{1,2,7,8}A =,2{|50}B i i =<,{|330}C i i i =≤≤可被整数,0{|2,,06}k D i i k Z k ==∈≤≤求下列集合: (1) (())A B C D 答:{1,2,3,4,5,6,7}B =,{0,3,6,9,12,15,18,21,24,27,30}C =,{1,2,4,8,16,32,64}D =(()){0,1,2,3,4,5,6,7,8,9,12,15,16,18,21,24,27,30,32,64}A B C D = (2) (())A B C D φ=(3) ()B A C -?解:{0,1,2,3,6,7,8,9,12,15,18,21,24,27,30}A C ?=,(){4,5}B A C -?= (4) ()A B D '??解:{3,4,5,6}A B B A '?=-=,(){1,2,3,4,5,6,8,16,32,64}A B D '??=11、给定⾃然数集N 的下列⼦集{|12}A n n =<,{|8}B n n =≤,{|2,}C n n k k N ==∈,{|3,}D n n k k N ==∈ {|21,}E n n k k N ==-∈将下列集合表⽰为由,,,,A B C D E 产⽣的集合:(1) {2,4,6,8} (2){3,6,9} (3){10} (4){|369}n n n n ==≥或或 (5) {|109}n n n n n ≤>是偶数且或是奇数且 (6) {|6}n n 是的倍数答:{1,2,3,4,5,6,7,8,9,10,11}A =,{1,2,3,4,5,6,7,8}B ={2,4,6,8,}C =L ,{3,6,9,12,}D =L ,{1,3,5,7,}E =L {2,4,6,8}B C =? {3,6,9}=A D ? {10}=(())A B D E ---(4){|369}n n n n ==≥=或或{3}{6}{9,10,11,12,}??L{3,6,9,10,11,12,}()A D B '==??L(5) {2,4,6,8,10,11,13,15,}(()())(())A E E B A D B =-?--?-L (6) {|6}{6,12,18,24,30}n n ==L 是的倍数C D ?12、判断以下哪些论断是正确的,哪些论断是错误的,并说明理由。

《离散数学》刘任任版第十章

《离散数学》刘任任版第十章

习题十1.证明:若G 是简单图,则()()q p p G 2/22-≥χ.分析:()G χ指G 的点色数,显然如果()G χ=k ,则G 的顶点集可以划分为k 个独立集。

设每个独立集的顶点数为p i ,则∑=ki i p 1=p ,由柯西-施瓦丝不等式有: 且由于每个独立集中的任意两个点不邻接,所以第i 个独立集中任何一点的度不会大于p-p i ,本题的关键是利用这两个结论。

2.()k G =χ的临界图G 称为k 临界图. 证明:唯一的1临界图是1K ,唯一的2临界图是2K ,仅有的3临界图是长度为奇数3≥k 的回路.分析:若G 的每个点都是临界点,则G 称为临界图。

由于1-色图是零图,因此1-临界图仅能是1K ,2-色图是2部图,因此2-临界图仅能是2K ,3-色图恒含奇圈,且奇圈至少是3-色才能正常着色,因此3-临界图仅能是长度为奇数3≥k 的回路.证明:(1)()11=K χ,且()01=-v K χ<1,故K1是1临界图;反之,G 是1-临界图,若|V(G)|>1,则G 是零图,()1=-v G χ,所以|V(G)|=1,从而G 是平凡图K1。

(2)()22=K χ,且()1),(22=-∈∀v K K V v χ,故K2是2临界图;反之,G 是2-临界图,即()2=G χ,于是G 的顶点可划分为两个极大独立集V1和V2,若|V1|>1,则())(2),(1G v G G V V v χχ==-⊆∈∀,与G 是临界图矛盾,因此|V1|=1,同理|V2|=1。

因此G=K2。

(3)因为不含奇回路的图是二分图)2)((=G χ。

故3-色图必含奇回路。

显然,奇回路必是3-临界图。

设G 是含奇回路的3-临界图。

若G 不是奇回路,则可分两种情况讨论:)2/()( 2 2 )()(2 ,,1,| | ,, ,)( 2222221222211112221121q p p G x q p p k k p q p k p p p p p p p p p p v d q p p V k p k p p k i p V V V k G k G x ki i p i k i k i k i i i i i i i i k i i k i i i i k -≥-≥≥--≤-=-=-≤=-=⎪⎭⎫ ⎝⎛≥===∑∑∑∑∑∑∑=======故,即从而而个顶点相邻,每个顶点最多与其它且),(柯西-施瓦丝不等式因为。

离散数学第10章习题答案

离散数学第10章习题答案

第10章习题答案1.解 (1)设G 有m 条边,由握手定理得2m =∑∈Vv v d )(=2+2+3+3+4=14,所以G 的边数7条。

(2)由于这两个序列中有奇数个是奇数,由握手定理的推论知,它们都不能成为图的度数列。

(3) 由握手定理得∑∈Vv v d )(=2m =24,度数为3的结点有6个占去18度,还有6度由其它结点占有,其余结点的度数可为0、1、2,当均为2时所用结点数最少,所以应由3个结点占有这6度,即图G 中至多有9个结点。

2.证明 设1v 、2v 、…、n v 表示任给的n 个人,以1v 、2v 、…、n v 为结点,当且仅当两人为朋友时其对应的结点之间连一条边,这样得到一个简单图G 。

由握手定理知∑=nk kv d 1)(=3n 必为偶数,从而n 必为偶数。

3. 解 由于非负整数列d =(d 1,d 2,…,d n )是可图化的当且仅当∑=ni i d 1≡0(mod 2),所以(1)、(2)、(3)、(5)能构成无向图的度数列。

(1)、(2)、(3)是可简单图化的。

其对应的无向简单图如图所示。

(5)是不可简单图化的。

若不然,存在无向图G 以为1,3,3,3度数列,不妨设G 中结点为1v 、2v 、3v 、4v ,且d(1v )=1,d(2v )=d(3v )=d(4v )=3。

而1v 只能与2v 、3v 、4v 之一相邻,设1v 与2v 相邻,于是d(3v )=d(4v )=3不成立,矛盾。

4.证明 因为两图中都有4个3度结点,左图中每个3度结点均与2个2度结点邻接,而右图中每个3度结点均只与1个2度结点邻接,所以这两个无向图是不同构的。

5. 解 具有三个结点的所有非同构的简单有向图共16个,如图所示,其中(8)~(16)为其生成子图。

6. 解 (1)G 的所有子图如图所示。

(1)(3)(5)(6)(9)(10)(13)(14)(2)图(8)~(18)是G 的所有生成子图。

离散数学第10章-树

离散数学第10章-树

10.2 生成树与割集(续)
• 2 定义10.3(秩,零度) 设图G有n个顶点,e条边,ω个分支, 称n-ω为图G的秩,称e-n+ω为图G的零度。 • G的秩是G的各分支中生成树的枝数之和。 • G的零度是G的各分支中生成树的连枝数 之和。
10.2 生成树与割集(续)
• 二、割集与断集 • 1 定义10.4(割集) 设D是图G的一个边集,若在G中删去 D的全部边后所得图的秩减少1,而D的 任何真子集均无此性质,则称D为G的割 集。 • 例 图10.2
10.2 生成树与割集(续)
• 5 定义10.7(基本回路/基本回路组) 设连通图G中给定生成树T,在T中加一条弦, 恰产生一条回路,称此回路为关于T的基本回 路。 连通图G有e条边,n个顶点,给定的生成树T 应有n-1条枝,e-n+1条弦,所以恰有e-n+1条基 本回路,这些回路的全体称为生成树T的基本 回路组。 给出生成树,求基本割集和基本回路。
10.3 最小生成树(续)
• 克鲁斯科尔算法 • 定理10.8 克鲁斯科尔算法所得到的图T是最小生 成树。
10.1 树及其性质(续)
• 推论 若G是n个顶点,ω个分枝的森林,则G 有n-ω条边。 • 定理10.2 在任一棵非平凡树T中,至少有两片树 叶。 • 证明
10.2 生成树与割集
• 一、生成树 • 1 定义10.2(生成树) 图G的生成子图是树T,称T为G的生成 树。 从G中删去T的边,得到的图称G的余枝, 记为Ť。 T中的边称为树枝(或枝)。 Ť中的边称为G的弦(或连枝)。 • 定理10.
• 四、树的基本变换 • 图10.4 • 1 定义10.8(树的基本变换) 设连通图G的生成树T,通过上述加一弦,再 G T 删去一枝得到另一棵生成树,这种变换称为树 的基本变换。 • 2 定义10.9(距离) 设连通图G的生成树Ti和Tj,出现在Ti而不出 现在Tj的边数称为Ti和Tj的距离,记为d(Ti, Tj)。

离散数学答案 屈婉玲版 第二版 高等教育出版社课后答案

离散数学答案 屈婉玲版 第二版 高等教育出版社课后答案

离散数学答案屈婉玲版第二版高等教育出版社课后答案第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p?r)∧(﹁q∨s) ⇔(0?1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)?(p∧q∧﹁r) ⇔(1∧1∧1)? (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q)⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)⇔ (⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1)(2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q)? ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x ).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解: F(x): 2=(x+)(x ).G(x): x+5=9.(1)在两个个体域中都解释为)(x xF ∀,在(a )中为假命题,在(b)中为真命题。

离散数学10 树

离散数学10 树

第十章 树10.1画出所有不同构的,有5个顶点的树。

解图10.1 习题1图10.2 证明:一棵树的顶点度数之和为)1 |(|2-V ,其中V 是顶点集。

证明一棵树的所有顶点的度数之和∑==ni iE v 1||2)deg(,因为树的1||||-=V E ,所以)1|(|2||2)deg(1-==∑=V E v ni i。

故一棵树的顶点度数之和为)1 |(|2-V 。

10.3 一棵树有3个2度顶点,5个3度顶点,8个4度顶点,问有几个一度顶点?解设树T 有n 个一度顶点,则∑)deg(v =)1853(21483523-+++=⨯+⨯+⨯+⨯n n ,从而有23=n 。

即该棵树有23个一度顶点。

10.4 一棵树2n 个顶点的度数为2,3n 个顶点的度数为3,…,k n 个顶点度数为k ,问有几个顶点度数为1个顶点。

解设有1n 个度数为1的顶点。

顶点数k n n n v +++=...21,边数1)...(121-+++=-=k n n n v e 。

由握手定理知:∑==-=ni i v v e 1)deg()1(22,故k n n n n n n k k ⨯++⨯+⨯=-+++...212) (22121)因此,2)2(...2431+-+++=k n k n n n10.5 证明:一棵树若有三片树叶,则至少有一个顶点度数大于等于3。

证明反证法。

设),(E V T =且没有一个顶点度数大于等于3,则对于V v ∈∀,有2)de g (≤v ,从而有:∑-+≤)3|(|23)deg(V v||21)1|(|2E V <--=与握手定理矛盾。

故至少有一个顶点度数大于等于3。

10.6 ),(E V T =是一棵树,证明:若T 仅有两个1度顶点,则T 是一条直线。

证明假设T 不是一条直线,因为T 仅有两个1度顶点,所以树中至少存在一个顶点,其度数3≥。

从而有:∑-++⨯≥)3|(|2312)deg(V v1)1|(|2+-=V 1||2+=E ||2E > 与握手定理矛盾。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章
3. 在R 中定义二元运算,使得,a b R ∀∈有 *a b a b ab =++ 证明<R,*>构成独异点
解:(1),,R a b R φ≠∀∈,存在唯一*a b a b ab R =++∈,所以<R,*>为代数系统。

(2) Z z y x ∈∀,,,有(*)**(*)x y z x y z xy yz xz xyz x y z =++++++=,所以结合律成立。

(3) 设存在幺元为e R ∈,对x R ∀∈,幺元应满足
e x e x ex x =++= x e x e xe x =++= 所以幺元为0R ∈。

所以<R,*>构成独异点
8. 设{}0,1,2,3G =,若4⨯为模4乘法,则4,⨯G 构成什么?
(2)零元为0,幺元为1,且运算表对称,结合律考虑4种情况
222,333,223,233,结合律成立。

(3)幺元为1
(4)零元为0,所以0的逆元不存在。

所以4,⨯G 构成半群,独异点,不能构成群。

10. 设{0,1}A x x R x =∈≠且,在A 上定义了六个函数如下:
11231
1
1
456(),(),()1()(1),()(1),()(1)
f x x f x x f x x
f x x f x x x f x x x ----===-=-=-=-
令F 为这6个函数构成的集合, 运算为函数合成运算 (1) 给出运算的运算表 (2) 验证,F <> 是一个群。

解:(1)
(2) a) 由运算表可得:运算封闭,且F 不是空集,所以,F <> 为一个代数系统。

b) 函数复合运算满足结合律。

c) 单位元为f1
d) f1-1=f1, f2-1=f2, f3-1=f3, f4-1=f5, f5-1=f4, f6-1
=f6, 所以,F <> 为群。

相关文档
最新文档