离散数学屈婉玲第十一章
07879离散数学-屈婉玲(形式语言与自动机)11.1

Chomsky谱系 谱系
0型语言 0 型文法生成的语言 型语言: 型文法生成的语言 型语言 1型语言 上下文有关语言 如果 型语言(上下文有关语言 可由1型文法 型语言 上下文有关语言): 如果L-{ε}可由 型文法 可由 生成, 生成 则称 L 是1型语言 型语言 2型语言 上下文无关语言 : 2 型文法生成的语言 型语言(上下文无关语言 型语言 上下文无关语言) 3型语言 正则语言 3 型文法生成的语言 型语言(正则语言 型语言 正则语言): 如 {1x00 | x∈{0, 1}*} 是正则语言 (例1) ∈ 例 {anbn | n>0} 是上下文无关语言 (例2,3) 例 2i | i ≥1} 是 0 型语言 (例4) { a 例 型语言 型语言 型语言 定理 0型语言1型语言2型语言3型语言 型语言 型语言 型语言 型语言
2i 2i
2i
(4) 2i 次(7) (8)
*
可以证明: 可以证明 L(G) = { a
2i
| i ≥1}
17
形式文法的分类 —Chomsky谱系 谱系
0型文法 短语结构文法 无限制文法 型文法(短语结构文法 无限制文法) 型文法 短语结构文法,无限制文法 1型文法 上下文有关文法 型文法(上下文有关文法 型文法 上下文有关文法): 所有产生式α→β, 满足 |α|≤|β| 所有产生式 ≤ 另一个等价的定义: 另一个等价的定义 所有的产生式形如 ξAη→ξαη 其中A∈ 且 ≠ 其中 ∈V, ξ,η,α∈(V∪T)*,且α≠ε ∈ ∪ 2型文法 上下文无关文法): 型文法(上下文无关文法 型文法 上下文无关文法 所有的产生式形如 A→α 其中A∈ ∈ ∪ 其中 ∈V,α∈(V∪T)*,
5
子字符串(子串 子字符串 子串): 子串 字符串中若干连续符号组成的字符串 前缀: 前缀 最左端的子串 后缀: 后缀 最右端的子串 例如 ω =abbaab a,ab,abb是ω的前缀 是 的前缀 aab,ab,b是ω的后缀 是 的后缀 ba是ω的子串 但既不是前缀 也不是后缀 的子串, 是 的子串 但既不是前缀, ω本身也是 的子串 且既是前缀 也是后缀 本身也是ω的子串 本身也是 的子串, 且既是前缀, ε也是 的子串 且既是前缀 也是后缀 也是ω的子串 也是 的子串, 且既是前缀,
离散数学答案 屈婉玲版 第二版 高等教育出版社课后答案,DOC

离散数学答案屈婉玲版第二版高等教育出版社课后答案第一章部分课后习题参考答案16设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔0∨(0∧1)⇔0(2)(p?r)∧(﹁q∨s)⇔(0?1)∧(1∨1)⇔0∧1⇔0.(3)(⌝(4)(176能被2q:3r:2s:619(4)(p(5)(p(6)((p答:(pqp→q⌝0011111011011110010011110011所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1)⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P qrp∨qp∧r(p∨q)→(p∧r)0000010010014.(2)(p→(4)(p∧证明(2(45.(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p→q)→(⌝q∨p)⇔⌝(p∨q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∧p)∨(⌝q∧⌝p)∨(p∧q)∨(p∧⌝q)⇔(⌝p∧⌝q)∨(p∧⌝q)∨(p∧q)⇔∑(0,2,3)主合取范式:(⌝p→q)→(⌝q∨p)⇔⌝(p∨q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∨p)⇔(⌝p⇔1∧(p⇔(p∨⇔∏(2)⌝(p→q)⇔(p∧(3)⇔⌝⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r)前提引入②⌝q∨⌝r①置换③q→⌝r②蕴含等值式④r⑤⌝q⑥p→q⑦¬p(3证明(4①t②t③q④s⑤q⑥(⑦(⑧q⑨q⑩p15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s附加前提引入②s→p前提引入③p①②假言推理④p→(q→r)前提引入⑤q→r③④假言推理⑥q前提引入⑦r⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p②p③﹁④¬⑤¬⑥r⑦r⑧r3.:(1)均有2=(x+)(x).(2)其中(a)(b)解:F(x):2=(x+)(x).G(x):x+5=9.(1)在两个个体域中都解释为)(x∀,在(a)中为假命题,在(b)中为真命题。
离散数学答案屈婉玲、耿素云、张立昂

1 m0∨m1∨m 2∨ m3∨m4∨m5∨m 6 ∨m 7, 所以 000, 001, 010, 011, 100, 101, 110, 111 为成真赋值。 7、求下列公式的主析取范式,再用主析取范式求主合取范式 (1) (p∧q)∨r ( p∧q∧r)∨( p∧q∧┐r)∨(p∧r)∨(┐p∧r) ( p∧q∧r)∨( p∧q∧┐r)∨(p∧r∧q)∨(p∧r∧┐q) ∨(┐p∧r∧q)∨(┐p∧r∧┐q) ( p∧q∧r)∨( p∧q∧┐r)∨(p∧┐q∧r)∨(┐p∧q∧r) ∨(┐p∧┐q∧r) m1∨m3∨m5∨m6∨m7 由主析取范式和主合取范式之间的关系,所以公式的主合 取范式为: (p∧q)∨r M 0∧ M 2∧ M 4 (2) (p→q)∧(q→r) (┐p∨q)∧(┐q∨r) (┐p∧(┐q∨r))∨(q∧(┐q∨r)) (┐p∧┐q)∨(┐p∧r)∨(q∧┐q)∨(q∧r) (┐p∧┐q)∨(┐p∧r)∨(q∧r) (┐p∧┐q∧┐r)∨(┐p∧┐q∧r)∨(┐p∧q∧r) ∨(┐p∧┐q∧r)∨(p∧q∧r)∨(┐p∧q∧r) (┐p∧┐q∧┐r)∨(┐p∧┐q∧r)∨(┐p∧q∧r) ∨(p∧q∧r) m0∨m1∨m3∨m7 由主析取范式和主合取范式之间的关系,所以公式的
所以成假赋值为:011
21、(2) 解答: p 0 0 0 0 1 1 1 1 q 0 0 1 1 0 0 1 1 (┐q∨r)∧(p→q)真值表如下: r 0 1 0 1 0 1 0 1 ┐q 1 1 0 0 1 1 0 0 ┐ q∨ r 1 1 0 1 1 1 0 1 p→ q 1 1 1 1 0 0 1 1 (┐q∨r)∧(p→q) 1 1 0 1 0 0 0 1
(2) 前提:(p∨q)→(r∧s), (s∨t)→u 结论:p→u 证明: ①p ②p∨q ③(p∨q)→(r∧s) ④r∧s ⑤s ⑥s∨t ⑦(s∨t)→u ⑧ u 附加前提引入 ①附加 前提引入 ②③假言推理 ④化简 ⑤附加 前提引入 ⑥⑦假言推理
离散数学答案-屈婉玲版-第二版-高等教育出版社课后答案

离散数学答案屈婉玲版第二版高等教育出版社课后答案第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⌝p∨(q∧r))p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q)(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)1∧(p∨q)∧⌝(p∧q)∧1(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p →q)→(⌝q ∨p)⌝(p ∨q)∨(⌝q ∨p)(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)(⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⌝(p ∨q)∨(⌝q ∨p)(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1)(2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⌝(p ∨(q ∧r))→(p ∨q ∨r)(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为)∀,在(a)中为假命题,在(b)中为真命题。
离散数学 屈婉玲版 第十一章

9
有界格的性质
定理11.6 设<L,∧,∨,0,1>是有界格, 则a∈L有 a∧0 = 0, a∨0 = a, a∧1 = a, a∨1 = 1
注意: 有限格L={a1,a2,…,an}是有界格, a1∧a2∧…∧an是L的全下 界, a1∨a2∨…∨an是L的全上界. 0是关于∧运算的零元,∨运算的单位元;1是关于∨运算的 零元,∧运算的单位元.
3
格的性质:算律
定理11.1 设<L, ≼>是格, 则运算∨和∧适合交换律、结合律、 幂等律和吸收律, 即 (1) a,b∈L 有 a∨b = b∨a, a∧b = b∧a (2) a,b,c∈L 有 (a∨b)∨c = a∨(b∨c), (a∧b)∧c = a∧(b∧c) (3) a∈L 有 a∨a = a, a∧a = a (4) a,b∈L 有 a∨(a∧b) = a, a∧(a∨b) = a
18
练习1
1.求图中格的所有子格. 1元子格:{ a },{ b },{ c },{ d },{ e }; 2元子格:{ a, b },{ a, c },{ a, d }, c { a, e },{ b, c },{ b, d }, { b, e },{ c, e },{ d, e }; 3元子格:{ a, b, c },{ a, b, d }, { a, b, e },{ a, c, e }, { a, d, e },{ b, c, e }, { b, d, e }; 4元子格:{ a, b, c, e },{ a, b, d, e }, { b, c, d, e }; 5元子格: { a, b, c, d, e }
12
有界分配格的补元惟一性
定理11.7 设<L,∧,∨,0,1>是有界分配格. 若L中元素 a 存在 补元, 则存在惟一的补元. 证 假设 c 是 a 的补元, 则有 a∨c = 1, a∧c = 0, 又知 b 是 a 的补元, 故 a∨b = 1, a∧b = 0 从而得到 a∨c = a∨b, a∧c = a∧b, 由于L是分配格. b=b ∧ (b∨a) = b ∧ (c∨a )= (b ∧ c)∨ (b ∧ a )= (a∨c ) ∧c=c 注意: 在任何有界格中, 全下界0与全上界1互补. 对于一般元素, 可能存在补元, 也可能不存在补元. 如果 存在补元, 可能是惟一的, 也可能是多个补元. 对于有界 分配格, 如果元素存在补元, 一定是惟一的. 13
离散数学答案屈婉玲版第二版高等教育出版社课后答案

离散数学答案屈婉玲版第二版高等教育出版社课后答案离散数学答案屈婉玲版第二版高等教育出版社课后答案第一章部分课后习题参考答案16设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1) p V (q A r)二0 V (0 A 1) =0(2) ( p?r)A (「q V s)二(0?1)A (1 V 1) = 0A 1= 0.(3) ( — p A 一q A r) ?(p A q A「r)二(1 A 1 A 1) ? (0 A 0A 0)=0(4) (一「A s)—(p A _q) = (0A 1)—(1 A 0) =0—0=117.判断下面一段论述是否为真:“二是无理数。
并且,如果3是无理数,则也是无理数。
另外6能被2整除,6才能被4整除。
”答:p:二是无理数1q: 3 是无理数0r: ' 2是无理数1s: 6能被2整除1t: 6 能被4整除0命题符号化为:p A (q —r) A (t —s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4) (p —q) —( 一q—一p)(5) (p A r) ' ( 一p A 一q)(6) ((p —q) A (q —r)) —(p —r)答:(4)p q p —q _q _p —q—一p (p —q) — (一q—一p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5) 公式类型为可满足式(方法如上例)(6) 公式类型为永真式(方法如上例)第二章部分课后习题参考答案3. 用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值?⑴飞A q-q)(2) (p -(p V q)) V (p -r)(3) (p V q) -(p A r)答:(2) (p—(p V q) )V (p —r)=(—p V (p V q)) V (_p V r) u - p V p V q V r= 1 所以公式类型为永真式⑶P q r p V q p A r (p V q)—(p A r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4. 用等值演算法证明下面等值式:(2) (p —q) A (p —r)二(p —(q A r))⑷(p A - q) V (-p A q)=(p V q) A 一(p A q)证明(2) (p —q) A (p —r)(一p V q) A ( 一p V r):二_ p V (q A r))二p—(q A r)(4) (p A - q) V ( 一p A q)u (p V (一p A q)) A(_ q V (一p A q)-(p V _ p) A (p V q) A ( 一q V 一p) A ( 一q V q)=1 A (p V q) A 一(p A q) A 1二(p V q) A _ (p A q)5. 求下列公式的主析取范式与主合取范式,并求成真赋值(1) ( _p—q) —(一q V p)(2) _(P —q) A q A r(3) (p V (q A r)) -(p V q V r)解:(1) 主析取范式(- p-q) —( 一q p)二_(p q) ( 一q p)=(- p -q) ( 一q p)=(一p _q) (一q p) (一q _p) (p q) (p _q)u ( - p _q) (p _q) (p q)-刀(0,2,3)主合取范式:(_p—q) —( 一q p)-_(p q) ( 一q p)=(- p -q) ( 一q p)=(一P (一q P)) (一q (一q p))=1 (p — q)二(p —q)二M i=n (i)(2) 主合取范式为:_(p —q) q r=—(一p q) q ru (p _q) q 产0所以该式为矛盾式?主合取范式为n (0,123,4,5,6,7)矛盾式的主析取范式为0(3) 主合取范式为:(p (q r)) —(p q r)=一(p (q r)) —(p q r)=(一p (一q _r)) (p q r)=(一p (p q r)) (( _q - r)) (p q r))二 1 i二 1所以该式为永真式永真式的主合取范式为1主析取范式为刀(0,123,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2) 前提:p—. q, —(q r),r(4)前提:q— p,q『s,s『t,t r结论:p q证明:(2)①—(q r) 前提引入②—q —r ①置换③q,一「②蕴含等值式④r 前提引入⑤一q ③④拒取式⑥p- q 前提引入⑦」p (3)⑤⑥拒取式证明(4):①t r 前提引入②t ①化简律③qi s 前提引入④s—?t 前提引入⑤q r t ③④等价三段论( q > t)(t r q)?⑤置换炉(q >t)⑥化简⑧q ②⑥假言推理⑨ q—;p 前提引入⑩p ⑧⑨假言推理(11)p q ⑧⑩合取15在自然推理系统P中用附加前提法证1 F面各推理:结论:_ p(1)前提:pr (qr r),s r p,q结论:s —? r ①s 附加前提引入②Sr P前提引入③P①②假言推理④ p —;(q —; r)前提引入⑤q — r③④假言推理⑥q 前提引入⑦r⑤⑥假言推理16在自然推理系统 P 中用归谬法证明下面各推理:(1)前提:p ,—q, - r q,r _s结论:- p 证明:①p 结论的否定引入② p —「q 前提引入q ①②假言推理 r q 前提引入⑤「r ④化简律⑥r 「s 前提引入⑦r ⑥化简律⑧r 「r ⑤⑦合取由于最后一步r 「r 是矛盾式,所以推理正确. 第四章部分课后习题参考答案3.在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为的真值:(1)对于任意 x,均有 2=(x+ )(x ).证明(a),(b) 条件时命题(2)存在x,使得x+5=9. 其中(a)个体域为自然数集合. (b)个体域为实数集合.解:F(x): 2=(x+ 一)(x 一).G(x): x+5=9.(1) 在两个个体域中都解释为-xF(x),在(a)中为假命题,在(b)中为真命题。
屈婉玲高教版离散数学部分答案详解2[1]
![屈婉玲高教版离散数学部分答案详解2[1]](https://img.taocdn.com/s3/m/4aa4c3d99e31433238689300.png)
第七章部分课后习题参考答案7.列出集合A={2,3,4}上的恒等关系I A ,全域关系E A ,小于或等于关系L A ,整除关系D A .解:I A ={<2,2>,<3,3>,<4,4>}E A ={<2,2>,<2,3>,<2,4>,<3,4>,<4,4>,<3,2>,<3,3>,<4,2>,<4,3>}L A ={<2,2>,<2,3>,<2,4>,<3,3>,<3,4>,<4,4>} D A ={<2,4>}13.设A={<1,2>,<2,4>,<3,3>} B={<1,3>,<2,4>,<4,2>}求A ⋃B,A ⋂B, domA, domB, dom(A ⋃B), ranA, ranB, ran(A ⋂B ), fld(A-B). 解:A ⋃B={<1,2>,<2,4>,<3,3>,<1,3>,<4,2>} A ⋂B={<2,4>}domA={1,2,3} domB={1,2,4} dom(A ∨B)={1,2,3,4}ranA={2,3,4} ranB={2,3,4} ran(A ⋂B)={4}A-B={<1,2>,<3,3>},fld(A-B)={1,2,3} 14.设R={<0,1><0,2>,<0,3>,<1,2>,<1,3>,<2,3>}求R R, R -1, R ↑{0,1,}, R[{1,2}] 解:R R={<0,2>,<0,3>,<1,3>}R -1,={<1,0>,<2,0>,<3,0>,<2,1>,<3,1>,<3,2>}R ↑{0,1}={<0,1>,<0,2>,<0,3>,<1,2>,<1,3>} R[{1,2}]=ran(R|{1,2})={2,3}16.设A={a,b,c,d},1R ,2R 为A 上的关系,其中1R ={},,,,,a a a b b d{}2,,,,,,,R a d b c b d c b=求23122112,,,R R R R R R 。
离散数学答案屈婉玲版第二版高等教育出版社课后答案

离散数学答案屈婉玲版第二版高等教育出版社课后答案第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔ 0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”答:p: π是无理数 1q: 3是无理数 0r: 2是无理数 1s: 6能被2整除 1t: 6能被4整除 0命题符号化为: p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q)⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)⇔ (⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1)(2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为)∀,在(a)中为假命题,在(b)中为真命题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题
例6 求下面带权图K4中最短哈密顿回路.
解 C1= a b c d a, C2= a b d c a, C3= a c b d a,
W(C1)=10 W(C2)=11 W(C3)=9
最短
17
11.3 二部图与匹配
定义11.3 设 G=<V,E>为一个无向图, 若能将 V分成 V1和V2 (V1V2=V, V1V2=), 使得 G 中的每条边的两个端点都是一 个属于V1, 另一个属于V2, 则称 G 为二部图 ( 或称二分图, 偶 图), 称V1和V2为互补顶点子集, 常将二部图G记为<V1,V2,E>. 又若G是简单二部图, V1中每个顶点均与V2中所有的顶点相邻, 则称G为完全二部图, 记为 Kr,s, 其中r=|V1|, s=|V2|.
26
一个应用实例
例7 某课题组要从a, b, c, d, e 5人中派3人分别到上海、广州、 香港去开会. 已知a只想去上海,b只想去广州,c, d, e都表示 想去广州或香港. 问该课题组在满足个人要求的条件下,共 有几种派遣方案? 解 令G=<V1,V2,E>,其中V1={s, g, x},s, g, x分别表示上海、 广州和香港. V2={a, b, c, d, e}, E={(u,v) | uV1, vV2, v想去 u}. 每个V1到V2的完备匹配给 出一个派遣方案, 共有9种. 如a到上海, b到广州, c到香 港.
25
t条件
例
前两个满足相异性条件, 第3个不满足 定理11.7 设二部图G=<V1,V2,E>, 如果存在t使得, V1中每个顶 点至少关联t条边, 而V2中每个顶点至多关联 t 条边, 则G 中存 在V1到V2的完备匹配.(t条件) 证 V1中任意k(1k|V1|)个顶点至少关联kt条边, 而V2中每个顶 点至多关联t条边, 这kt条边至少关联V2中k个顶点. G满足相异 性条件. 第2个图不满足t条件, 但有完备匹配.
27
11.4 平面图
定义11.6 如果能将无向图G画在平面上使得除顶点处外无边相 交, 则称G是可平面图, 简称平面图. 画出的无边相交的图称为 G的平面嵌入. 无平面嵌入的图称为非平面图. 例
(1)
(2)
(3)
(4)
(2)是(1) 的平面嵌入,(4)是(3)的平面嵌入.
28
平面图的性质
K5, K3,3都是非平面图(定理11.13) 平行边与环不影响平面性. 定理11.8 平面图的子图都是平面图, 非平面图的母图都是非 平面图. 例如, 所有度数不超过4的简单图都是平面图. 当|V1|=1和2时二部图G=<V1,V2,E>是平面图. Kn(n5)和Ks,t(s,t3)都是非平面图.
15
货郎问题
货郎问题: 有n个城市, 给定城市之间道路的长度(长度可以为 , 对应这两个城市之间无交通线). 货郎从某个城市出发, 要 经过每个城市一次且仅一次, 最后回到出发的城市, 问如何走 才能使他走的路线最短? 图论方法描述如下: 设G=<V,E,W>为一个n阶完全带权图Kn, 各边的权非负, 且可能为. 求G中的一条最短的哈密顿回路. 不计出发点和方向, Kn(n3)中有(n1)!/2 条不同的哈密顿回 路
第十一章 几种特殊的图
主要内容 欧拉图 哈密顿图 二部图与匹配 平面图 着色
1
11.1 欧拉图
历史背景:哥尼斯堡七桥问题
2
欧拉图定义
定义11.1 图(无向图或有向图)中所有边恰好通过一次且经过 所有顶点的通路称为欧拉通路. 图中所有边恰好通过一次且 经过所有顶点的回路称为欧拉回路.具有欧拉回路的图称为 欧拉图. 具有欧拉通路而无欧拉回路的图称为半欧拉图. 说明: 规定平凡图为欧拉图. 环不影响图的欧拉性.
例题
例3 设G为n阶无向连通简单图,若G中有割点或桥,则G不 是哈密顿图. 证 设v为割点,则 p(Gv) 2>|{v}|=1. K2有桥,它显然不是哈密顿图. 除K2外,其他有桥的连 通图均有割点.
13
无向哈密顿图的一个充分条件
定理11.3 设G是n阶无向简单图, 若对于任意不相邻的顶点 vi,vj, 均有 d(vi)+d(vj) n1 () 则G 中存在哈密顿通路. 推论 设G为n (n3) 阶无向简单图, 若对于G中任意两个不相 邻的顶点vi,vj, 均有 d(vi)+d(vj) n () 则G中存在哈密顿回路.
哈密顿图
哈密顿图
半哈密顿图
不是
10
无向哈密顿图的一个必要条件
定理11.2 设无向图G=<V,E>是哈密顿图,对于任意V1V且 V1,均有 p(GV1) |V1| 证 设C为G中一条哈密顿回路 (1) p(CV1) |V1| (2) p(GV1) p(CV1) |V1| (因为CG) 推论 设无向图G=<V,E>是半哈密顿图,对于任意的V1V 且V1均有 p(GV1) |V1|+1 证 设 为从u到v的哈密顿通路,令G = G(u,v),则G为 哈密顿图. 于是 p(GV1) = p(GV1(u,v)) p(GV1)+1 |V1|+1
14
判断是否为哈密顿图
判断是否为(半)哈密顿图至今还是一个难题. (1) 观察出一条哈密顿回路或哈密顿通路. (2) 证明满足充分条件. (3) 证明不满足必要条件. 例4 证明右图(周游世界问题)是哈密顿图 证 abcdefghijklmnopqrsta 是一条哈密顿回路. 注意,此图不满足定理11.3推论的条件. 例5 完全图Kn (n3)是哈密顿图. 证 任何两个顶点u,v,d(u)+d(v) = 2(n1) n
3
欧拉图实例
欧拉图
半欧拉图
不是
欧拉图
半欧拉图
不是
4
欧拉图的判别法
定理11.1 (1) 无向图G是欧拉图当且仅当G是连通的且没有奇 度顶点. (2) 无向图G是半欧拉图当且仅当G是连通的且恰有两个奇度 顶点. (3) 有向图D是欧拉图当且仅当D是强连通的且每个顶点的入 度等于出度. (4) 有向图D是半欧拉图当且仅当D是单向连通的且恰有两个 奇度顶点, 其中一个顶点的入度比出度大1, 另一个顶点出度 比入度大1, 其余顶点的入度等于出度. 例1 设G是非平凡的欧拉图,则(G)2. 证 只需证明G的任意一条边e都不是桥. 设C是一条欧拉回路, e在C上,因而Ge仍是连通的,故e不是桥.
定理11.5 M为G的最大匹配G中不含M的可增广的交错路径.
24
Hall定理
定理11.6 (Hall定理) 设二部图G=<V1,V2,E>, 其中|V1||V2|, 则 G中存在从V1到V2的完备匹配当且仅当V1中任意k(1k|V1|) 个顶点至少与V2中的k个顶点相邻.(相异性条件) 证 必要性显然. 证充分性. 设M为G的最大匹配, 若M不是完备 的, 则存在非饱和点vxV1. 于是, 存在eE1=EM与vx关联, 且 V2中与vx相邻的顶点都是饱和点. 考虑从vx出发的尽可能长的 所有交错路径, 这些交错路径都不是可增广的, 因此每条路径 的另一个端点一定是饱和点, 从而全在V1中. 令 S={v | vV1且v在从vx出发的交错路径上} T={v | vV2且v在从vx出发的交错路径上} 除vx外, S和T中的顶点都是饱和点, 且由匹配边给出两者之间 的一一对应, 因而|S|=|T|+1. 这说明V1中有|T|+1个顶点只与V2 中|T|个顶点相邻, 与相异性条件矛盾.
6
实例
一笔画出一条欧拉回路
7
实例
一笔画出一条欧拉回路
8
11.2 哈密顿图
历史背景:哈密顿周游世界问题
(1)
(2)
9
哈密顿图与半哈密顿图
定义11.2 经过图中所有顶点一次且仅一次的通路称作哈密顿 通路. 经过图中所有顶点一次且仅一次的回路称作哈密顿回 路. 具有哈密顿回路的图称作哈密顿图. 具有哈密顿通路且无 哈密顿回路的图称作半哈密顿图. 规定: 平凡图是哈密顿图. 例
11
例题
例2 判断下面的图是不是哈密顿图, 是不是半哈密顿图.
解 (a)取V1={a,f}, p(GV1)=|{b,c,d,e}|=4>|V1|=2, 不是哈密顿图, 也不是半哈密顿图. (b)取V1={a,g,h,i,c}, p(GV1)=| {b,e,f,j,k,d}|=6>|V1|=5, 不是哈密 顿图. 而baegjckhfid是一条哈密顿通路, 是半哈密顿图. (c) abcdgihjefa是一条哈密顿回路,是哈密顿图. 12
20
证明
假若存在vi,vjV1相邻, 记e=(vi,vj), 设v0到vi,vj的最短路径分别 为i, j, 由i,j和e构成一条长度为奇数的回路. 这条回路可 能是一条复杂回路, 可以分解成若干由i,j共有的边构成的 回路(实际上是每条边重复一次的路径)和由i,j不共有的边 及e构成的圈. 由i,j共有的边构成的回路的长度为偶数, 故在 由i,j不共有的边(可以还包括e)构成的圈中一定有奇圈, 这 与已知条件矛盾. 得证V1中任意两顶点不相邻. 由对称性, V2 中也不存在相邻的顶点, 得证G为二部图.
23
可增广的交错路径
例 u1 u2 u3 u4 u1 u2 u3 u4
v1 v2 v3 v4 v1 v2 v3 v4 左图, 饱和点:u1,u3,u4,v1,v2,v3; 非饱和点:u2,v4; 可增广的交错路径 : u2v3u4v2u1v4. 由 得到多一条边的匹配. 设M为G的一个匹配, 是关于M的可增广的交错路径, 则 M =ME( )=(ME( ))(ME( )) 是比M多一条边的匹配.
18
实例
例
K2的判别法
定理11.4 无向图G=<V1,V2,E>是二部图当且仅当G中无奇圈 . 证 必要性. 若G中无圈, 结论成立. 若G中有圈, 设G中的一个 圈C=v1v2vlv1, l≥2. 不妨设v1V1, v1,v2,,vl 依次交替属于V1, V2且vlV2, 因而l为偶数. 得证C为偶圈. 充分性. 不妨设G为连通图, 否则可对每个连通分支进行讨论, 孤立点可根据需要分属V1和V2. 设v0为G中任意一个顶点, 令 V1={v | vV(G)d(v0,v)为偶数} V2={v | vV(G)d(v0,v)为奇数} d(v0,v)是v0到v的最短路径的边数(每条边的权为1). V1, V2, V1V2=, V1V2=V(G). 要证V1中任意两点不相邻.