第七章答案
第七章 习题答案

第七章动态电路的时域分析习题一、选择题1. 一阶电路的时间常数取决于: C(A) 电路的结构(B) 外施激励(C) 电路的结构和参数(D) 电路的参数2. 图示电路中I S = 5 A恒定,电路原已稳定,t = 0时开关S打开。
在求解过渡过程中,下列式子中正确的是: D(A) u(∞) = 125 V (B) τ = 0.4 s (C) u(0+) = 100 V (D) i(∞) = 5AL3.在电路换路后的最初瞬间( t = 0+ ),根据换路定律,电路元件可作如下等效: C(A) 无储能的电容可看做开路(B) 无储能的电感可看做短路(C) 电容可看作具有其初值电压的电压源(D) 电压源可看作短路,电流源可看作开路(0+)的值为:D4. 图示电路在开关S合上前电感L中无电流,合上开关的瞬间uL(A) 0 V (B) 63.2 V (C) ∞(D) 100 V5. 图示电路中电压源电压恒定,且电路原已稳定。
在开关S闭合瞬间,i(0+)的值为:C(A) 0.2 A (B) 0.6 A (C) 0 A (D) 0.3 A6. 表征一阶动态电路的电压、电流随时间变化快慢的参数是:D(A) 电感L(B) 电容C(C) 初始值(D) 时间常数τ7. 图示正弦脉冲信号的数学表达式为:B (A) sin ω t ⋅ ε (t ) + sin ω ( t - T ) ⋅ ε ( t - T ) (B) sin ω t ⋅ ε (t ) - sin ω t ⋅ ε ( t - T ) (C) sin ω t ⋅ ε (t ) - sin ω ( t - T ) ⋅ ε ( t - T ) (D) sin ω t ⋅ ε (t ) + sin ω t ⋅ ε ( t - T )8. 图示电路中,原已达稳态, t = 0开关 S 打开,电路的时间常数为:D (A)s 41 (B) s 61(C) s 4 (D)s 69. 示电路中,t = 0 时开关打开,则 u (0+)为:C(A) 0V (B) 3.75V (C) – 6V (D) 6V10.图示电路中,开关打开已久,在 t = 0 时开关闭合,i (0+) 为:D(A) 0A (B) 0.8A(C) 2A (D)1A11.R 、C 串联电路,已知全响应()()10C 83V,0t u t e t -=-≥,其零状态响应为:(A )(A) 1088V te-- (B) 1083V t e -- (C) 103V t e -- (D) 105V t e -12. .一阶电路的全响应()()10C 106V,0tu t et -=-≥若初始状态不变而输入增加一倍,则全响应u C (t)为 ( D ) (A) 20-12e -10t ; (B) 20-6e -10t ; (C) 10-12e -10t ; (D) 20-16 e -10t 。
微观经济学第七章 习题答案

MR,试求:图7—1(1)A点所对应的MR值;(2)B点所对应的MR值。
解答:(1)根据需求的价格点弹性的几何意义,可得A点的需求的价格弹性为e d =eq \f(15-5,5)=2或者e d =eq \f(2,3-2)=2再根据公式MR=P eq \b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,e d ))),则A点的MR值为MR=2×eq \b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,2)))=1(2)与(1)类似,根据需求的价格点弹性的几何意义,可得B点的需求的价格弹性为e d =eq \f(15-10,10)=eq \f(1,2)或者e d =eq \f(1,3-1)=eq \f(1,2)再根据公式MR=P eq \b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,e d ))),则B点的MR值为MR=1×eq \b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,1/2)))=-12. 图7—2(即教材第205页的图7—19)是某垄断厂商的长期成本曲线、需求曲线和收益曲线。
试在图中标出:(1)长期均衡点及相应的均衡价格和均衡产量;(2)长期均衡时代表最优生产规模的SAC曲线和SMC曲线;(3)长期均衡时的利润量。
图7—2图7—3(1)长期均衡点为E点,因为在E点有MR=LMC。
由E点出发,均衡价格为P0,均衡数量为Q0。
(2)长期均衡时代表最优生产规模的SAC曲线和SMC曲线如图7—3所示。
在Q0的产量上,SAC曲线和LAC曲线相切;SMC曲线和LMC曲线相交,且同时与MR曲线相交。
(3)长期均衡时的利润量由图7—3中阴影部分的面积表示,即π=[AR(Q0)-SAC(Q0)]·Q 0。
3. 已知某垄断厂商的短期总成本函数为STC=0.1Q3-6Q2+140Q+3 000,反需求函数为P=150-3.25Q。
第七章习题答案解析

第七章 不完全竞争的市场1、根据图中线性需求曲线d 和相应的边际收益曲线MR ,试求:(1)A 点所对应的MR 值;(2)B 点所对应的MR 值。
解答:(1)根据需求的价格点弹性的几何意义,可得A 点的需求的价格弹性为:25)515(=-=d e 或者 2)23(2=-=d e 再根据公式)11(d e P MR -=,则A 点的MR 值为:MR=2×(2×1/2)=1 (2)与(1)类似,根据需求的价格点弹性的几何意义,可得B 点的需求的价格弹性为:21101015=-=d e 或者 21131=-=d e 再根据公式d e MR 11-=,则B 点的MR 值为:1)2111(1-=-⨯=MR 2、图7-19是某垄断厂商的长期成本曲线、需求曲线和收益曲线。
试在图中标出:(1)长期均衡点及相应的均衡价格和均衡产量;(2)长期均衡时代表最优生产规模的SAC 曲线和SMC 曲线;(3)长期均衡时的利润量。
解答:本题的作图结果下图所示:(1)长期均衡点为E 点,因为,在E 点有MR=LMC 。
由E 点出发,均衡价格为P 0,均衡数量为Q 0。
(2)长期均衡时代表最优生产规模的SAC 曲线和SMC 曲线如图所示。
在Q 0 的产量上,SAC 曲线和LAC 曲线相切;SMC 曲线和LMC 曲线相交,且同时与MR 曲线相交。
(3)长期均衡时的利润量有图中阴影部分的面积表示,即л=(AR(Q 0)-SAC(Q 0)Q 03、已知某垄断厂商的短期成本函数为30001461.023++-=Q Q Q STC ,反需求函数为P=150-3.25Q求:该垄断厂商的短期均衡产量与均衡价格。
解答:因为140123.02+-==Q Q dQ dSTC SMC且由225.3150)25.3150()(Q Q Q Q Q Q P TR -=-==得出MR=150-6.5Q根据利润最大化的原则MR=SMCQ Q Q 5.6150140123.02-=+-解得Q=20(负值舍去)以Q=20代人反需求函数,得P=150-3.25Q=85所以均衡产量为20 均衡价格为854、已知某垄断厂商的成本函数为236.02++=Q Q TC ,反需求函数为P=8-0.4Q 。
物理化学第七章课后答案完整版

第七章电化学用铂电极电解溶液。
通过的电流为20 A,经过15 min后,问:(1)在阴极上能析出多少质量的(2) 在的27 C,100 kPa下的解:电极反应为电极反应的反应进度为因此:在电路中串联着两个电量计,一为氢电量计,另一为银电量计。
当电路中通电1 h后,在氢电量计中收集到19 C、kPa的;在银电量计中沉积。
用两个电量计的数据计算电路中通过的电流为多少。
解:两个电量计的阴极反应分别为电量计中电极反应的反应进度为对银电量计对氢电量计用银电极电解溶液。
通电一定时间后,测知在阴极上析出的,并知阴极区溶液中的总量减少了。
求溶液中的和。
解:解该类问题主要依据电极区的物料守恒(溶液是电中性的)。
显然阴极区溶液中的总量的改变等于阴极析出银的量与从阳极迁移来的银的量之差:用银电极电解水溶液。
电解前每溶液中含。
阳极溶解下来的银与溶液中的反应生成,其反应可表示为总反应为通电一定时间后,测得银电量计中沉积了,并测知阳极区溶液重,其中含。
试计算溶液中的和。
解:先计算是方便的。
注意到电解前后阳极区中水的量不变,量的改变为该量由两部分组成(1)与阳极溶解的生成,(2)从阴极迁移到阳极用铜电极电解水溶液。
电解前每溶液中含。
通电一定时间后,测得银电量计中析出,并测知阳极区溶液重,其中含。
试计算溶液中的和。
解:同。
电解前后量的改变从铜电极溶解的的量为从阳极区迁移出去的的量为因此,在一个细管中,于的溶液的上面放入的溶液,使它们之间有一个明显的界面。
令的电流直上而下通过该管,界面不断向下移动,并且一直是很清晰的。
以后,界面在管内向下移动的距离相当于的溶液在管中所占的长度。
计算在实验温度25 C下,溶液中的和。
解:此为用界面移动法测量离子迁移数已知25 C时溶液的电导率为。
一电导池中充以此溶液,在25 C时测得其电阻为。
在同一电导池中装入同样体积的质量浓度为的溶液,测得电阻为。
计算(1)电导池系数;(2)溶液的电导率;(3)溶液的摩尔电导率。
第七章课后习题参考答案

2. 试简单说明下列协议的作用:IP、ARP、RARP和ICMP。
答:IP协议:实现网络互连。
使参与互连的性能各异的网络从用户看起来好像是一个统一的网络。
ARP协议:完成IP地址到MAC地址的映射。
RARP:使只知道自己硬件地址的主机能够知道其IP地址。
ICMP:允许主机或路由器报告差错情况和提供有关异常情况的报告。
5. 试说明IP 地址与硬件地址的区别。
为什么要使用这两种不同的地址?答:IP地址在IP数据报的首部,而硬件地址则放在MAC帧的首部。
在网络层以上使用的是IP地址,而链路层及以下使用的是硬件地址。
在IP层抽象的互连网上,我们看到的只是IP数据报,路由器根据目的站的IP地址进行选路。
在具体的物理网络的链路层,我们看到的只是 MAC 帧,IP 数据报被封装在 MAC 帧里面。
MAC帧在不同的网络上传送时,其MAC帧的首部是不同的。
这种变化,在上面的IP层上是看不到的。
每个路由器都有IP 地址和硬件地址。
使用IP地址与硬件地址,尽管连接在一起的网络的硬件地址体系各不相同,但IP层抽象的互连网却屏蔽了下层这些很复杂的细节,并使我们能够使用统一的、抽象的IP地址进行通信。
6.(1)子网掩码为255.255.255.0代表什么意思?(2)一网络的子网掩码为255.255.255.248,问该网络能够连接多少台主机?(1)一A类网络和一B类网络的子网号subnet-id分别为16bit的8bit,问这两个网络的子网掩码有何不同?(2)一个B类地址的子网掩码是255.255.240.0。
试问在其中每一个子网上的主机数最多是多少?(3)一个A类地址的子网掩码为255.255.0.255。
它是否为一个有效的子网掩码?(4)某个IP地址的十六进制表示是C22F1481,试将其转换为点分十进制的形式.这个地址是哪一类IP 地址?(5)C类网络使用子网掩码有无实际意义?为什么?答:(1)C类地址对应的子网掩码值。
第七章--生产要素理论-答案

第七章生产要素定价理论生产要素的定价理论是经济学中分配理论的重要组成部分。
生产要素的价格对于消费者来说是收入,对于生产者来说是生产成本,因而要素价格直接影响消费者行为和厂商的行为,要素市场直接与产品市场相联系,所以本章的内容要与前面所讲的消费者行为理论和厂商理论及市场理论结合起来学习。
本章主要从生产要素的需求入手,来分析生产要素需求的特性、需求原则和需求曲线。
本章论证对生产要素需求的特点,厂商对要素需求的原则及要素需求曲线,说明边际生产力理论是要素收入分配的理论基础。
本章还研究生产要素的供给原则,分析不同要素供给的不同特点以及对均衡价格决定的影响。
本章重点:(1)边际生产力的有关重要概念,如边际收益产量、边际产品价值及其与边际产量的区别,边际收益产量曲线与厂商对要素需求曲线的关系。
(2)产品市场、要素市场均为完全竞争条件下,要素的均衡价格的决定。
(3)向后弯曲的劳动供给曲线。
(4)工资、地租、利息、利润的决定。
习题:1、名词解释引致需求、边际生产力、边际产品价值、边际收益产量、边际要素成本、工资、利息、准地租、经济租2、单项选择题(1)生产要素的需求是一种(D )。
A.派生需求B.引致需求C.最终产品需求D.A,B两者(2)如果厂商处于完全竞争的产品市场中,且生产要素中惟有L是可变要素,则该厂商对要素L的需求曲线可由(C )推出。
A.MP L曲线B.MFC L曲线C.VMP L曲线D.以上均不正确(3)生产要素的需求曲线之所以向右下方倾斜,是因为(A)。
A.要素的边际收益产量递减B.要素生产的产品的边际效用递减C.要素参加生产的规模报酬递减D.以上均不正确(4)完全竞争产品市场与不完全竞争产品市场两种条件下的生产要素的需求曲线相比较(A )。
A.前者比后者平坦B.前者比后者陡峭C.前者与后者重合D.无法确定(5)工资率上升所引起的替代效应是指( C )。
A.工作同样长的时间可以得到更多的收入B.工作较短的时间也可以得到更多的收入C.工人宁愿工作更长的时间,用收入带来的效用替代闲暇的效用D.以上都对(6)某工人在工资率为每小时5元时,每周挣200元。
第七章课后练习题答案

第七章证券评价一、单项选择题1.已知某证券的 系数等于1,则表明该证券( C )。
A.无风险B.有非常低的风险C.与金融市场所有证券平均风险一致D.比金融市场所有证券平均风险大1倍2.某种股票为固定成长股票,年增长率为5%,预期一年后的股利为6元,现行国库券的收益率为11%,平均风险股票的必要收益率等于16%,而该股票的贝他系数为1.2,那么,该股票的价值为( A )。
A.50B.33C.45D.303.投资短期证券的投资者最关心的是( D)。
A.发行公司的经营理财状况的变动趋势B.证券市场的现时指数C.发行公司当期可分派的收益D.证券市场价格的变动4.证券投资者的购买证券时,可以接受的最高价格是( C )。
A.出卖市价B.风险价值C.证券价值D.票面价值5.一般而言,金融投资不是( B )。
A.对外投资B.直接投资C.证券投资D.风险投资6.非系统风险( B )。
B.归因于某一投资企业特有的价格因素或事件C.不能通过投资组合得以分散D.通常以 系数进行衡量7.下列说法中正确的是( D )。
A.国库券没有利率风险B.公司债券只有违约风险D.国库券没有违约风险,但有利率C.国库券和公司债券均有违约风险风险8.如果组合中包括了全部股票,则投资人( A )。
A.只承担市场风险B.只承担特有风险C.只承担非系统风险D.不承担系统风险9.债券的价值有两部分构成,一是各期利息的现值,二是( C )的现值。
A.票面利率B.购入价格C.票面价值D.市场价格10.A公司发行面值为1000元,票面利率10%,期限五年,且到期一次还本付息(单利计息)的债券,发行价格为1050元,B投资者有能力投资,但想获得8%以上的投资报酬率,则B投资者投资该债券的投资报酬率为( B)。
A.8%B.7.4%C.8.25%D.10%11.某企业于1996年4月1日以950元购得面额为1000元的新发行债券,票面利率12%,每年付息一次,到期还本,该公司若持有该债券至到期日,其到期收益率为( A )。
高等数学第七章习题详细解答

第七章习题答案习题7.01.下列各种情形中,P 为E 的什么点?(1)如果存在点P 的某一邻域()U P ,使得()⊂c U P E (c E 为E 的余集); (2)如果对点P 的任意邻域()U P ,都有, ()(),C U P E U P E φφ≠≠; (3)如果对点P 的任意邻域()U P ,都有. 解 (1)P 为E 的外点;(2)P 为E 的边界点;(3)P 为E 的聚点。
2.判定下列平面点集的特征(说明是开集、闭集、区域、还是有界集、无界集等?)并分别求出它们的导集和边界.(1) (){},0≠x y y ;(2) (){}22,620≤+≤x y x y ; (3) (){}2,≤x y y x ;(4) ()(){}()(){}2222,11,24+-≥⋂+-≤x y x y x y x y .解 (1) 是开集,是半开半闭区域,是无界集,导集为2R ,边界集为(){},0=x y y ;(2)既不是开集也不是闭集,是半开半闭区域,是有界集,导集为(){}22,620≤+≤x y x y ,边界集为(){}2222,=6=20++,x y x y x y ;(3) 是闭集,是半开半闭区域,是无界集,导集为集合本身,边界集为(){}2,=x y y x ;是闭集,是闭区域,是有界集,导集为集合本身,边界集为()()(){}2222,11,24+-=+-=x y x y x y习题7.11. 设求1. 解 令,=-=yu x y v x,解得,11==--u uv x y v v,故()22,11⎛⎫⎛⎫=- ⎪ ⎪--⎝⎭⎝⎭u uv f u v v v ,即()()21+,1=-u v f u v v ,所以,()()21+y ,1=-x f x y y φ≠-}){()(P E P U 22,,y f x y x y x ⎛⎫-=- ⎪⎝⎭(,).f x y2.已知函数()22,cot =+-x f x y x y xy y,试求(),f tx ty .2. 解 因为()22,cot =+-y f x y x y xy x,所以,()2222,cot ,=+-t y f tx ty tx ty txty t x即()()222,cot =+-y f tx ty t x y t xy x.3.求下列各函数的定义域 (1) 25)1(=-+z ln y xy ;(2) =z ;(3) =z(4) )0;=>>u R r(5) =u3. 解 (1)(){}2,510-+>x y yxy ;(2)(){},0->x y x y ;(3)(){}2,≥x y x y ;(4)(){}22222,<++≤x y r x y z R ;(5)(){}222,≤+x y z x y4. 求下列各极限:(1) ()()233,0,31lim →-+x y x yx y ;(2)()(,1,1ln lim→+x x y y e(3)()(,0,0lim→x y(4)()(,0,0lim→x y ;(5)()()(),0,2sin lim→x y xy x ;(6)()()()()222222,0,01cos lim→-++x y x y x y xy e.4. 解 (1)()()2333,0,31101lim 0327→--==++x y x y x y ;(2)()(()1,1,1ln ln 11lim2→+++===x x y y e e e (3)()()()(,0,0,0,0limlim→→=x y x y ()(,0,01lim4→==x y (4)()(()()),0,0,0,01limlim→→=x y x y xy xy()()),0,0=lim1=2→+x y(5)()()()()()(),0,2,0,2sin sin limlim 122→→=⋅=⋅=x y x y xy xy y x xy(6)()()()()()()()()()222222222222222,0,0,0,01cos 1cos limlim→→-+-++=⋅++x y x y x y x y x y x y xy xy eex y()()()()()()()2222222022,0,0,0,01cos 10limlim=02→→-++=⋅⋅=+x y x y x y x y xy e exy5.证明下列极限不存在: (1)()(),0,0lim→-+x y x yx y ;(2)()(),0,0lim→+-x y xyxy x y .5. (1) 解 令=y kx ,有()(),0,001limlim 1→→---==+++x y x x y x kx kx y x kx k ,k 取不同值,极限不同,故()(),0,0lim→-+x y x yx y 不存在.(2) 解令=x y()()22,0,00lim lim 1→→==+-x y x xy x xy x yx ;令2=x y()()()()22,0,02,0,0022lim lim lim 0221→→→===+-++x y y y y xy y y xy x y y y y ;01≠,故()(),0,0lim→+-x y xyxy x y不存在.6.函数=y z a 为常数)在何处间断?6. 解 因为=y z 是二元初等函数,且函数只在点集(){,x y y 上无定义,故函数在点集(){,x y y 上间断.7.用 εδ- 语言证明()(,0,0lim0→=x y .7. 证明 对0∀>ε,要使220-=≤=<ε2<ε,取=2δε<δ0-<ε,所以()(,0,0lim 0→=x y习题7.21. 设()(),sin 1arctan ,π==+-xy xz f x y e y x y 试求()1,1x f 及()1,1y f1. 解()221,sin arctan 1=+++xy x x yf x y ye y xx yyπ22=sin arctan+++xy x xy ye y y x y π.()()222,sin cos 11-=++-+xy xyy x y f x y xe y e y x x yπππ 222sin cos -=+++xyxyx x xe y e y x y πππ()()1,1,1,1∴=-=-x y f e f e2.设(),ln 2⎛⎫=+ ⎪⎝⎭y f x y x x ,求()1,0'x f ,()1,0'y f .2. 解()()222122,22--==++x yx y x f x y y x x y x x()2112,22==++y x f x y yx y x x()()11,011,02∴==,x y f f . 3.求下列函数的偏导数(1) 332=++z x y xy ,(2) ()1=+xz xy , (3) ()222ln =+z y x y ,(4) ln tan=y z x, (5) ()222ln =+z x x y ;(6)=z (7) ()sec =z xy ;(8) ()1=+yz xy ;(9) ()arctan =-zy x y ;(10) .⎛⎫=⎪⎝⎭zx u y 3. 解 (1)2232,32z z x y y x x y ∂∂=+=+∂∂(2)因为 ()ln 1,x xy z e+=所以()()()()ln 1ln 11ln 111x x xy z xy xy e xy xy xy x xy xy +⎛⎫⎛⎫∂=++=+++ ⎪ ⎪∂++⎝⎭⎝⎭()()22ln 1111x x xy z x x e xy y xy xy +⎛⎫⎛⎫∂==+ ⎪ ⎪∂++⎝⎭⎝⎭(3)()2322222222,2ln z xy z y y x y x x y y x y ∂∂==++∂+∂+(4)222222sec sec 111sec ,sec tan tan tantan y yy z y y z y x x y y y y x x x y x x x x x x x x∂∂⎛⎫⎛⎫=-=-== ⎪ ⎪∂∂⎝⎭⎝⎭ (5)()32222222222ln ,z x z x y x x y x x y y x y ∂∂=++=∂+∂+(6)z z x y ∂∂====∂∂(7)()()()()sec tan ,sec tan z z y xy xy x xy xy x y ∂∂==∂∂(8)()()22ln 1111y y xy z y y e xy x xy xy +⎛⎫⎛⎫∂==+ ⎪ ⎪∂++⎝⎭⎝⎭()()()()ln 1ln 11ln 111y y xy z xy xy e xy xy xy y xy xy +⎛⎫⎛⎫∂=++=+++ ⎪ ⎪∂++⎝⎭⎝⎭ (9)()()()()()()()11222ln ,,111z z zz z z z x y z x y x y x y u u u x y z x y x y x y ------∂∂∂==-=∂∂∂+-+-+-(10)因为 ln,x z yu e=所以ln ln ln 21,,ln zzx x x z z z y y y u z x z u z x x z u x e e e x x xy y x y y y y z y y y⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫∂∂∂=⋅==⋅-=-= ⎪ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭4.设ln=z ,求证: 12∂∂+=∂∂z z xy x y . 4.证明 因为ln,z =所以z zx y∂∂====∂∂从而有12 z zx yx y∂∂+=+=+=∂∂5.求下列函数的二阶偏函数:(1)已知33sin sin=+z x y y x,求2∂∂∂zx y;(2)已知ln=xz y,求2∂∂∂zx y;(3)已知(ln=z x,求22∂∂z x和2∂∂∂z x y;(4)arctan=yzx求22222,,∂∂∂∂∂∂∂z z zx y x y和2∂∂∂zy x.5. 解(1)3323sin sin,3sin coszz x y y x x y y xx∂=+∴=+∂从而有223cos3coszx y y xx y∂=+∂∂(2)ln ln1,lnx xzz y y yx x∂⎛⎫=∴= ⎪∂⎝⎭从而有()()()ln1ln1ln11ln ln ln ln1xx xz yxy y y x yx y x y x--⎛⎫∂=+⋅=+⎪∂∂⎝⎭(3)(()1222 ln,zz x x yx-∂=∴===+∂从而有()()3322222222122zx y x x x yx--∂=-+=-+∂()()332222222122z x y y y x y x y --∂=-+=-+∂∂ (4)22221arctan,1y z y y z x xx x y y x ∂⎛⎫=∴=⋅-=- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭ 222111z x yx x y y x ∂⎛⎫=⋅= ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭从而有()()()()2222222222222222222,x y y z xy z y x x x y x y x y x y -++∂∂-===∂∂∂+++ ()()2222222222222222,z xy z x y xy x y y y x x y x y x y ⎛⎫∂-∂+--=== ⎪∂∂∂+⎝⎭++ 6. 设()ln =z y xy ,求2∂∂∂z x y 及22∂∂zy .6. 解 因为()ln ,z y xy =所以()(),ln ln 1z y y z x y xy y xy x xy x y xy∂∂===+=+∂∂从而有22211,.z z x y x y y∂∂==∂∂∂ 习题7.31. 求下列函数的全微分.(1) 2222+=-s t u s t ;(2) ()2222+=+x y xyz x y e;(3) ()arcsin0=>xz y y;(4) ⎛⎫-+ ⎪⎝⎭=y x x y z e ;1.解 (1)()()222232322222222()()22222∂--+⋅---==∂--u s s t s t s s st s t s s s t s t()()222223232222222()()22222u t s t s t t ts t ts s t s t s t ∂--+---==∂-- ()()2322222244u u st t dz ds dt ds dt s t s t s t ∂∂-∴=+=-∂∂--(2)()()()222222222222++++∂=++⋅∂x y x y xyxyx y x y yzxe x y exxy()2222222244222222+++⎛⎫--=++⋅=+ ⎪⎝⎭x y x y x y xyxyxyx y x y xe x y e x e x y x y()()()22222222222-2+++∂=++⋅∂x y x y xy xyy x x y xzye x y eyxy()()2222222222442222+++-+⎛⎫-=+⋅=+ ⎪⎝⎭x y x y x y xyxyxyy x x y y x yeey e xy xy2244442222x y xyz z x y y x dz dx dy x edx y dy x y x y xy +⎛⎫⎛⎫∂∂--∴=+=+++ ⎪ ⎪∂∂⎝⎭⎝⎭ (3)2222211∂=⋅==∂--⎛⎫yzxyyy x y x x22⎛⎫⎛⎫∂=-=-= ⎪ ⎪∂⎝⎭⎝⎭z x x yy y z zdz dx dy x y∂∂∴=+=∂∂(4)22221y x y x x y x y z y y x e e x x y x y ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫∂-=-= ⎪∂⎝⎭ 22221y x y x x y x y z x x y e e y x y xy ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫∂-=-+= ⎪∂⎝⎭222222y x y x x y x y z z z y x x y dz dx dy e dx e dy x y y x y xy⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭∂∂∂--∴=+==+∂∂∂ 2. 求函数2arctan1=+xz y 在1,1==x y 处的全微分.2.解()()()()()()()22222222222222222211111111111++∂++=⋅=⋅=∂++++++++y y z y y x xy y x y y xy()()()()()()22222222222222211222111111+∂-⋅--=⋅=⋅=∂++++++++y z x y xy xyx yy y x y y xy()()21,11125111z x ∂+∴==∂++ , ()()21,12125111∂-⋅==-∂++z y ()1,12255dz dx dy ∴=- 3. 求函数22=-xyz x y 当2,1,0.02,0.01==∆=∆=x y x y 时的全微分和全增量,并求两者之差.3.解 ()()()(),, 2.02,1.011,1z z x x y y z x y z z ∆=+∆+∆-=-()()22222.02 1.0121 2.0420.6670.667021 4.08 1.0232.02 1.01⨯⨯=-=-=-=--- ()()()2223222222222--⋅∂--===-∂---y x y xy x z x y y y x x y x y x y ()()()()22322222222--⋅-∂+==∂--x x y xy y z x xy y x y x y ()2,111413z x ∂∴=-=-∂- ,()()22,182110941z y ∂+⨯==∂- ()2,11100.020.010.070.0110.00439dz ∴=-⨯+⨯=-+=00.0040.004z dz ∴∆-=-=-.*4讨论函数()()()()(),0,0,0,,0,0⎧≠⎪=⎨⎪=⎩xy x y f x y x y 在()0,0点的连续性、可导性、可微性以及其偏导函数在()0,0的连续性.4.解()()()()()(),0,0,0,0lim,lim 00,0x y x y f x y xy f →→===(),f x y ∴在()0,0点连续 又()()()00,00,0000,0limlim 0x x x f x f f x x∆→∆→∆--===∆∆ ()()()000,0,0000,0limlim 0y y y f y f f y y∆→∆→∆--===∆∆ ()()0,00,0,00x y f f ∴==.()(()(,0,0,0,0,0,00limlim limx y x y f x yf z dzρρ→∆∆→∆∆→∆∆--∆-==()()()0,0,0x y<∆∆→∆lim0z dzρρ→∆-∴=故函数(),f x y 在()0,0点可微. 由()(),0,0x y ≠时(),=-x f x yy xy()23222sinx yy xy=-+(),=-y f x y x xy ()23222xy x xy=-+()(),0,0lim 0x y y →= ,()()()()23,0,0222lim→=+x y x yy kx xy()()()33323222=lim11→==+⋅+x kx ky kx k xk ,k 不同值不同()()()23,0,0222lim→∴+x y xy xy 不存在,故()()(),0,0lim ,xx y f x y →不存在.(),x f x y ∴在()0,0点不连续,同理可证(),y f x y 在点()0,0不连续.*5.计算()2.050.99的近似值.5.解 令00,1,2,0.01,0.05yz x x y x y ===∆=∆= 则1,ln y y z z yx x x x y-∂∂==∂∂ ()()1,21,22,0z zx y ∂∂∴==∂∂ ()()()2.0521,21,20.991120.0100.0510.02 1.02∂∂∴≈+∆+∆=+⨯+⨯=+=∂∂z zx y x y*6.设有厚度为,内高为,内半径为的无盖圆柱形容器,求容器外壳体积的近似值(设容器的壁和底的厚度相同).6.解 设容器底面积半径为r ,高为h则容器体积2V r h π=22,V Vrh r r hππ∂∂==∂∂ 22∴=+dV rhdr r dh ππ002,10,0.1,0.1r cm h cm r cm h cm ==∆=∆=()()22,102,1020.10.1400.140.1 4.4∴∆≈=⋅+⋅=⨯+⨯=V dV rh r πππππ*7. 测得直角三角形两直角边的长分别为7±0.1cm 和24±0.1cm ,试求利用上述二值来计算斜边长度时的绝对误差和相对误差.0.1cm 10cm 2cm7.解 设直角三角形的直角边长分别为,x y ,则斜边z =,zz xy∂∂==∂∂由题意007,24,0.1,0.1x y x y δδ====z ∴的绝对误差为()()7,247,247240.10.10.242525∂∂=+=⨯+⨯=∂∂z x y z z x y δδδz 的相对误差()7,240.240.009625=≈zz δ 习题7.41.设,,,求. 1.解 ()3222sin 22cos 23cos 6---∂∂=⋅+⋅=⋅-⋅=-∂∂x y x y t t du z dx z dy e t e t e t t dt x dt y dt2.设,而,,求. 2.解2123∂∂=⋅+⋅=+∂∂dz z dy z dV x dx u dx V dx2341-=x3.设,,,求,. 3.解 ()()222cos 2sin ∂∂∂∂∂=⋅+⋅=-+-∂∂∂∂∂z z u z v uv v y u uv y x u x v x()()2222222cos sin sin cos cos 2cos sin sin x y y x y y x y x y y y =-+-()23sin cos cos sin x y y y y =-()()()222sin 2cos z z u z v uv v x y u uv x y y u y v y∂∂∂∂∂=+=--+-∂∂∂∂∂ ()()()2222222cos sin sin sin cos 2cos sin cos x y y x y x y x y x y y x y =--+-()()3333cos sin 2cos sin sin cos x y y x y y y y =+-+2e x y u -=sin x t =3y t =d d u tarccos()z u v =-34u x =3v x =d d zx22z u v uv =-cos u x y =sin v x y =zx ∂∂z y∂∂4.设,而,,求,. 4.解 222ln 3∂∂∂∂∂⎛⎫=⋅+⋅=⋅+- ⎪∂∂∂∂∂⎝⎭z z u z v u y u v x u x v x v x()()()2322632ln 326ln 3x y y y y x y x y x x x x +⎛⎫=+-=+-- ⎪⎝⎭5.设求5.解 ()()1wf x xy xyz y yz x ∂'=++++∂()()()()1wf x xy xyz x xz x z f x xy xyz y∂''=+++=+++∂ ()()wf x xy xyz xy xyf x xy xyz z ∂''=++=++∂6.求下列函数的一阶偏导数(其中具有一阶连续偏导数):(1);(2);(3);(4).6.解 (1)()()222222∂''=-⋅=-∂z f x y x xf x y x()()()222222∂''=-⋅-=--∂zf x y y yf x y y(2)121110∂'''=+⋅=∂u f f f x y y12122211u x x f f f f y y z y z ⎛⎫∂⎛⎫''''=-+=-+ ⎪ ⎪∂⎝⎭⎝⎭122220∂⎛⎫'''=⋅+-=- ⎪∂⎝⎭u y y f f f z z z (3)1231231∂''''''=⋅+⋅+⋅=++∂uf f y f yz f yf yzf x123230∂'''''=⋅+⋅+⋅=+∂uf f x f xz xf xzf y2ln z u v =32u x y =+y v x =zx ∂∂z y∂∂(),w f x xy xyz =++,,.w w wx y z∂∂∂∂∂∂f 22()z f x y =-,x y u f y z ⎛⎫= ⎪⎝⎭(,,)u f x xy xyz =22(,e ,ln )xy u f x y x =-123300∂''''=⋅+⋅+⋅=∂uf f f xy xyf z (4)1231231122∂''''''=⋅+⋅⋅+⋅=++∂xy xyu f x f e y f xf ye f f x x x()12312202∂'''''=⋅-+⋅+⋅=-+∂xy xy uf y f e x f yf xe f y7.求下列函数的二阶偏导数,,(其中具有二阶连续偏导数):(1),(2). 7.解(1)22121222∂''''=⋅+⋅=+∂zf xy f y xyf y f x22121222∂''''=⋅+⋅=+∂zf x f xy x f xyf y()()222211112212222222∂'''''''''∴=+⋅+⋅+⋅+⋅∂zyf xy f xy f y y f xy f y x233341111221222422yf x y f xy f xy f y f '''''''''=++++ 23341111222244yf x y f xy f y f '''''''=+++()()2222111122212222222∂''''''''''=+⋅+⋅++⋅+⋅∂∂zxf xy f x f xy yf y f x f xy x y322223111122212222422xf x yf x y f yf x y f xy f ''''''''''=+++++ 32231111222222522xf x yf x y f yf xy f ''''''''=++++()2222211122212222222∂'''''''''=+++⋅+⋅∂zx f x x f xy xf xy f x f xy y43221112222424x f x yf xf x y f '''''''=+++(2)()()222222∂''=+⋅=+∂zf x y x xf x y x()()222222∂''=+⋅=+∂zf x y y yf x y y22zx∂∂2z x y ∂∂∂22z y ∂∂f 22(,)z f x y xy =22()z f x y =+()()()()2222222222222224∂''''''∴=+++⋅=+++∂zf x y xf x y x f x y x f x y x()()22222224∂'''=+⋅=+∂∂z xf x y y xyf x y x y()()()()2222222222222224∂''''''=+++⋅=+++∂zf x y yf x y y f x y y f x y y8.设其中F 是可微函数,证明8.解()()()cos sin sin cos cos cos sin sin ux F y x x x xF y x x∂''=+--=--∂ ()sin sin cos uF y x y y∂'=-∂ ()()cos cos cos cos sin sin cos cos sin sin cos u uy x x xF y x y yF y x x x y∂∂''∴+=--+-⎡⎤⎣⎦∂∂ ()()cos cos cos cos sin sin cos cos sin sin cos cos x y x yF y x x yF y x x y ''=--+-=.习题7.51.设,φ⎛⎫= ⎪⎝⎭x y z z 其中为可微函数,求∂∂+∂∂z z x y x y . 1.解 z是,x y函数由方程xx z y φ⎛⎫= ⎪⎝⎭确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参考答案
[X 型题] 28.A B C D 29.B D 30.B D 31.A B C 32.B D 33.A C 34.A B C D 35.A C 36.A B C 37.A B C 38.B D 39.A B C 40.A B C D 41.A B C 42.A B C D 43.A B C D 44.D 45.A C 46.B D
47.D 48.A B C 49.B D 50.A B C [B 型题] 一种非特异性的变化:即诱导一些新的蛋白质的合成。
与此同时某些基因的表达受到抑制,这种反应称为热休克反应。
63.急性炎症,感染,组织损伤时血浆中某些蛋白质升高,这些蛋白称为急性期蛋白,这种反应称为急性期反应。
64.由于应激(包括心理应激和躯体应激)时的防御反应(主要是神经-内 分泌反应)不适当而引起的疾病称应激性疾病,如应激性溃疡,应激性 心律失常,就是典型的例子。
65.应激是防御反应,但不适当的应激可引起疾病。
如应激性溃疡。
66.应激一词的创始人,Selye 在大鼠观察到,机体受到不利的环境因素作 用时,出现一系列的非特异性的动态过程的全身性的变化,Selye 认为 这是一种适应性的变化,故称为全身适应综合症,分三期:警觉期,抵 抗期,衰竭期。
67.应激时血小板数目增多,血小板粘附能力升高。
白细胞数目增多,血浆纤维蛋白原增多,由此造成血液粘度升高,引起血液流动变慢等,血液流变学变化,称为血液应激综合症。
68.在整个生物界,从原核生物到人,从植物到动物都发生。
69.C -反应蛋白是IL-1作用于肝细胞产生的急性期蛋白。
这两个病人虽未查出有炎症病灶。
但体内IL-1生成增多,说明有组织损伤,隐性感染或有抗原-抗体反应。
病人甲数日后C -反应蛋白已测不出,说明体内损伤、炎症已消失。
病人乙C -
反应蛋白持续升高,很可能是免疫性疾病。
70.急性感染、炎症、组织损伤时,血浆中某些蛋白质的浓度迅速升高,称为急
性期反应。
升高的蛋白质称为急性期蛋白。
如C-反应蛋白、纤维蛋白原、抗凝血酶Ⅲ、α1-蛋白酶抑制剂、铜兰蛋白等。
71.由于应激(包括心理和躯体应激)而引起的消化道溃疡,多发生在胃。
72.可以引起:
①紧张通过交感神经兴奋引起心血管的变化
②焦虑通过植物神经,引起消化功能障碍
③心理因素,如抑郁,通过糖皮质激素分泌增多,引起免疫功能低下。
73.心理因素是非常重要的应激原,心理因素在人类生活中是经常起作用的,特
别是在竞争激烈的现代化的社会中,从这个意义上,心理应激的重要性决不亚于躯体应激。
74.应激时的高代谢率是应激时全身一些器官(如心脏)功能加强的结果,同时
也为这些器官的活动增强提供能量。
长期高代谢率使机体过度消耗,如不能得到补充(如不能进食),造成营养物质的缺乏。
75.不能。
因为应激时,使血糖升高的许多激素分泌增多,加上交感神经兴奋
和胰岛素的分泌受抑制,故出现应激性高血糖性糖尿,只有当确认血糖水平不受创伤的病情发展的影响时,才能诊断为糖尿病。
76.①高血糖
②交感神经兴奋,肾上腺髓质分泌增多,血浆中肾上腺素浓度升高。
77.靶细胞对胰岛素的反应性降低,称为胰岛素抵抗例:创伤后,某些糖尿病
(举一例即可,都对)临床意义,要用大剂量胰岛素才能纠正机体的代谢障碍,特别是糖利用的障碍。
78.糖皮质激素通过抑制花生四烯酸的生成,抑制白细胞的活化,抑制白细
胞介素的生成等抑制炎症反应,应激时,由于有组织损伤等原因,体内常有白细胞活化和炎症介质的生成,这些反应过强可引起严重后果,全身性急性炎症反应综合症(休克就属于这类)就是一例。
79.应激时血浆β-内啡肽浓度明显升高,其升高程度和ACTH往往平行,二者属于同
一前体,功能上β-内啡肽对于ACTH和糖皮质激素的分泌可能有抑制作用,参与ACTH分泌的负反馈调节。
80.HSP70 浆和核内作为各种蛋白质的分子伴侣,保持这些蛋白质的结构和分
布的正常(即蛋白自稳)。
81. ①增多;②中性粒细胞释放的弹性蛋白酶;③抗凝血酶Ⅲ,R1-抗纤溶酶,C1R
抑制剂等;④DIC,全身炎症反应综合症等。
疑难解析
试题应激时血浆催乳素的变化是:
A.男、女都不变
B.男、女都升高
C.男、女都降低
D.只有女性才升高
E.只有男性才降低
答案:B
解析:应激是全身性的非特异性防御反应。
应激时可以引起广泛的神经内分泌变化,包括导致腺垂体分泌催乳素增多,这种增多与妊娠催乳素的分泌无关,没有性别特异性,故男、女都升高。
试题应激时决定胰岛素分泌的主要因素是什么?
答案:①高血糖;②交感神经兴奋,肾上腺髓质分泌增多,血浆中肾上腺素浓度升高。
解析:应激时胰岛素的水平可以不变,可以升高,也可以降低。
这是因为应激时,胰岛素的分泌受两种相反作用的调节。
一是应激性高血糖和胰高血糖素水平升高,这是刺激胰岛素分泌的因素;二是血中儿茶酚胺增多,这是抑制胰岛素分泌的因素。
应激时,如果交感-肾上腺髓质反应较强,则即使血糖很高,也不能使胰岛β-细胞的分泌迅速增加。
试题什么是胰岛素抵抗?试举一例,有什么临床意义?
答案:靶细胞对胰岛素的反应性降低,称为胰岛素抵抗例:创伤后,某些糖尿病(举一例即可,都对)临床意义,要用大剂量胰岛素才能纠正机体的代谢障碍,特别是糖利用的障碍。
解析:应激时,不仅胰岛素的分泌受到儿茶酚胺的抑制,外周组织对胰岛素的反应性也降低,表现为胰岛素抵抗。
胰岛素抵抗的生理意义在于减少胰岛素依赖组织(如大量的骨骼肌)对糖的利用,以保证创伤组织和胰岛素非依赖组织(如脑和外周神经)能获得充分的葡萄糖供应。
但此时胰岛素依赖组织细胞却处于“糖饥饿”状态。
临床上为了克服这种状态,给予大剂量的胰岛素可能是有利的。
例如创伤后糖尿病病人需要大量的胰岛素才能纠正机体代谢,特别是糖代谢的障碍。
试题糖皮质激素抗炎的机制是什么?你对应激时糖皮质激素分泌增多,抗炎机制增强的生理、病理意义是如何理解的?
答案:糖皮质激素通过抑制花生四烯酸的生成,抑制白细胞的活化,抑制白细胞介素的生成等抑制炎症反应,应激时,由于有组织损伤等原因,体内常有白细胞活化和炎症介质的生成,这些反应过强可引起严重后果,全身性急性炎症反应综合症(休克就属于这类)就是一例。
解析:糖皮质激素通过抑制花生四烯酸及其代谢产物的生成、抑制中性粒细胞的活化、抑制炎症介质和细胞因子的生成而起到抗炎和抑制免疫的作用。
应激时,由于微生物、毒素、抗原一抗体复合物以及坏死组织的作用,炎症介质和细胞因子的生成、释放增多,这是防御反应,但释放过多会对机体造成不利影响,必须将这些因子的生成控制在适当的水平,否则将对机体造成严重的后果(如导致全身炎症反应综合征)。
可见糖皮质激素的抗炎和抑制免疫的作用在应激时具有重要的意义。
试题严重应激病人常需要给予大剂量的皮质激素,这是因为:
A.肾上腺皮质分泌减少,血浆皮质激素降低
B.肾上腺皮质分泌正常,但皮质激素在体内分解加快
C.肾上腺皮质分泌正常,但糖皮质激素受体减少
D.肾上腺皮质分泌增加,血浆皮质激素升高,但糖皮质激素受体减少
答案:D
解析:应激时,糖皮质激素分泌虽然增多,但靶细胞对糖皮质激素的反应性却降低,这种现象称为糖皮质激素抵抗。
应激时,糖皮质激素抵抗主要是由于糖皮质激素受体减少引起的。
当糖皮质激素受体严重减少时,尽管血浆糖皮质激素的水平很高,但仍不足以产生机体所需要的生理效应(我们将这种情况称为受体水平上的肾上腺糖皮质激素功能不全),这可能是对这种病人临床上仍需要给予大剂量糖皮质激素的原因。