中考数学专题训练 函数基础训练题(1)

合集下载

中考数学《函数基础知识》专项练习题及答案

中考数学《函数基础知识》专项练习题及答案

中考数学《函数基础知识》专项练习题及答案一、单选题1.每周四下午,是八年级学生社团活动时间,小明从教学楼出发,先利用大课间时间去球场打球,然后去实验楼参加物理实验小组活动,最后回到教室写作业,已知学校的教学楼、球场以及实验楼都在一条直线上,小明与教学楼的距离y(米)与离开教学楼的时间x(分)之间的函数关系如图所示,则下列说法正确的是()A.小明打球的时间是35分钟B.实验楼距离球场30米C.实验楼距离教学楼40米D.社团活动时间是1小时2.在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,下列说法正确是()A.小莹的速度随时间的增大而增大B.小梅的平均速度比小莹的平均速度大C.在起跑后180秒时,两人相遇D.在起跑后50秒时,小梅在小莹的前面3.小明的父母出去散步.从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家,父亲在报亭看了10分钟报纸后用15分钟返回家,则表示父亲、母亲离家距离与时间的关系是()A.④②B.①②C.①③D.④③4.小亮从家步行到公交车站台,等公交车去学校. 图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系. 下列说法错误的是()A.他离家8km共用了30min B.他等公交车时间为6minC.公交车的速度是350m/min D.他步行的速度是100m/min5.已知一个函数的因变量y与自变量x的几组对应值如表,则这个函数的表达式可以是()x…﹣1012…y…﹣2024…A.y=2x B.y=x﹣1C.y=2x D.y=x26.如图在Rt△ABC中,△ACB=90°,△BAC=30°,AB=2,D是AB边上的一个动点(不与点A、B 重合),过点D作CD的垂线交射线CA于点E.设AD=x,CE=y,则下列图象中,能表示y与x的函数关系图象大致是()A.B.C.D.7.如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C移动至终点C,设P点经过的路径长为x,ΔCPE的面积为y,则下列图象能大致反映y与x 函数关系的是()A.B.C.D.8.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度h(cm)和燃烧时间t(小时)之间的函数关系用图象可以表示为中的()A.B.C.D.9.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0B.2C.3D.410.在动画片《喜羊羊与灰太狼》中,有一次灰太狼追赶喜羊羊,在距羊村40m处追上了喜羊羊.如图中s表示它们与羊村的距离(单位:m),t表示时间(单位:s).根据相关信息判断,下列说法中错误的是()A.喜羊羊与灰太狼最初的距离是30mB.灰太狼用15s追上了喜羊羊C.灰太狼跑了60m追上了喜羊羊D.灰太狼追上喜羊羊时,喜羊羊跑了60m11.随着互联网的发展,互联网消费逐渐深入人们的生活,如图所示的是“滴滴顺风车”与“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象,有下列说法:其中正确说法的个数有()①“快车”行驶里程不超过5公里计费8元;②“顺风车”行驶里程超过2公里的部分,每公里计费1.2元;③A点的坐标为(6.5,10.4);④从合肥西站到会展中心的里程是15公里,则“顺风车”要比“快车”少用3.4元.A.1个B.2个C.3个D.4个12.小华同学喜欢锻炼,周六他先从家跑步到新华公园,在那里与同学打一会羽毛球后又步行回家,下面能反映小华离家距离y与所用时间x之间关系的图象是()A.B.C.D.二、填空题13.当x=1时,函数y=3x-5的函数值等于.14.甲、乙两人分别从A、B两地相向而行,y与x的函数关系如图,其中x表示乙行走的时间(时),y表示两人与A地的距离(千米),甲的速度比乙每小时快千米.15.已知函数y={(x−1)2+1(x<2)(x−4)2−2(x≥2),若使y=k成立的x的值恰好有三个,则k的值为.16.一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么就是说x是,y是x的.17.南方旱情严重,乙水库需每天向外供相同量的水.3天后,为缓解旱情,北方甲水库立即以管道运输的方式给乙水库送水,在给乙水库送水前甲水库的蓄水量一直为5000万m3.由于两水库相距较远,甲水库的送出的水要5天后才能到达乙水库,12天后旱情缓解,乙水库不再向外供水,甲水库也停止向乙水库送水,如图是甲水库的蓄水量与乙水库蓄水量之差y(万m3)与时间x(天)之间的函数图象则甲水库每天的送水量为万m3.(假设在单位时间内,甲水库的放水量与乙水库的进水量相同,水在排放、接收以及输送过程中的损耗不计)18.自变量x与因变量y的关系式为:y=2x+5,当x每增加1时,y增加.三、综合题19.某风景区集体门票的收费标准是:20人以内(含20人),每人25元;超过20人,超过部分每人10元(1)写出应收门票费y(元)与游览人数x(人)之间的函数关系式(2)利用(1)中的函数关系式计算,某班54人去该风景区旅游时,为购门票共花了多少元? 20.小刚上午9:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中,小刚离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小刚在超市逗留了分钟;(2)小刚去超市途中的速度是多少?(3)小刚几点几分返回到家?21.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案.在甲商场累计购物超过200元,超出200元的部分按80%收费;在乙商场累计购物超过100元,超出100元的部分按85%收费,已知小红在同一商场累计购物x元,其中x>200.(1)当x=300时,小红在甲商场需花费元,在乙商场需花费元;(2)分别用含x的代数式表示小红在甲、乙商场的实际花费;(3)当小红在同一商场累计购物超过200元时,通过计算说明小红在哪家商场购物的实际花费少. 22.A,B两地相距560km,甲车从A地驶往B地,1h后,乙车以相同的速度沿同一条路线从B地驶往A地,乙车行驶1小时后,乙车的速度提高到120km/h,并保持此速度直到A地.在整个行驶过程中,甲车到A地的距离y1(km),乙车到A地的距离y2(km)与甲车行驶的时间x(h)之间的关系如图所示,根据图象回答下列问题:(1)图中点P的坐标是,点M的坐标是.(2)甲、乙两车之间的距离不超过240km的时长是多少?23.小明在学习一次函数后,对形如y=k(x−m)+n(其中k,m,n为常数,且k≠0)的一次函数图象和性质进行了探究,过程如下:(1)【特例探究】如图所示,小明分别画出了函数y=(x−2)+1,y=−(x−2)+1,y=2(x−2)+1的图象.请你根据列表、描点、连线的步骤在图中画出函数y=−2(x−2)+1的图象.(2)【深入探究】通过对上述几个函数图象的观察、思考,你发现y=k(x−2)+1(k为常数,且k≠0)的图象一定会经过的点的坐标是.(3)【得到性质】函数y=k(x−m)+n(其中k、m、n为常数,且k≠0)的图象一定会经过的点的坐标是.(4)【实践运用】已知一次函数y=k(x+2)+3(k为常数,且k≠0)的图象一定过点N,且与y轴相交于点A,若△OAN的面积为4,则k的值为.24.如图,是某汽车距离目的地的路程S(千米)与时间t(分钟)的函数关系图.观察图中所提供的信息,解答下列问题:(1)汽车在前9分钟内的平均速度是.(2)汽车在中途停了多长时间?(3)当16≤t≤30,求S关于t的函数关系式.参考答案1.【答案】D2.【答案】D3.【答案】A4.【答案】C5.【答案】A6.【答案】B7.【答案】C8.【答案】B9.【答案】B10.【答案】D11.【答案】D12.【答案】B13.【答案】-214.【答案】0.415.【答案】1或216.【答案】自变量;函数17.【答案】30018.【答案】219.【答案】(1)解:当0≤x≤20时,依题可得:y=20x.当x>20时,y=10(x−20)+25×20=10x+300.(2)解:依题可得:∵54>20∴y=10×54+300=840元.20.【答案】(1)30(2)解:3000÷10=300(米/分钟)答:小敏去超市途中的速度是300米/分钟;(3)解:3000÷3000−200045−40=3000÷200=15(分钟)40+15=55分钟所以小刚9点55分返回家中答:小刚9点55分返回家中.21.【答案】(1)280;270(2)解:x >200小红在甲商场所花费用为200+(x-200)×80%=(0.8x+40)元; 在乙商场所花费用为100+(x-100)×85%=(0.85x+15)元; (3)解:当0.8x+40>0.85x+15时,解得x <500所以当200<x <500时,小红在乙商场购物的实际花费少; 当0.8x+40=0.85x+15时,解得x=500所以当x=500时,小红在甲乙商场购物的实际花费一样; 当0.8x+40<0.85x+15时,解得x >500所以当x >500时,小红在甲商场购物的实际花费少.22.【答案】(1)(2,480);(6,0)(2)解:∵甲车的速度是5607=80∴ON 的解析式为y 1=80x ;当2≤x ≤6时,设PM 函数解析式为y 2=kx +b ,过点P (2,480),M (6,0) ∴{2k +b =4806k +b =0,解得{k =−120b =720 ∴PM 的函数解析式为y 2=−120x +720 当−120x +720−80x =240时,得x=2.4; 当80x +120x −720=240时,得x=4.8∴甲、乙两车之间的距离不超过240km 的时长是4.8-2.4=2.4(h ).23.【答案】(1)解:列表如下:x2 0 y =−2(x −2)+115(2)(2,1) (3)(m ,n )(4)12或−7224.【答案】(1)289(2)解:根据图像可知汽车在中途停的时间为16-9=7(分) (3)解:设S=kt+b ,根据图象经过(16,12)和(30,0)两点 代入得 {12=16k +b 0=30k +b解得: {k =−67b =1807∴S 关于t 的关系式为:S= −67t + 1807 。

中考函数专题基础练习题

中考函数专题基础练习题

函数专题 一次函数一、填空题:1.函数 y = 自变量 x 的取值范围是___2.将直线 y =3x -1 向上平移 3 个单位,得到直线_______3.求一次函数22-=x y 及x 轴的交点坐标 ,及y 轴的交点坐标 ,直线及两坐标轴所围成的三角形面积为4.如果直线 y =ax +b 不经过第四象限,那么 ab ___0(填“≥”、“≤”或“=”)5.已知关于x 、y 的一次函数()12y m x =--的图象经过平面直角坐标系中的第一、三、四象限,那么m 的取值范围是6.已知一次函数26y x =-及3y x =-+的图象交于点P ,则点P 的坐标为7.及直线y =-2x+1 平行且经过点(-1,2)的直线解析式为8.一次函数y =34x +4分别交x 轴、y 轴于A 、B 两点,在x 轴上取一点,使△ABC 为等腰三角形,则这样的的点C 最多..有 个. 二、填空题:1.在函数中,自变量x 的取值范围是( )A.x ≥3B.x ≠3C.x>3D.x<3 2.点P (-1,2)关于y 轴对称的点的坐标是( ) A .(1,2) B .(-1,2) C .(1,-2) D .(-1,-2) 3.点 P (a ,a -2)在第四象限,则 a 的取值范围是( )A.-2<a <0B.0<a <2C.a >2D.a <04.如图所示,以恒定的速度向此容器注水,容器内水的高度(h )及注水时间(t )之间的函数关系可用下列图像大致描述的是( )5.关于函数,下列说法中正确的是( )A.函数图象经过点(1,5)B.函数图像经过一、三象限C.y 随x 的增大而减小D.不论x 取何值,总有0<y 6.对于函数y =k 2x (k 是常数,k ≠0)的图象,下列说法不正确的是( ) A .是一条直线 B .过点(1k,k )C .经过一、三象限或二、四象限D .y 随着x 增大而增大7.若一次函数y kx b =+的图象经过第一象限,且及y 轴负半轴相交,那么( )A.0k >,0b >B.0k >,0b <C.0k <,0b >D.0k <,0b <8.一次函数1y kx b =+及2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( ) A .0 B .1C .2D .39.已知一次函数y kx b =+的图象如图所示,当1x <时,y 的取值范围是( ) A.20y -<<B.40y -<<C.2y <-D.4y <-10.若直线)(32222为常数与直线m m y x m y x +=+=+的交点在第四象限,则整数m 的值为( ) A .-3,-2,-1,0 B .-2,-1,0,1 C .-1,0,1,2 D .0,1,2,311.已知四条直线y =kx -3,y =-1,y =3和x =1所围成的四边形的面积是12,则k 的值为( ) A .1或-2 B .2或-1 C .3 D .412.已知一次函数y =kx+b,当0≤x ≤2时,对应的函数值y 的取值范围是-2≤y ≤4,则kb 的值为( ) A.12 B.-6 C.-6或-12 D. 6或12三、计算题:1.如图,一个正比例函数的图象和一个一次函数的图象交于点 A (-1,2),且△ABO 的面积为 5,求这两个函数的解析式。

2020年重庆中考复习数学函数图象专题训练一(含答案)

2020年重庆中考复习数学函数图象专题训练一(含答案)

(2)①∵b=8,∴y=|﹣x2+8x﹣7|﹣4,当 x=﹣ 时,y= ;当 x=4 时,y=5;
∴m= ,n=5;②如图所示:
(3)函数关于 x=4 对称;
第 17 页(共 34 页)
(4)当 ,|﹣x2+8x﹣7|=m+4 有四个根,
解(1)当 x=0 时,y=﹣2+2+3=3,即 m=3, 当 x=3 时,y=﹣0.5+1+3=3.5,即 n=3.5 (2)图象如图所示:
(3)图象关于直线 x=2 对称
第 16 页(共 34 页)
(4)∵﹣ (x﹣2)2+|x﹣2|+3=k 有 3 个不相等的实数根,即函数 y=﹣ (x﹣2)2+|x﹣2|+3 图象与
y=k 图象有三个交点,由图象得,k=3. 2、(2019 秋•北碚区校级月考)已知关于 x 函数 y=|﹣x2+bx﹣7|﹣4,点(4,5)在函数上,且 b 为整数,
根据我们已有的研究函数的经验,请对该函数及其图象进行如下探究,并完成以下问题:
(1)求 b= 8 ; (2)函数图象探究:
①下表是 y 与 x 的几组对应值,请直接写出 m 与 n 的值:m=

(2)在给出的平面直角坐标系中,画出这个函数的图象并写出这个函数的一条性质

(3)进一步探究函数图象并解决问题:
①直线 y=k 与函数 y=a|x2+bx|+c 有三个交点,则 k= ;
②已知函数 y=x﹣3 的图象如图所示,结合你所画的函数图象,写出不等式 a|x2+bx|+c≤x﹣3 的解
集:
图1
(3)请结合所画函数图象,写出函数图象的一条性质; (4)解决问题:若函数y1 与y2 2a 2 至少有2 个交点,求a 的取值范围.

中考数学总复习《函数基础知识》专题测试卷-含答案

中考数学总复习《函数基础知识》专题测试卷-含答案

中考数学总复习《函数基础知识》专题测试卷-含答案班级:___________姓名:___________考号:___________一、单选题(共12题;共24分)1.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程S(m)与时间t(min)的大致图象是()A.B.C.D.2.下列曲线中,不表示y是x的函数图象的是()A.B.C.D.3.如图1,在等边△ABC中,D是BC的中点,P为AB边上的一个动点,设AP=x,图1中线段DP 的长为y,若表示y与x的函数关系的图象如图2所示,则△ABC的面积为()A.4B.2√3C.12D.4√34.如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是()A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时C.从第3分到第6分,汽车行驶了150千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时5.一根弹簧原长12cm,它所挂的重量不超过10kg,并且挂重1kg就伸长1.5cm,写出挂重后弹簧长度y(cm)与挂重x(kg)之间的函数关系式是()A.y=1.5(x+12)(0≤x≤10)B.y=1.5x+12(0≤x≤10)C.y=1.5x+12(x≥0)D.y=1.5(x﹣12)(0≤x≤10)6.某辆汽车每次加油都会把油箱加满..,下表记录了该车相邻两次加油时的情况.(注:“累计里程”指汽车从出厂开始累计行驶的路程)加油时间加油量(升)加油时的累计里程(千米)2020年3月10日15560002020年3月25日5056500这段时间内,该车每100千米平均耗油量为()A.7升B.8升C.10升D.1007升7.如图①,在△ABC中△C=90°,△A=30°点D是AB边的中点,点P从点A出发,沿着AC﹣CB运动,到达点B停止.设点P的运动路径长为x,连DP,记△APD的面积为y,若表示y与x有函数关系的图象如图②所示,则△ABC的周长为()A.6+2√3B.4+2√3C.12+4√3D.6+4√38.若y与x的关系式为y=30x﹣6,当x=13时,y的值为()A.5B.10C.4D.-49.为了增强抗旱能力,保证今年夏粮丰收,某村新修建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同).一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是()A.①③B.②③C.③D.①②③10.小翊早9点从家骑自行车出发,沿一条直路去邮局办事,小翊出发的同时,他的爸爸从邮局沿同一条道路匀速步行回家;小翊在邮局停留了一会后沿原路以原速返回,小翊比爸爸早3分钟到家.设两人离家的距离s(m)与小翊离开家的时间t(min)之间的函数关系如图所示.下列说法:①邮局与家的距离为2400米;②爸爸的速度为96m/min;③小翊到家的时间为9:22分;④小翊在返回途中离家480米处与爸爸相遇.其中,正确的说法有()A.1个B.2个C.3个D.4个11.如图1,△ABC是一块等边三角形场地,点D,E分别是AC,BC边上靠近C点的三等分点.现有一个机器人(点P)从A点出发沿AB边运动,观察员选择了一个固定的位置记录机器人的运动情况.设AP=x,观察员与机器人之间的距离为y,若表示y与x的函数关系的图象大致如图2所示,则观察员所处的位置可能是图1的()A.点B B.点C C.点D D.点E12.如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h随注水时间t变化规律的是()A.B.C.D.二、填空题(共6题;共7分)13.函数y= √x+1x2−4的自变量x的取值范围是.14.小明骑车回家过程中,骑行的路程s与时间t的关系如图所示.则经15分钟后小明离家的路程为.15.如图①,在△ABC中AB=AC,∠BAC=120°点E是边AB的中点,点P是边BC上一动点设PC=x,PA+PE=y图②是y关于x的函数图象,其中H是图象上的最低点.那么a+b的值为.16.如图,在长方形ABCD中AB=8cm,AD=6cm点M,N从A点出发,点M沿线段AB运动,点N沿线段AD运动(其中一点停止运动,另一点也随之停止运动).若设AM=AN=xcm,阴影部分的面积为ycm2,则y与x之间的关系式为.17.下面是王刚和李明两位同学的行程图,如果两人同时在同一地点出发,沿着200米的环形跑道同向行走,那么分钟后两人首次相遇.18.函数y= √x−3中自变量x的取值范围是;若分式2x−3x+1的值为0,则x=三、综合题(共6题;共79分)19.已知抛物线y=−x2+4x−3与x轴相交于A,B两点(点A在点B的左侧),顶点为P.(1)求A,B ,P三点的坐标;(2)在平面直角坐标系内画出此抛物线的简图,并根据简图写出当x取何值时,函数值大于0.20.模具长计划生产面积为9,周长为m的矩形模具,对于m的取值范围,小陈已经能用“代数”的方法解决,现在他又尝试从“图形”的角度进行探究,过程如下:(1)建立函数模型设矩形相邻两边的长分别为x,y.由矩形的面积为9,得xy=9.即y=9x;由周长为m,得2(x+y)=m,即y=−x+m2,满足要求的(x,y).应是两个函数图象在第象限内交点的坐标.(2)画出函数图象函数y=9x的图象如图所示,而函数y=−x+m2的图象可由直线y=−x平移得到.请在同一直角坐标系中直接画出直线y=−x.(3)平移直线y=−x,观察函数图象①当直线平移到与函数y=9x的图象有唯一交点(3,3),周长m的值为;②在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应的周长m的取值范围;(4)得出结论若能生产出面积为9的矩形模具,则周长m的取值范围为21.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y与所挂物体的质量x的几组对应值:所挂物体质量x/kg012345弹簧长度y/cm182022242628(1)上述表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)写出弹簧长度y(cm)与所挂物体质量x(kg)的关系式;(3)若弹簧的长度为30cm时,此进所挂重物的质量是多少?(在弹簧的允许范围内)22.某淘宝店专销某种品牌的运动服,每套进价70元,售价120元/套.为了促销,淘宝店决定凡是一次购买数量不超过10套的,按原价每套120元购买;10套以上的,每多买1套,每套降价1元,每多买2套,每套降价2元……(例如,某人一次性购买15套运动服,多出5套,按每套降价5元购买,共需(15×115)元;但是最低价90元/套.(1)求顾客一次至少买多少套,才能以最低价购买?(2)写出当一次购买x(x>10)件时,利润w(元)与购买量x(件)之间的函数关系式;(3)有一天,一位顾客买了35套运动服,另一位顾客买了40套运动服,淘宝店发现卖了40套反而比卖35套赚的钱少!为了使每次卖的数量多赚的钱也多,在其它促销条件不变的情况下,最低价为90元/套至少要提高到多少?为什么?23.杆称是我国传统的计重工具,如图1,可以用秤砣到秤纽的水平距离x(厘米),来得出秤钩上所挂物体的重量y(斤).如表中为若干次称重时所记录的一些数据.x(厘米)124711y(斤)0.75 1.00 1.50 2.25 3.25(1)请在图2平面直角坐标系中描出表中五组数据对应的点;(2)秤钩上所挂物体的重量y是否为秤纽的水平距离的函数?如果是,请求出符合表中数据的函数解析式;(3)当秤钩所挂物重是4.5斤时,秤杆上秤砣到秤纽的水平距离为多少厘米?24.数学活动课上,小明同学根据学习函数的经验,对函数的图象、性质进行了探究,下面是小明同学探究过程,请补充完整:如图1,已知在Rt△ABC,∠ACB=90°,∠A=30°,BC=2cm ,点P为AB边上的一个动点,连接PC.设BP=xcm,CP=ycm .(1)(初步感知)当CP⊥AB时,则①x=,②y=;(2)(深入思考)试求y与x之间的函数关系式并写出自变量x的取值范围;(3)通过取点测量,得到了x与y的几组值,如下表:x cm⁄00.51 1.5 2. 2.53 3.54y cm⁄2 1.8 1.7_2 2.3 2.6 3.0_①计算并补全表格(说明:补全表格时相关数值保留一位小数)②建立平面直角坐标系,如图2,描出已补全后的表中各对应值为坐标的点,画出该函数的图象;③结合画出的函数图象,写出该函数的两条性质.参考答案1.【答案】C2.【答案】A3.【答案】D4.【答案】C5.【答案】B6.【答案】C7.【答案】A8.【答案】C9.【答案】C10.【答案】D11.【答案】C12.【答案】B13.【答案】x≥﹣1且x≠214.【答案】1.5千米15.【答案】716.【答案】y=- 12x2+4817.【答案】1018.【答案】x≥3;3219.【答案】(1)解:令y=0,得到﹣x2+4x﹣3=0即﹣(x﹣1)(x﹣3)=0解得:x=1或3则A(1,0),B(3,0)根据顶点坐标公式得﹣b2a=﹣4−2=2,4ac−b24a=4×(−1)×(−3)−164×(−1)=1即P(2,1);(2)解:作出图象,如图所示根据图象得:当1<x<3时,y>0.20.【答案】(1)一(2)解:(3)解:①12②由①知:0个交点时,0<m<12;2个交点时,m>12;1个交点时,m=12;(4)m≥1221.【答案】(1)解:上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;(2)解:∵物体每增加1千克,弹簧长度增加2cm∴y=18+2x(3)解:把y=30代入y=18+2x,得18+2x=30∴所挂重物的质量是6kg22.【答案】(1)解:由题意得:(120﹣90)÷1+10=40(套)(2)解:当10<x≤40时,w=x (60﹣x )=﹣x 2+60x ;当x >40时,w=(90﹣70)x=20x(3)解:当x >40时,w=20xw 随x 的增大而增大,符合题意;当10<x≤40时w=﹣x 2+60x=﹣(x ﹣30)2+900∵a=﹣1<0∴抛物线开口向下.对称轴是直线x=30∴10<x≤30,w 随着x 的增大而增大而当x=30时,w 最大值=900;∵要求卖的数量越多赚的钱越多,即w 随x 的增大而增大∴由以上可知,当x=30,最低售价为120﹣(30﹣10)=100元23.【答案】(1)解:如图所示:(2)解:由(1)图形可知,秤钩上所挂物体的重量y 是秤纽的水平距离的函数 设y =kx +b ,把x =1,y =0.75,x =2,y =1代入可得:{k +b =0.752k +b =1解得: {k =14b =12∴y = 14 x + 12; (3)解:当y =4.5时,即4.5= 14 x + 12∴当秤钩所挂物重是4.5斤时,秤杆上秤砣到秤纽的水平距离为16厘米. 24.【答案】(1)1;√3(2)解:过 C 作 CD ⊥AB 于 D由(1)可知BD =1①当 0≤x ≤1 时,如图1-1: PD =1−x∴y =√x 2−2x +4 ;②当 1<x ≤4 时,如图1-2: PD =x −1综合①②可得 y =√x 2−2x +4 (0≤x ≤4) ;(3)解:①当x =1.5时y =√x 2−2x +4=√3.25≈1.8当x =4时 x cm ⁄0.5 1 1.5 2. 2.5 3 3.5 4y cm⁄2 1.8 1.7 1.82 2.3 2.6 3.0 3.5②函数图象如图所示:③由函数图象得:性质一:y的最小值为√3(或1.7);性质二:当0≤x≤1时,y随x增大而减小.。

中考数学《一次函数》专题训练(附带答案)

中考数学《一次函数》专题训练(附带答案)

中考数学《一次函数》专题训练(附带答案)一、单选题1.已知一次函数y =(1﹣a )x+2a+1的图象经过第二象限,则a 的值可以是( )A .﹣2B .﹣1C .0D .12.如图,直线y =k 1x +b 1和直线y =k 2x +b 2相交于点M(23,−2),则关于x ,y 的方程组{y =k 1x +b 1y =k 2x +b 2,的解为( )A .{x =23,y =−2 B .{x =−2,y =23C .{x =23,y =2D .{x =−2,y =−233.若一次函数y=(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是 ( )A .k >3B .0<k≤3C .0≤k <3D .0<k <34.如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )A .y=x+5B .y=x+10C .y=﹣x+5D .y=﹣x+105.设min{x ,y}表示x ,y 两个数中的最小值,例如min{0,2}=0,min{12,8}=8,则关于x 的函数y=min{2x ,x+2}可以表示为( ) A .y={2x(x <2)x +2(x ≥2)B .y={x +2(x <2)2x(x ≥2)C .y=2xD .y=x+26.已知一次函数y=kx ﹣1,若y 随x 的增大而增大,则该函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知k≠0,在同一坐标系中,函数y=k(x+1)与y= k x的图象大致为如图所示中的()A.B.C.D.8.下列函数中,当x>0时,y随x的增大而增大的是()A.y=-x+1B.y=x2-1C.y=1x D.y=-x2+19.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,在平面直角坐标系中,O为坐标原点,直线y=−x+4√2与x轴交于B点,与y轴交于A点,点C,D在线段AB上,且CD=2AC=2BD,若点P在坐标轴上,则满足PC+PD=7的点P的个数是()A.4B.3C.2D.111.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定12.一次函数y=(k-3)x|k|-2+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题13.已知一次函数 y =(k +1)x −b ,若y 随x 的增大而减小,则k 的取值范围是 . 14.如图,一次函数与反比例函数的图象分别是直线 AB 和双曲线.直线 AB 与双曲线的一个交点为点 C ,CD ⊥x 轴于点 D ,OD =2OB =4OA =4 ,则此反比例函数的解析式为 .15.一次函数 y 1=k 1x +b 1 与 y 2=k 2x +b 2 的图象如图,则不等式组 {k 1x +b 1≤0k 2x +b 2>0 的解为 .16.若点 (m,n) 若在直线 y =3x −2 上,则代数式2n -6m+1的值是 .17.已知一次函数y =﹣x ﹣(a ﹣2)中,当a 时,该函数的图象与y 轴的交点坐标在x 轴的下方.18.已知一次函数 y =ax +|a −1| 的图象经过点(0,3),且函数y 的值随x 的增大而减小,则a 的值为 .三、综合题19.甲、乙两车分别从相距480千米的 A 、 B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经 C 地,甲车到达 C 地停留1小时,因有事按原路原速返回 A 地.乙车从 B 地直达 A 地,两车同时到达 A 地.甲、乙两车距各自出发地的路程 y (千米)与甲车出发后所用的时间 x (时)的函数图象如图所示.(1)求t的值;(2)求甲车距它出发地的路程y与x之间的函数关系式;(3)求两车相距120千米时乙车行驶的时间.20.根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨.①写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式.并求当这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少元?②为了获得两种蔬菜的利润之和不少于8400元,则乙种蔬菜进货量应在什么范围内合适?21.已知一次函数y=-2x-2.(1)画出函数的图象;(2)求图象与x轴,y轴的交点A,B的坐标;(3)求A,B两点之间的距离;(4)求△AOB的面积;(5)当x为何值时,y≥0(利用图象解答)?22.在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.(1)当m=4时,求n的值;(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.23.同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y(cm)与燃烧时间x(min)的关系如图所示.(1)求点P的坐标,并说明其实际意义;(2)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.24.冰墩墩是2022年北京冬季奥运会的吉样物.冬奥会来临之际,冰墩墩玩偶非常畅销.小张在某网店选中A,B两款冰墩墩玩偶,决定用900元(全部用完)从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶进货价(元/个)2520销售价(元/个)3325(1)求y与x之间的函数表达式;(2)如果小张购进A款玩偶20个,那么这次进货全部售完,能盈利多少元?参考答案1.【答案】C 2.【答案】A 3.【答案】A 4.【答案】C 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】B 9.【答案】C 10.【答案】A 11.【答案】A 12.【答案】C 13.【答案】k <−1 14.【答案】y =−4x15.【答案】x≤-4 16.【答案】-3 17.【答案】>2 18.【答案】-219.【答案】(1)由函数图象得:乙车的速度为:60÷1=60(千米/小时),甲车从A 地出发至返回A 地的时间为:(480−60)÷60=420÷60=7(小时) ∴t =(7−1)÷2=3 即t 的值是3;(2)当0≤x≤3时,设y 与x 的函数关系式为y =kx , 则360=3k ,解得k =120∴当0≤x≤3时,y 与x 的函数关系式为:y =120x 当3<x≤4时,y =360当4<x≤7,设y 与x 的函数关系式为:y =ax +b 则 {4a +b =3607a +b =0 解得: {a =−120b =840∴当4<x≤7,y与x的函数关系式为:y=−120x+840由上可得,y与x的函数关系式为:y={120x(0≤x≤3) 360(3<x≤4)−120x+840(4<x≤7)(3)设乙车行驶的时间为m小时时,两车相距120千米,乙车的速度为60千米/小时,甲车的速度为360÷3=120(千米/小时)甲乙第一次相遇前,60+(60+120)×(m−1)+120=480,得m=8 3甲乙第一次相遇之后,60+(60+120)×(m−1)=480+120,得m=4甲车返回A地的过程中,当m=5时,两车相距5×60-(480-360)=180(千米)∴(120−60)×(m−5)=180−120得m=6答:两车相距120千米时乙车行驶的时间是83小时、4小时或6小时.20.【答案】(1)解:由题意得,设y1=kx5k=3∴k=0.6∴y1=0.6x根据题意得,设y2=ax2+bx+c,由图知,抛物线经过点(0,0)、(1,2)、(5,6),代入得{c=0a+b+c=2 25a+5b+c=6∴{a=−0.2b=2.2c=0∴y2=−0.2x2+2.2x;(2)解:①设乙种蔬菜的进货量为t吨,w=y1+y2=0.6(10−t)+(−0.2t2+2.2t)=−0.2t2+1.6t+6=−0.2(t−4)2+9.2当t=4,利润之和最大W最大=9200(元)答:当乙种蔬菜进货4吨,甲种蔬菜进货6吨,利润之和最大,最大9200元.②w=y1+y2=−0.2t2+1.6t+6当w≥8.4时,即−0.2t2+1.6t+6≥8.4∴−0.2t2+1.6t−2.4≥0令−0.2t2+1.6t−2.4=0t2−8t−12=0(t−2)(t−6)=0解得t1=2,t2=6因为抛物线开口向下,所以2≤t≤6答:乙种蔬菜进货量为2吨到6吨范围内.21.【答案】(1)解:列表:x……-10……y……0-2……(2)解:由(1)可得该图象与x轴,y轴的交点坐标分别为A(-1,0),B(0,-2).(3)解:A,B两点之间的距离为√OA2+OB2=√12+22=√5(4)解:S△AOB= 12OA·OB=12×1×2= 1(5)解:由(1)中图象可得,当x≤-1时,y≥0.22.【答案】(1)解:当y=x+3=0时,x=﹣3∴点A 的坐标为(﹣3,0).∵二次函数y=x 2+mx+n 的图象经过点A ∴0=9﹣3m+n ,即n=3m ﹣9 ∴当m=4时,n=3m ﹣9=3.(2)解:抛物线的对称轴为直线x=﹣ m 2当m=﹣2时,对称轴为x=1,n=3m ﹣9=﹣15 ∴当﹣3≤x≤0时,y 随x 的增大而减小∴当x=0时,二次函数y=x 2+mx+n 的最小值为﹣15.(3)解:①当对称轴﹣ m2 ≤﹣3,即m≥6时,如图1所示.在﹣3≤x≤0中,y=x 2+mx+n 的最小值为0,∴此情况不合题意;②当﹣3<﹣ m2 <0,即0<m <6时,如图2,有 {4n−m 24=49−3m +n =0解得: {m =2n =−3 或 {m =10n =21(舍去)∴m=2、n=﹣3;③当﹣ m2 ≥0,即m≤0时,如图3有 {n =−49−3m +n =0 ,解得: {m =53n =−4(舍去).综上所述:m=2,n=﹣3. 23.【答案】(1)解:设乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=kx+b ,得:{b =4050k +b =0 ,解得: {k =−0.8b =40,即乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=﹣0.8x+40,将x=20代入得y=24,故P (20,24)该点表示的实际意义是点燃20分钟后,两支蜡烛剩下的长度都是24cm ; (2)解:设甲蜡烛剩下的长度y 甲与x 之间的函数表达式为y 甲=mx+n ,得: {48=n 24=20m +n,解得: {m =−1.2n =48 ,∴y 甲与x 之间的函数表达式为y 甲=﹣1.2x+48.∵甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍,∴﹣1.2x+48=1.1(﹣0.8x+40),解得:x=12.5. 答:点燃12.5分钟,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍24.【答案】(1)解:由题意,得25x +20y =900∴y =−54x +45;(2)解:当x =20时,则y =−54×20+45=20∴这次进货全部售完,能盈利=20(33−25)+20(25−20)=260(元) 答:这次进货全部售完,能盈利260元.。

中考数学专项复习《函数基础知识》练习题带答案

中考数学专项复习《函数基础知识》练习题带答案

中考数学专项复习《函数基础知识》练习题带答案一、单选题1.如图,直角梯形AOCD的边OC在x轴上,O为坐标原点,CD垂直于x轴,D(5,4),AD=2.若动点E、F同时从点O出发,E点沿折线OA→AD→DC运动,到达C点时停止;F点沿OC运动,到达C点时停止,它们运动的速度都是每秒1个单位长度.设E运动x秒时,△EOF的面积为y(平方单位),则y关于x的函数图象大致为()A.B.C.D.2.三军受命,我解放军各部奋力抗战在救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到该小镇只有唯一通道,且路程为24km.如图是他们行走的路程关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是()A.1B.2C.3D.43.某星期下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车站步行了2公里B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时D.小强乘公共汽车用了20分钟4.在圆的面积公式S=πr2中是常量的是()A.s B.πC.r D.S和r5.已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.6.如图,AD、BC是△O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设△APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是()A.B.C.D.7.在某次试验中测得两个变量m和v之间的4组对应数据如下表:m1234v0.01 2.98.0315.1()A.v=2m−2B.v=m2−1C.v=3m−3D.v=m+18.如图,已知线段AB=12厘米,动点P以2厘米/秒的速度从点A出发向点B运动,动点Q以4厘米/秒的速度从点B出发向点A运动.两点同时出发,到达各自的终点后停止运动.设两点之间的距离为s(厘米),动点P的运动时间为t秒,则下图中能正确反映s与t之间的函数关系的是()A.B.C.D.9.某公司为了激发员工工作的积极性,规定员工每天的薪金如下:生产的产品不超过m件,则每件3元,超过m件,超过的部分每件n元.下图是一名员工一天获得的薪金y(元)与其生产的产品件数x之间的函数关系图像,则下列结论错误的是()A.m=20B.n=4C.若该员工一天获得的薪金是180元,则其当天生产了50件产品D.若该员工一天生产了46件产品,则其当天获得的薪金是160元10.函数y=√x−1的自变量取值范围是()A.x≥0B.x≤0C.x≥1D.x≤111.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的图象是()A.B.C.D.12.用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是()A.B.C.D.二、填空题13.如图,在平面直角坐标系中半径均为1个单位长度的半圆O1、O2 、O3…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2020秒时,点P的坐标是.14.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,匀速行驶,设慢车行驶的时间x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象回答:(1)甲、乙两地之间的距离为;(2)两车同时出发后h相遇;(3)慢车的速度为千米/小时;快车的速度为千米/小时;(4)线段CD表示的实际意义是.15.抛物线的部分图象如图所示,则当y<0时,x的取值范围是.16.如图,长方形ABCD中AB=5,AD=3,点P从点A出发,沿长方形ABCD的边逆时针运动,设点P运动的距离为x;△APC的面积为y,如果5<x<8,那么y关于x的函数关系式为.17.甲骑自行车、乙骑摩托车沿相同路线匀速由A地到B地,行驶过程中路程与时间的函数关系如图所示.根据图象信息可知,乙在甲骑行分钟时追上甲.有意义的x的取值范围是.18.使函数y=√x+2x−2三、综合题19.在平面直角坐标系xOy中抛物线y=ax2+bx−5a与y轴交于点A,将点A向左平移4个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(−1,−2a),Q(−4,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.20.已知:一次函数y=﹣23x+2的图象分别与x轴、y轴交于点A、B.(1)请直接写出A,B两点坐标:A、B(2)在直角坐标系中画出函数图象;(3)若平面内有一点C(5,3),请连接AC、BC,则△ABC是三角形.21.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?22.在学习函数的过程中我们经历了通过列表,描点,连线来画函数图象,观察分析图象特征,从而概括出函数的性质的过程.下面是研究函数y={1x−1(x>0)x2+2x+1(x≤0),性质及其应用的部分过程.请按要求完成下列各小题.列表:x…-3-2-1−12015133223…y…4a0141−54−3221b…(2)根据函数图象,写出该函数的一条性质;(3)已知函数y=2x−3的图象如图所示,结合你所画的函数图象,请直接写出不等式y<2x−3的解集.23.某公园有一个小型喷泉,水柱从垂直于地面的喷水枪喷出,水柱落于地面的路径形状可以看作是抛物线的一部分.记喷出的水柱距喷水枪的水平距离为(单x位:m),距地面的垂直高度为y(单位:m),现测得x与y的几组对应数据如下:水平距离x/m0123456…垂直高度y/m0.7 1.6 2.3 2.8 3.1 3.2 3.1…请根据测得的数据,解决以下问题:(1)在平面直角坐标系xOy中描出以表中各组对应数据为坐标的点,并画出该函数的图象;(2)结合表中所给数据或所画图象,得出水柱最高点距离地面的垂直高度为m;(3)求所画图象对应的二次函数表达式;(4)公园准备在水柱下方的地面上竖直安装一根高1.6m的石柱,使该喷水枪喷出的水柱恰好经过石柱顶端,则石柱距喷水枪的水平距离为m.(注:不考虑石柱粗细等其他因素)24.某单位需要用车,准备和一个体车主或一国有出租车公司其中的一家签订合同.设汽车每月行驶x km,应付给个体车主的月租费是y1元,付给国有出租车公司的月租费是y2元,y1,y2分别与x之间的函数关系图象是如图所示的两条直线,观察图象,回答下列问题:(1)每月行驶的路程等于多少时,租两家车的费用相同?(2)每月行驶的路程在什么范围内时,租国有出租车公司的出租车合算?(3)如果这个单位估计每月行驶的路程为2300 km,那么这个单位租哪家的车合算?参考答案1.【答案】C2.【答案】D3.【答案】D4.【答案】B5.【答案】C6.【答案】B7.【答案】B8.【答案】D9.【答案】D10.【答案】C11.【答案】C12.【答案】C13.【答案】(2020,0)14.【答案】(1)900km(2)4(3)75;150(4)快车到达乙地后,慢车继续行驶到甲地15.【答案】x>3或x<﹣116.【答案】y=- 52x+2017.【答案】2018.【答案】x≥﹣2且x≠219.【答案】(1)解:∵抛物线y=ax2+bx−5a与y轴交于点A,∴点A(0,-5a)∵将点A向左平移4个单位长度,得到点B∴B(-4,-5a)(2)解:对称轴是x= 0−42=−2(3)解:如图:当a<0时∵A(0,-5a), P(−1,−2a),且-5a>-2a∴点P在抛物线下方∵Q(−4,2),抛物线与线段PQ恰有一个公共点,B(-4,-5a)∴点Q在抛物线上方或是在抛物线上,即2≥−5a解得a≥−2 5∴−25≤a<0时抛物线与线段PQ恰有一个公共点;当a>0时,∵A(0,-5a), P(−1,−2a),且-5a<-2a<0∴点P在抛物线上方,在x轴下方∵Q(−4,2),B(-4,-5a)∴点Q在抛物线上方∴此时抛物线与线段PQ没有公共点;综上,−25≤a<0时抛物线与线段PQ恰有一个公共点20.【答案】(1)(3,0);(0,2)(2)解:如图(3)等腰直角21.【答案】(1)解:由图象可知,对于每一个摆动时间t,h都有唯一确定的值与其对应∴变量h是关于t的函数(2)解:①由函数图象可知,当t=0.7s时,h=0.5m,它的实际意义是秋千摆动0.7s时,离地面的高度是0.5m②由图象可知,秋千摆动第一个来回需2.8s22.【答案】(1)解:当x=−2时,a=(−2)2+2×(−2)+1=1;当x=3时,b=13−1=12;故a=1,b=1 2;补全图象如图;(2)解:当x≤−1,0<x<1或x>1时,y随x的增大而减小;当 −1<x ≤0 时,y 随x 的增大而增大;(任写一条即可)(3)解:由图可知, y =2x −3 与所画函数的交点横坐标大于02x −3=1x−1解得: x 1=2,x 2=12经检验 x 1=2,x 2=12是原方程的根 故两个交点为: (2,1),(12,−2) 由函数图象可知当 12<x <1 或 x >2 时, y =2x −3 在所画函数图象上方 即 y <2x −3 的解集为 12<x <1 或 x >2 . 23.【答案】(1)解:描出各组对应数据为坐标的点,画出该函数的图象如下:(2)3.2(3)解:设二次函数表达式为y =ax 2+bx +c 将(0,0.7),(1,1.6),(2,2.3)代入得:{c =0.7a +b +c =1.6a +2b +c =2.3解得:{a =−0.1b =1c =0.7∴二次函数表达式为y =−0.1x 2+x +0.7(4)1或924.【答案】(1)解:两条直线在1 500 km 处相交,故每月行驶的路程等于1500km 时,租两家车的费用相同.(2)解:由图可知当y 2<y 1时,对应的x 的范围是x<1 500,所以每月行驶的路程在1 500 km 内时,租国有出租公司的出租车合算.(3)解:由图象可知,当x=2300 km 时,2300>1 500,y 1<y 2,即租用个体车主的车合算.。

(中考试题)初中数学专题训练-函数

(中考试题)初中数学专题训练-函数

函数一.选择题(共20小题)1.(2014•射阳县校级模拟)若点P(a,a﹣b)在第四象限,则点Q(b,﹣a)在()A.第四象限B.第三象限C.第二象限D.第一象限2.(2012•翁源县校级模拟)函数的自变量x的取值范围是()A.x≥1B.x≥﹣1或x≠﹣3C.x≥﹣1 D.x≥﹣1且x≠﹣33.(2017春•姜堰区校级月考)如图,在物理实验课上,小明用弹簧秤将铁块A 从完全置身水槽外,到匀速向下放入盛有水的水槽中,直至铁块完全浸入水面下的一定深度,则图能反映弹簧秤的读数y(单位:N)与铁块下降的高度x(单位:cm)之间的函数关系的大致图象是()A.B .C.D.4.(2012•山西模拟)一辆汽车和一辆摩托车分别从A,B两地去同一城市,它们离A地的路程随时间变化的图象如图所示.则下列结论错误的是()初中数学A.摩托车比汽车晚到1h B.A,B两地的路程为20kmC.摩托车的速度为45km/h D.汽车的速度为60km/h 5.(2011•大同校级模拟)有一个附有进出水管的容器,每单位时间进、出的水量都是一定的.设从某一时刻开始5分钟内只进水不出水,在接着的2分钟内只出水不进水,又在随后的15分钟内既进水又出水,刚好将该容器注满.已知容器中的水量y升与时间x分之间的函数关系如图所示.则在第7分钟时,容器内的水量为()升.A.15B.16C.17D.18 6.(2016•阳泉模拟)如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm)2.已知y与t的函数关系图象如图2,则下列结论错误的是()A.AE=6cmB.sin∠EBC=0.8C.当0<t≤10时,y=0.4t2D.当t=12s时,△PBQ是等腰三角形7.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,AB=4,D是AB边上的一个动点(不与点A,B重合),过点D作CD的垂线交射线CA于点E.设AD=x,CE=y,则下列图象中,能表示与的函数关系的图象大致是()A.B.C.D.8.(2016春•新洲区期末)若一次函数y=(1﹣m)x|m|﹣1+3的函数值y随x的增大而增大,则m的取值为()A.2B.1C.﹣2D.﹣1 9.(2014•泗县校级模拟)函数y=(m+1)x﹣(4m﹣3)的图象在第一、二、四象限,那么m的取值范围是()A.B.C.m<﹣1D.m>﹣110.(2014•永嘉县校级模拟)已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较11.(2012春•翠屏区校级期中)直线y=kx+3与x轴的交点是(1,0),则k的值是()A.3B.2C.﹣2D.﹣312.(2014•泗县校级模拟)如果是方程组的解,则一次函数y=mx+n的解析式为()A.y=﹣x+2B.y=x﹣2C.y=﹣x﹣2D.y=x+2 13.(2014•白云区校级模拟)根据下表中,反比例函数的自变量x与函数y的对应值,可得p的值为()x﹣21y3pA.3B.1C.﹣2D.﹣614.一次函数y=kx+b(b>0)与反比例函数y=在同一直角坐标系下的大致图象为()A.B.C.D.15.(2014•泗县校级模拟)若反比例函数y=(2m﹣1)的图象在第二,四象限,则m的值是()A.﹣1或1B.小于的任意实数C.﹣1D.不能确定16.(2014•泗县校级模拟)如图,A为反比例函数图象上一点,AB⊥x轴于=3,则k的值为()点B,若S△AOBA.3B.6C.D.无法确定17.(2014•鼓楼区校级模拟)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数y有最大值;②该函数的图象关于直线x=﹣1对称;③当x=﹣2时,函数y的值等于0;④当x=﹣3或x=1时,函数y的值都等于0.其中正确结论的个数是()A.4B.3C.2D.1 18.(2014•磐石市校级模拟)已知函数y=ax2+bx+c的图象如图所示,那么能正确反映函数y=ax+b图象的只可能是()A.B.C.D.19.(2014•溧水县校级模拟)二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x﹣3﹣2﹣1012345y1250﹣3﹣4﹣30512给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣4;(2)若y<0,则x的取值范围为0<x<2;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.0B.1C.2D.320.对二次函数进行配方,其结果及顶点坐标是()A.B.C.D.二.填空题(共20小题)21.根据点所在位置填表(图)点的位置横坐标符号纵坐标符号第一象限第二象限第三象限第四象限22.(2015秋•灯塔市期末)坐标平面内的点与是一一对应的.23.(2017秋•昌平区校级期中)从甲地向乙地打长途电话,按时间收费,3分钟内收费2.4元,每加1分钟加收1元,若时间t≥3(分)时,电话费y(元)与t(分)之间的函数关系式是.24.(2014•新泰市校级模拟)函数y=中,自变量x的取值范围是;函数中,自变量x的取值范围是.25.(2012秋•合肥期末)根据图中所示的程序计算变量y的值,若输入自变量x 的值为,则输出的结果是.26.(2016春•西和县校级月考)用描点法画函数图象的一般步骤是、、.27.(2014•无棣县校级模拟)如图(单位:m ),等腰三角形ABC 以2米/秒的速度沿直线L 向正方形移动,直到AB 与CD 重合.设x 秒时,三角形与正方形重叠部分的面积为ym 2.则y 与x 的关系式为,当重叠部分的面积是正方形面积的一半时,三角形移动时间是.28.(2015秋•深圳校级期中)函数的三种表示方式分别是.29.(2017•和平区校级模拟)当m=时,函数y=(m +3)x 2m +1+4x ﹣5(x≠0)是一次函数.30.(2014•泗县校级模拟)已知函数y=2x ﹣3,当x 时,y ≥0;当x时,y <5.31.一次函数y=kx +b 的图象与性质k 、b 的符号k >0,b >0k >0,b <0k <0,b >0k <0,b <0图象的大致位置经过象限第象限第象限第象限第象限性质y 随x 的增大而y 随x 的增大而y 随x 的增大而y 随x 的增大而32.(2014•射阳县校级模拟)如图,点A (﹣3,4)在一次函数y=﹣3x ﹣5的图象上,图象与y 轴的交点为B ,那么△AOB 的面积为.33.(2014秋•路北区期末)如图,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比例函数y=的图象上,则图中阴影部分的面积等于.34.若正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上.若正方形OABC的面积为1,则k的值为;点E的坐标为.35.(2008春•通城县期中)反比例函数y=的图象经过点(﹣,5)和(a,﹣3),则a=.36.(2014•泗县校级模拟)已知y﹣2与x成反比例,当x=3时,y=1,则y与x 的函数关系式为.37.二次函数y=2x2﹣4x+5的对称轴方程是x=;当x=时,y有最小值是.38.已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,1)的下方.下列结论:①a﹣b+c=0,②0<b<﹣a,③a+c>0,④a﹣b+1>0,其中正确结论的个数是个.39.(2014•射阳县校级模拟)已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2),试比较y1和y2的大小:y1y2.(填“>”,“<”或“=”)40.(2014•大石桥市校级模拟)将二次函数y=x2的图象向右平移一个单位长度,再向上平移3个单位长度所得的图象解析式为.三.解答题(共10小题)41.已知点M(3a+8,﹣1﹣a),分别根据下列条件求出点M的坐标.(1)点M在x轴上;(2)点M在一、三象限角平分线上;(3)点M在第四象限,并且a为最小自然数;(4)N点坐标为(﹣3,6),并且直线MN∥y轴.42.在平面直角坐标系中,已知点A(﹣3,4),点B(﹣1,﹣2),点C(1,2),O是坐标原点.(1)求△AOB的面积;(2)求△ABC的面积.43.求下列函数自变量x的取值范围.(1)y=﹣x2﹣5x+6;(2)y=;(3)y=;(4)y=.44.已知一次函数y=(m+2)x+2﹣n,求:(1)y随x的增大而增大,m的取值范围;(2)函数的图象与y轴的交点在x轴的下方时,m,n的取值范围;(3)m,n为何值时图象与坐标轴交于原点;(4)函数的图象经过第一、二、三象限,m,n的取值范围.45.(2016•阳泉模拟)已知方程x2+mx+n=0的两根是直角三角形的两个锐角的余弦.(1)求证:m2=2n+1;(2)若P(m,n)是一次函数y=x﹣图象上的点,求点P的坐标.46.(2014•浙江模拟)如图,直线AB与x轴交于点A(1,0),与y轴交于点B (0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S=2,求点C的坐标.△OBC47.(2016•阳泉模拟)如图所示,矩形OABC的顶点A,C分别在x,y轴的正半轴上,点D为对角线OB的中点,点E(6,n)在边AB上,反比例函数y=(k ≠0)在第一象限内的图象经过点D,E,且tan∠BOA=.(1)求边AB的长;(2)求反比例函数的表达式和n的值.48.如图所示,直线y=2x+3与双曲线y=相交于A,B两点,与轴交于点C,且△OCA的面积为1.5.(1)求双曲线y=的解析式;(2)若点D,B关于原点对称,一动点P沿着x轴运动,则|PA﹣PD|是否有最大值?如果有,请确定点P的位置;如果没有,请说明理由.49.(2014•溧水县校级模拟)已知:二次函数y=ax2+bx+c(a≠0)中的x,y满足下表:x…﹣10123…y…0﹣3﹣4﹣3m…(1)求m的值;(2)根据上表求y>0时的x的取值范围;(3)若A(p,y1),B(p+1,y2)两点都在该函数图象上,且p<1,试比较y1与y2大小.50.如图,在平面直角坐标系中,矩形OABC四个顶点的坐标分别为O(0,0),A(0,3),B(6,3),C(6,0),抛物线过y=ax2+bx+c(a≠0)点A.(1)求c的值;(2)若a=﹣1,且抛物线与矩形有且只有三个交点,A,D,E,求△ADE的面积S的最大值.第11页(共11页)。

中考数学总复习《函数基础知识》练习题附带答案

中考数学总复习《函数基础知识》练习题附带答案

中考数学总复习《函数基础知识》练习题附带答案一、单选题1.下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.2.如图,点G、D 、C在直线a上,点E、F、A、B 在直线b上,若a∥b,RtΔGEF从如图所示的位置出发,沿直线b向右匀速运动,直到EG与BC重合.运动过程中ΔGEF与矩形ABCD重合部分....的面积(S)随时间(t)变化的图象大致是()A.B.C.D.3.如图是y关于x的一个函数图象,根据图象,下列说法正确的是()A.该函数的最大值为7B.当x≥2时,y随x的增大而增大C.当x=1时,对应的函数值y=3D.当x=2和x=5时,对应的函数值相等4.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家,图中x表示时间,y表示林茂离家的距离.依据图中的信息,下列说法错误的是()A.体育场离林茂家2.5 kmB.体育场离文具店1 kmC.林茂从体育场出发到文具店的平均速度是50 m/minD.林茂从文具店回到家的平均速度是60 m/min5.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C→D的路径运动到点D停止.设点P的运动路程为x(cm),则下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的是()A.B.C.D.6.A、B两地相距90km,甲骑摩托车由A地出发,去B地办事,甲出发的同时,乙骑自行车同时由B地出发沿着同一条道路前往A地,甲办完事后原速返回A地,结果比乙早到0.5小时.甲、乙两人离A地距离y(km)与时间x(h)的函数关系图象如图所示.下列说法:①a=3.5,b=4;②甲走的全路程是90km;③乙的平均速度是22.5km/h;④甲在B地办事停留了0.5小时.其中正确的说法有()A.1个B.2个C.3个D.4个7.如图反映的过程是:小强从家去菜地浇水,又去玉米地除草,然后回家.如果菜地和玉米地的距离为a千米,小强在玉米地除草比在菜地浇水多用的时间为b分钟,则a,b的值分别为()A.1.1,8B.0.9,3C.1.1,12D.0.9,88.二次函数y=ax2+bx+c的图象如图所示,给出下列说法:①abc<0;②方程ax2+bx+c=0的根为x1=﹣1、x2=3;③当x>1时,y随x值的增大而减小;④当y>0时,﹣1<x<3.其中正确的说法是().A.①;B.①②;C.①②③;D.①②③④9.球的体积V与半径R之间的关系式为V=43πR3,下列说法正确的是()A.变量为V,R,常量为43π,3 B.变量为V,R,常量为43,πC.变量为V,R,π,常量为43D.变量为V,R3,常量为π10.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,下列结论正确的是().A.火车的长度为120米B.火车的速度为30米/秒C.火车整体都在隧道内的时间为35秒D.隧道的长度为750米11.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.12.如图,平行四边形纸片ABCD,CD=5,BC=2,△A=60°,将纸片折叠,使点A落在射线AD上(记为点A′),折痕与AB交于点P,设AP的长为x,折叠后纸片重叠部分的面积为y,可以表示y 与x之间关系的大致图象是()A.B.C.D.二、填空题13.知函数y={(x−2)2−2,x≤4(x−6)2−2,x>4使y=a成立的x的值恰好只有2个时,则a满足的条件是.14.如图,在△ABC中,AC=6,BC=10,tanC=34点D是AC边上的动点(不与点C重合),过点D作DE△BC,垂足为E,点F是BD的中点,连接EF,设CD=x,△DEF的面积为S,则S与x之间的函数关系式为.15.若y+1与x成正比例,且当x=2时,y=3 ,则y与x之间的函数关系为.16.函数y=2√1−x+1x中,自变量x的取值范围是.17.如图为二次函数y=ax2+bx+c(a≠0)的图象,下列说法正确的有.①abc>0;②a+b+c>0;③b2−4ac<0④当x>1时,y随x的增大而增大;⑤方程ax2+bx+c=0(a≠0)的根是x1=−1和x2=3.18.在如图所示的三个函数图象中,近似地刻画如下a、b、c三个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.情境c:小芳从家出发,到学校上学,放学回到了家.情境a,b,c所对应的函数图象分别是(按次序填写a,b,c对应的序号)三、综合题19.如图AD,BC,CD分别与⊙O相切于A,B, E三点,AB是⊙O的直径.(1)连接OC,OD若OC=4,OD=3求CD的长;(2)若AD=x,BC=y ,AB=4 ,请画出y关于x的函数图象.20.李老师一家去离家200千米的某地自驾游,周六上午8点整出发.下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)出发1小时后,在服务区等另一家人一同前往,等到后以每小时80千米的速度直达目的地;求等侯的时间及线段BC的解析式;(3)上午11点时,离目的地还有多少千米?21.小婷家与学校之间是一条笔直的公路,小婷从家步行前往学校的途中发现忘记带昨天的回家作业本,便向路人借了手机打给妈妈,妈妈接到电话后,带上作业本马上赶往学校,同时小婷沿原路返回.两人相遇后,小婷立即赶往学校,妈妈沿原路返回家,并且小婷到达学校比妈妈到家多用了5分钟,若小婷步行的速度始终是每分钟100米,小婷和妈妈之间的距离y与小婷打完电话后步行的时间x之间的函数关系如图所示(1)妈妈从家出发分钟后与小婷相遇;(2)相遇后妈妈回家的平均速度是每分钟米,小婷家离学校的距离为米. 22.如图所示,l1,l2分别为走私船与我公安快艇航行时路程y(nmile)与时间x(min)之间的函数图象,根据图象回答下列问题:(1)请问在刚出发时,我公安快艇距离走私船多少海里?(2)请求出走私船与公安快艇的速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学专题训练 函数基础训练题(1)1. 函数y=x-31的自变量x 的取值范围是 ;函数y=1+x 的自变量x 的取值范围是 ;抛物线y x =-+3122()的顶点坐标是____________; 2. 抛物线y =3x 2-1的顶点坐标为 对称轴是 ; 3. 设有反比例函数y k x=+1,(,)x y 11、(,)x y 22为其图象上的两点,若x x 120<<时,y y 12>,则k 的取值范围是___________;4. 如果函数x x x f -+=15)(,那么=)12(f ________.5. 已知实数m 满足m 2-m -2=0,当m=_______,函数y=x m +(m+1)x+m+1的图象与x轴无交点。

6. 函数31--=x x y 的定义域是___________.若直线y=2x+b 过点(2,1),则b= ; 7. 如果反比例函数的图象经过点)3,2(-A ,那么这个函数的解析式为___________. 8. 已知m 为方程x 2+x-6=0的根,那么对于一次函数y =mx +m :①图象一定经过一、二、三象限;②图象一定经过二、三、四象限;③图象一定经过二、三象限;④图象一定经过点(-l ,0);⑤y 一定随着x 的增大而增大;⑤y 一定随着x 的增大而减小。

以上六个判断中,正确结论的序号是 (多填、少填均不得分)9. 有一个二次函数的图象,三位学生分别说出了它的一些特点:甲:对称轴是直线x=4;乙:与X 轴两个交点的横坐标都是整数;丙:与Y 轴交点的纵坐标也都是整数,且以这三个交点为顶点的三角形面积为3。

请你写出满足上述全部特点的一个二次函数解析式: ; 10. 已知二次函数()021≠++=a c bx ax y 与一次函()02≠+=k m kx y 的图象相交于点A (-2,4),B (8,2)(如图所示),则能使1y >2y 成立的x 的取值范围是 .11. 在平面直角坐标系中,点P (-2,1)在( )A 、第一象限B 、第二象限 C、第三象限 D 、第四象限12. 二次函数y=x 2-2x+3的最小值为( )A 、4 B 、2 C 、1 D 、-1 13. 有意义,则x 的取值范围是( ) (A )x ≤3 (B )x ≠3 (C )x >3 (D )x ≥3 14. 二次函数 y =x 2+10x -5的最小值为( ) (A )-35 (B )-30(C )-5 (D )2015. 已知甲,乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k 1x +a 1和y =k 2x +a 2, 图象如右,设所挂物体质量均为2kg 时,甲弹簧长为y 1 ,乙弹簧长为y 2则y 1与y 2的大小关系为( ) (A )y l > y 2 (B )y 1=y 2 (C )y 1< y 2 (D)不能确定 16. 函数y=41-x 中自变量x 的取值范围是( )A .x 4-≤ B. 4-≥X C. x>-4 D. 4-≠x 17. 点P (-1,3)关于y 轴对称的点是( )A. (-1,-3)B. (1,-3)C. (1,3)D. (-3,1) 18. 函数y =21-x 中,自变量x 的取值范围是( ) A. x >2 B. x <2 C. x ≠2 D. x ≠-2 19. 抛物线y =x 2-2x -1的顶点坐标是( )A.(1,-1)B.(-1,2)C.(-1,-2)D.(1,-2) 20. 抛物线632--=x x y 的对称轴是直线 ( )23)(=x A 23)(-=x B3)(=x C 3)(-=x D21. 给出下列函数:(1)y=2x; (2)y=-2x+1; (3)y=x2(x>0) (4)y=x 2(x<-1)其中,y 随x 的增大而减小的函数是( ) A 、(1)、(2). B 、(1)、(3). C 、(2)、(4). D 、(2)、(3)、(4)22. 如图,OA 、BA 分别表示甲、乙两名学生运动的一次函数图象,图中s 和t 分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快( )23. A2.5米 B 2米 C 1.5米 D 1米 24. 当K <0时,反比例函数y =xk和一次函数y =kx +2的图象在致是图中的( )25. 已知正比例函数()x m y 12-=的图象上两点A (1x ,1y ),B (2x ,2y ),当1x <2x 时,有y 1>y 2那么m 的取值范围是( )A 、m <1/2B 、m >1/2C 、m >2D 、m <026. 已知圆柱的侧面积是100лcm 2,若圆柱底面半径为r (cm 2),高线长为h (cm ),则h关于r 的函数的图象大致是( )27. 下列函数关系中,可以看作二次函数()02≠++=a c bx ax y 模型的是( ) (A )在一定的距离内汽车的行驶速度与行驶时间关系(B )我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系(C )竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力) (D )圆的周长与圆的半径之间的关系 28. 又又又向高层建筑屋顶的水箱注水,水对水箱底部的压强p 与水深h 的函数关系的图象是(水箱能容纳的水的最大高度为H )。

29. 在直角坐标系中,点A 的坐标为(2+a,3-a ),当a>3时,点A 在( )A.第一象限B. 第二象限C. 第三象限D. 第四象限30. 已知y=x+a ,当x=-1,0,1,2,3时对应的y 值的平均数为5,则a 的值是( )(A )518(B )519(C )4(D )521 31. 抛物线c bx ax y ++=2与x 轴交于A ,B 两点,Q (2,k )是该抛物线上一点,且AQ ⊥BQ ,则ak 的值等于( )(A )-1(B )-2(C )2(D )332. 张大伯出去散步,从家走了20分钟,到一个离家900米的阅报亭,看了10分钟报纸后,用了15分钟返回到家,下面哪个图形表示张大伯离家时间与距离之间的关系( ):33. 反比例函数y=xk 3+的图象在二、四象限,那么K 的取值范围是( ) A.k≤3B. k 3-≥C. k>3D. k<-334. 已知直线b kx y +=经过点A (0,6),且平行于直线x y 2-=.(1) 求k 、b 的值;(2) 如果这条直线经过点P (m ,2),求m 的值;(3) 写出表示直线OP 的函数解析式; (4) 求由直线b kx y +=,直线OP 与x 轴围成的图形的面积.35. 已知反比例函数y mx=-3和一次函数y kx =-1的图象都经过点P m m (,)-3。

(1)P 的坐标和这个一次函数的解析式;(2)若点M a y (,)1和点N a y (,)+12都在这个一次函数的图象上,试通过计算或利用一次函数的性质,说明y 1大于y 2。

ABCD36.汽车有油箱中有余油量Q(升)与它行驶的时间t(小时)之间是一次函数关系,该汽车外出时,刚开始行驶时油箱中有油60升,行驶了4小时后发现已耗油20升。

(1)求:油箱中的余油Q与行驶时间t之间的函数关系式(2分)(2)求:这个实际问题中时间t的取值范围,并在右下角的直角坐标系中作出该函数图象(2分)(3)如果汽车每小时行驶40千米,那么汽车行驶多远必须加油?37.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,(1)求抛物线的解析式和顶点M的坐标,并在给定的直角坐标系中画出这条抛物线。

(2)若点(x0,y0)在抛物线上,且0≤x0≤4,试写出y0的取值范围。

(3)设平行于y轴的直线x=t交线段BM于点P(点P能与点M重合,不能与点B重合)交x轴于点Q,四边形AQPC的面积为S。

①求S关于t的函数关系式以及自变量t的取值范围;②求S取得最大值时,点P的坐标;③设四边形OBMC 的面积S/,判断是否存在点P,使得S=S/ ,若存在,求出点P的坐标;若不存在,请说明理由。

38.中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过800元的部分不必纳税,超过800(纳税款=应纳税额所得额对应的税率)按此规定解下列问题:(1)设某甲的月工资、薪金所得为x元(1300<x<2800),需缴交的所得税款为y元,试写出y与x的函数关系式;(2)若某乙一月份应缴交所得税款95元,那么他一月份的工资、薪金是多少元?39.已知抛物线过点A(-2,0)、B(1,0)、C(0,2)三点。

(1)求此抛物线的解析式;(2)在这条抛物线上是否存在点P,使∠AOP=450?若存在,请求出点P的坐标;若不存在,请说明理由。

40.已知:抛物线y=ax2+bx+c与y轴交于点C,与x轴交于点A(x1,0),b(x2,0)(x1<x2),顶点M的纵坐标是-4。

若x1,x2是方程x2―2(m―1)+m2-7=0的两个实数根,且102221=+xx。

(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)在抛物线上是否存在点P,使△PAB的面积等于四边形ACMB的面积的2倍?若存在,求出所有合条件的点P的坐标;若不存在,请说明理由。

41.如图,已知平面直角坐标系中三点A(4,0),(0,4),P(x,0)(x<0),作PC⊥PB交过点A的直线l于点C(4,y)。

(1)求y关于x的函数解析式;(2)当x取最大整数时,求BC与PA的交点Q坐标;42. 如图已知一交函数y=-2x+6的图象与x 轴交于点A ,与y轴交于点C ;二次函数y=ax 2+bx+c(a≠0)的图象过A 、C 两点,并且与x 轴交于另一点B (B 在负半轴上)。

(1)当S △ABC =4S △B0C 时,求抛物线y=ax 2+bx+c 的解析式和此函数顶点坐标。

(2)以OA 的长为直径作⊙M,试判定⊙M 与直线AC 的位置关系,并说明理由。

43. 已知一次函数m x y +=43的图象分别交x 轴、y 轴于A 、B 两点,且与反比例函数xy 24=的图象在第一象限交于点C (4,n ),CD ⊥x 轴于D 。

(1)求m 、n 的值,并在给定的直角坐标系中作出一次函数的图象; (2)如果点P 、Q 分别从A 、C 两点同时出发,以相同的速度沿线段AD 、CA 向D 、A 运动,设AP =k 。

①k 为何值时,以A 、P 、Q 为顶点的三角形与△AOB 相似?②k 为何值时,△APQ 的面积取得最大值?并求出这个最大值。

相关文档
最新文档