小学奥数 比例解行程问题.学生版

合集下载

第7讲 比例法解行程(学生版)

第7讲 比例法解行程(学生版)

【例题6】 甲班与乙班学生同时从学校出发去公园,两班的步行速度相等都是 千米/小时,学校有一 辆汽车,它的速度是每小时 千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在 最短时间内到达公园,设两地相距 千米,那么各个班的步行距离是 千米.
【例题7】 如图, , 为 的三等分点; 点整时甲从 过几分钟后丙也从 出发匀速向 行走;甲,乙在 点相遇时丙恰好走到 点, 甲、丙 相遇时乙恰好到 .那么,丙出发时是 点__________分.
三、模块3 行程中的反比例
【例题8】 一辆车从甲地开往乙地.如果车速提高 驶 米. 千米后,再将车速提高 ,可以比原定时间提前 小时到达;如果以原速行 千
【练习2】 艾迪和薇儿从学校出发去公园,二人的速度比为 儿走到公园要用 分钟? ,艾迪走到公园用了 分钟,请问薇
【例题2】 回答下列问题: (1)甲乙两人的速度比为 ,两人同时出发,行走的时间比为 ,则甲,乙走的路程比为 : ; ,甲乙的速度比为 ,则甲乙的时间比为
(2)甲乙两人要走的路程比为 : ;
【作业2】 客车和货车同时从甲、乙两城之间的中点向相反的方向行驶,3小时后,客车到达甲城,货 车离乙城还有30千米.已知货车的速度是客车的 ,甲、乙两城相距 千米.
【作业3】 甲、乙两人分别从 、 地走.甲从 地到达 达 地共用了 两地同时相向出发.相遇后,甲继续向 地.比乙返回 小时. 地迟 地走,乙马上返回,往
小时.已知甲的速度是乙的 .甲从 地到
【作业4】 甲、乙两列火车的速度比是 ,乙车先出发,从 站开往 站,当走到离 站 千米的地 ,那么, 、
方时,甲车从 站出发开往 站.两车相遇的地方离 、 两站的距离比是
两站之间的距离是
千米.
【作业5】 小明跑步速度是步行速度的 倍,他每天从家到学校都是步行.有一天由于晚出发 分钟, 他不得不跑步行了一半路程,另一半路程步行,这样与平时到达学校的时间一样.那么小 明每天步行上学需要时间 分钟.

(小学奥数)比例解行程问题

(小学奥数)比例解行程问题

1. 理解行程問題中的各種比例關係.2. 掌握尋找比例關係的方法來解行程問題.比例的知識是小學數學最後一個重要內容,從某種意義上講仿佛扮演著一個小學“壓軸知識點”的角色。

從一個工具性的知識點而言,比例在解很多應用題時有著“得天獨厚”的優勢,往往體現在方法的靈活性和思維的巧妙性上,使得一道看似很難的題目變得簡單明瞭。

比例的技巧不僅可用於解行程問題,對於工程問題、分數百分數應用題也有廣泛的應用。

我們常常會應用比例的工具分析2個物體在某一段相同路線上的運動情況,我們將甲、乙的速度、時間、路程分別用,,v v t t s s 乙乙乙甲甲甲,;;來表示,大體可分為以下兩種情況:1. 當2個物體運行速度在所討論的路線上保持不變時,經過同一段時間後,他們走過的路程之比就等於他們的速度之比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,這裏因為時間相同,即t t t ==乙甲,所以由ss t t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s vs v =甲甲乙乙,甲乙在同一段時間t 內的路程之比等於速度比2. 當2個物體運行速度在所討論的路線上保持不變時,走過相同的路程時,2個物體所用的時間之比等於他們速度的反比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,這裏因為路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,vt v t =甲乙乙甲,甲乙在同一段路程s 上的時間之比等於速度知識精講教學目標比例解行程問題比的反比。

模組一:比例初步——利用簡單倍比關係進行解題【例 1】甲、乙兩車從相距330千米的A、B兩城相向而行,甲車先從A城出發,過一段時間後,乙車才從B城出發,並且甲車的速度是乙車速度的5。

當兩車相遇時,甲車比乙車多行駛了30千米,則甲車開出6千米,乙車才出發。

【例 2】甲乙兩地相距12千米,上午10:45一位乘客乘計程車從甲地出發前往乙地,途中,乘客問司機距乙地還有多遠,司機看了計程表後告訴乘加上未走路程的2倍,恰好等於已走的路程,又知計客:已走路程的13程車的速度是30千米/小時,那麼現在的時間是。

(小学奥数)比例解行程问题

(小学奥数)比例解行程问题

1. 理解行程問題中的各種比例關係.2. 掌握尋找比例關係的方法來解行程問題.比例的知識是小學數學最後一個重要內容,從某種意義上講仿佛扮演著一個小學“壓軸知識點”的角色。

從一個工具性的知識點而言,比例在解很多應用題時有著“得天獨厚”的優勢,往往體現在方法的靈活性和思維的巧妙性上,使得一道看似很難的題目變得簡單明瞭。

比例的技巧不僅可用於解行程問題,對於工程問題、分數百分數應用題也有廣泛的應用。

我們常常會應用比例的工具分析2個物體在某一段相同路線上的運動情況,我們將甲、乙的速度、時間、路程分別用,,v v t t s s 乙乙乙甲甲甲,;;來表示,大體可分為以下兩種情況:1. 當2個物體運行速度在所討論的路線上保持不變時,經過同一段時間後,他們走過的路程之比就等於他們的速度之比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,這裏因為時間相同,即t t t ==乙甲,所以由s s t t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙,甲乙在同一段時間t 內的路程之比等於速度比2. 當2個物體運行速度在所討論的路線上保持不變時,走過相同的路程時,2個物體所用的時間之比等於他們速度的反比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,這裏因為路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的時間之比等於速度知識精講教學目標比例解行程問題比的反比。

模組一:比例初步——利用簡單倍比關係進行解題【例 1】甲、乙兩車從相距330千米的A、B兩城相向而行,甲車先從A城出發,過一段時間後,乙車才從B城出發,並且甲車的速度是乙車速度的5。

當兩車相遇時,甲車比乙車多行駛了30千米,則甲車開出6千米,乙車才出發。

【考點】行程問題之比例解行程【難度】2星【題型】解答【關鍵字】希望杯,5年級,1試【解析】兩車相遇時共行駛330千米,但是甲多行30千米,可以求出兩車分別行駛的路程,可得甲車行駛180千米,乙車行駛150千米,由甲車速度可以知道,當乙車行駛150千米的時候,甲車實際只行是乙車速度的56駛了5⨯=千米,那麼可以知道在乙車出發之前,甲車已經行駛了1501256180-125=55千米。

小学奥数3-3-1比例解行程问题.专项练习及答案解析(精品)

小学奥数3-3-1比例解行程问题.专项练习及答案解析(精品)

1. 理解行程问题中的各种比例关系.2. 掌握寻找比例关系的方法来解行程问题.比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。

从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。

比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。

我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况:1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。

s v t s v t =´ìí=´î甲甲甲乙乙乙,这里因为时间相同,即t t t ==乙甲,所以由s s t t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v=甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。

s v t s v t =´ìí=´î甲甲甲乙乙乙,这里因为路程相同,即s s s ==乙甲,由s v t s v t =´=´乙乙乙甲甲甲, 得s v t v t =´=´乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比。

模块一:比例初步——利用简单倍比关系进行解题【例 1】 甲、乙两车从相距330千米的A 、B 两城相向而行,甲车先从A 城出发,过一段时间后,乙车才从B 城出发,并且甲车的速度是乙车速度的56。

五年级奥数.行程 .比例解行程问题 (B级). 学生版

五年级奥数.行程 .比例解行程问题 (B级). 学生版

比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。

从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。

比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。

我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况:1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为时间相同,即t t t ==乙甲,所以由s st t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比。

例题精讲知识框架比例解行程问题【例 1】甲、乙两车从相距330千米的A、B两城相向而行,甲车先从A城出发,过一段时间后,乙车才从B城出发,并且甲车的速度是乙车速度的56。

当两车相遇时,甲车比乙车多行驶了30千米,则甲车开出千米,乙车才出发。

【巩固】甲乙两车分别从A、B两地同时相向开出,甲车的速度是50千米/时,乙车的速度是40千米/时,当甲车驶过A、B距离的13多50千米时,与乙车相遇.A、B两地相距______千米。

五年级奥数.行程 .比例解行程问题 (B级). 学生版

五年级奥数.行程 .比例解行程问题 (B级). 学生版

比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。

从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。

比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。

我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况:1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为时间相同,即t t t ==乙甲,所以由s st t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比。

例题精讲知识框架比例解行程问题【例 1】甲、乙两车从相距330千米的A、B两城相向而行,甲车先从A城出发,过一段时间后,乙车才从B城出发,并且甲车的速度是乙车速度的56。

当两车相遇时,甲车比乙车多行驶了30千米,则甲车开出千米,乙车才出发。

【巩固】甲乙两车分别从A、B两地同时相向开出,甲车的速度是50千米/时,乙车的速度是40千米/时,当甲车驶过A、B距离的13多50千米时,与乙车相遇.A、B两地相距______千米。

小学奥数比例类行程问题

小学奥数比例类行程问题

比例类行程问题内容概述本讲主要讲解如何利用比例求解行程问题,而行程问题中的三个量:速度、时间、路程在某些时候存在比例关系.典型问题1.甲、乙、丙三辆汽车各以一定的速度从4地开往B地.若乙比丙晚出发10分钟,则乙出发后40分钟追上丙;若甲比乙又晚出发20分钟,则甲出发后1小时40分钟追上丙;那么甲出发后追上乙所需要的时间为多少分钟?【分析与解】我们知道开始时,乙走了40分钟与丙走了40+10=50分钟的路程相等,所以速度比为乙:丙=5:4;甲走了100分钟,丙走了100+20+lO=130分钟所走的路程相等,所以速度比为:甲:丙=13:10于是.甲:乙:丙=26:25:20.于是,乙比甲先走20分钟,路程相当于20⨯25=500,速度差相当于26-25=l;于是,追击时间为500÷1=500分钟.2. 客车和货车分别从甲、乙两地出发相向而行.如果两车出发的时间都是6:00,那么它们在11:00相遇;如果客车和货车分别于7:00和8:00出发,那么它们在12:40相遇.现在,客车和货车出发的时间分别是10:00和8:00,则何时它们相遇?(本题中所述的时间均为同一天,采用24小时制计法.)【分析与解】第一次,客、货各走了5小时;第二次,客、货各走了5小时40分,4小时40分,但是两次客、货所走的路程和不变;于是有300客+300货=340客+280货;40客=20货,所以客、货两车的速度比为1:2:将全程看成“1”,则客、货车速度和为1÷5=15;所以客车速度为113515÷=;货车的速度为122=1515⨯;货车先出发2小时,于是行走了2421515⨯=;于是剩下的路程为41111515-=;还需要的时间为111111553÷=小时,还需要3小时40分钟,在10:00后计时,所以相遇时间为13点40分.3.在久远的古代,有一个智者叫做芝诺,他曾经说过:兔子永远追不上10米外的乌龟.他这样解释:当兔子跑到10米处(即乌龟原来的地方),乌龟已经往前走了一点;当兔子再次到达乌龟的位置时,乌龟又往前走了一点,……,也就说当兔子到达乌龟以前的位置时,乌龟总是往前走了一点,所以兔子永远追不上乌龟.你认为芝诺的说法错在哪里?【分析与解】因为兔子的速度比乌龟快,为了方便叙述,假设兔子的速度是乌龟的10倍.那么,按芝诺的说法,这些时间,乌龟走的路程为:10,1,0.1,0.01,0.001,……是无穷的,而10+1+0.1+0.01+0.001+…=1009,也就是说兔子只是在乌龟行走1009米之前追不上.等乌龟在1009米之后,兔子就在它的前面了.在这里,芝诺用无穷个数的和来说明它们的和一定是无穷的,这显然是谬误的.。

小学奥数之比例解行程问题(完整版)

小学奥数之比例解行程问题(完整版)

1. 理解行程问题中的各种比例关系.2. 掌握寻找比例关系的方法来解行程问题.比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。

从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。

比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。

我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况:1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为时间相同,即t t t ==乙甲,所以由s s t t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比。

模块一:比例初步——利用简单倍比关系进行解题【例 1】 甲、乙两车从相距330千米的A 、B 两城相向而行,甲车先从A 城出发,过一段时间后,乙车才从B 城出发,并且甲车的速度是乙车速度的56。

当两车相遇时,甲车比乙车多行驶了30千米,则甲车开出 千米,乙车才出发。

【考点】行程问题之比例解行程 【难度】2星 【题型】解答 【关键词】希望杯,5年级,1试 【解析】 两车相遇时共行驶330千米,但是甲多行30千米,可以求出两车分别行驶的路程,可得甲车行驶180千米,乙车行驶150千米,由甲车速度是乙车速度的56可以知道,当乙车行驶150千米的时候,甲车实际只行驶了51501256⨯=千米,那么可以知道在乙车出发之前,甲车已经行驶了180-125=55千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 理解行程问题中的各种比例关系.2. 掌握寻找比例关系的方法来解行程问题.比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。

从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。

比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。

我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况:1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为时间相同,即t t t ==乙甲,所以由s s t t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比。

知识精讲教学目标比例解行程问题模块一:比例初步——利用简单倍比关系进行解题【例 1】甲、乙两车从相距330千米的A、B两城相向而行,甲车先从A城出发,过一段时间后,乙车才从B城出发,并且甲车的速度是乙车。

当两车相遇时,甲车比乙车多行驶了30千米,则甲车开速度的56出千米,乙车才出发。

【例 2】甲乙两地相距12千米,上午10:45一位乘客乘出租车从甲地出发前往乙地,途中,乘客问司机距乙地还有多远,司机看了计程表后告诉乘客:已走路程的1加上未走路程的2倍,恰好等于已走的路3程,又知出租车的速度是30千米/小时,那么现在的时间是。

【例 3】上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?【巩固】欢欢和贝贝是同班同学,并且住在同一栋楼里.早晨 7 : 40 ,欢欢从家出发骑车去学校, 7 : 46 追上了一直匀速步行的贝贝;看到身穿校服的贝贝才想起学校的通知,欢欢立即调头,并将速度提高到原来的 2倍,回家换好校服,再赶往学校;欢欢 8 : 00赶到学校时,贝贝也恰好到学校.如果欢欢在家换校服用去 6分钟且调头时间不计,那么贝贝从家里出发时是几点几分.【例 4】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离?【巩固】地铁有 A,B 两站,甲、乙二人都要在两站间往返行走.两人分别从 A,B 两站同时出发,他们第一次相遇时距 A 站 800 米,第二次相遇时距 B 站 500 米.问:两站相距多远?【巩固】如右图,A,B 是圆的直径的两端,甲在 A 点,乙在 B 点同时出发反向而行,两人在 C 点第一次相遇,在 D 点第二次相遇.已知C 离 A 有 80 米,D 离 B 有 60 米,求这个圆的周长.【例 5】甲、乙两人从相距 490 米的 A、 B 两地同时步行出发,相向而行,丙与甲同时从 A出发,在甲、乙二人之间来回跑步(遇到乙立即返回,遇到甲也立即返回).已知丙每分钟跑 240 米,甲每分钟走 40 米,当丙第一次折返回来并与甲相遇时,甲、乙二人相距 210 米,那么乙每分钟走________米;甲下一次遇到丙时,甲、乙相距________米.【巩固】甲、乙两车同时从 A地出发,不停地往返行驶于 A、B 两地之间.已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中 C 地.甲车的速度是乙车速度的多少倍?【巩固】甲、乙两人同时A地出发,在A、B两地之间匀速往返行走,甲的速度大于乙的速度,甲每次到达A地、B地或遇到乙都会调头往回走,除此以外,两人在AB之间行走方向不会改变,已知两人第一次相遇的地点距离B地1800米,第三次的相遇点距离B地800米,那么第二次相遇的地点距离B地。

【例 6】甲、乙两人同时从A地出发,在 A、 B 两地之间匀速往返行走,甲的速度大于乙的速度,甲每次到达 A地、B 地或遇到乙都会调头往回走,除此以外,两人在 A、B 之间行走方向不会改变,已知两人第一次相遇点距离 B 地1800 米,第三次相遇点距离 B 地 800米,那么第二次相遇的地点距离B 地多少米?【例 7】每天早晨,小刚定时离家步行上学,张大爷也定时出家门散步,他们相向而行,并且准时在途中相遇.有一天,小刚提早出门,因此比平时早 7 分钟与张大爷相遇.已知小刚步行速度是每分钟70米,张大爷步行速度是每分钟 40 米,那么这一天小刚比平时早出门多少分钟?【例 8】甲、乙两人步行速度之比是3∶2,甲、乙分别由A,B两地同时出发,若相向而行,则1时后相遇。

若同向而行,则甲需要多少时间才能追上乙?【例 9】一辆小汽车与一辆大卡车在一段9千米长的狭路上相遇,必须倒车,才能继续通行.已知小汽车的速度是大卡车速度的3倍,两车倒车,小汽车需倒车的路程是大卡车需倒车的路的速度是各自速度的15程的4倍.如果小汽车的速度是每小时50千米,那么要通过这段狭路最少用多少小时?【例 10】一辆货车从甲地往乙地运货,然后空车返回,再继续运货。

已知装满货物每时行50千米,空车每时行70千米。

不计装卸货物时间,9时往返五次。

求甲、乙两地的距离。

【例 11】甲、乙两车往返于A,B两地之间。

甲车去时的速度为60千米/时,返回时的速度为40千米/时;乙车往返的速度都是50千米/时。

求甲、乙两车往返一次所用时间的比。

【例 12】甲、乙、丙三辆车先后从A地开往B地,乙比丙晚出发5分,出发后45分追上丙;甲比乙晚出发15分,出发后1时追上丙。

甲出发后多长时间追上乙?【例 13】甲火车4分行进的路程等于乙火车 5分行进的路程。

乙火车上午8:00从B站开往A站,开出若干分后,甲火车从A站出发开往B站。

上午9:00两列火车相遇,相遇的地点离A,B两站的距离的比是15∶16。

甲火车从A站发车的时间是几点几分?【例 14】一段路程分为上坡、平路、下坡三段,各段路程的长度之比是1∶2∶3,某人走这三段路所用的时间之比是4∶5∶6。

已知他上坡时每小时行2.5千米,路程全长为20千米。

此人走完全程需多长时间?【巩固】一段路程分为上坡、平路、下坡三段,各段路程的长度之比是2∶3∶5,某人骑车走这三段路所用的时间之比是6∶5∶4。

已知他走平路时速度为4.5千米/时,全程用了5时。

问:全程多少千米?【巩固】甲、乙两列火车的速度比是5∶4。

乙车先从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车开往B站。

如果两列火车相遇的地方离A,B两站距离的比是3∶4,那么A,B两站之间的距离为多少千米?【巩固】大、小客车从甲、乙两地同时相向开出,大、小客车的速度比为4∶5,两车开出后60分相遇,并继续前进。

问:大客车比小客车晚多少分到达目的地?。

一辆汽【例 15】从甲地到乙地全部是山路,其中上山路程是下山路程的23车上山速度是下山速度的一半,从甲地到乙地共行7时。

这辆汽车从乙地返回甲地需要多少时间?【例 16】甲、乙、丙三辆车同时从A地出发到B地去,出发后6分甲车超过了一名长跑运动员,2分后乙车也超过去了,又过了2分丙车也超了过去。

已知甲车每分走1000米,乙车每分走800米,丙车每分钟走多少米?【例 17】甲、乙两人都从A地经B地到C地。

甲8点出发,乙8点45分出发。

乙9点45分到达B地时,甲已经离开B地20分。

两人刚好同时到达C地。

问:到达C地时是什么时间?【例 18】甲、乙两车先后以相同的速度从A站开出,10点整甲车距A站的距离是乙车距A站距离的三倍,10点10分甲车距A站的距离是乙车距A站距离的二倍。

问:甲车是何时从A站出发的?【例 19】某人沿公路前进,迎面来了一辆汽车,他问司机:“后面有骑自行车的人吗?”司机回答:“10分前我超过一个骑自行车的人。

”这人继续走了10分,遇到了这个骑自行车的人。

如果自行车的速度是人步行速度的三倍,那么汽车速度是人步行速度的多少倍?【例 20】兄弟两人骑马进城,全程51千米。

马每时行12千米,但只能由一个人骑。

哥哥每时步行5千米,弟弟每时步行4千米。

两人轮换骑马和步行,骑马者走过一段距离就下鞍拴马(下鞍拴马的时间忽略不计),然后独自步行。

而步行者到达此地,再上马前进。

若他们早晨6点动身,则何时能同时到达城里?模块二:时间相同速度比等于路程比【例 21】A、 B 两地相距 7200 米,甲、乙分别从 A, B 两地同时出发,结果在距 B 地 2400 米处相遇.如果乙的速度提高到原来的 3倍,那么两人可提前10分钟相遇,则甲的速度是每分钟行多少米?【例 22】甲、乙分别从A,B两地同时相向出发。

相遇时,甲、乙所行的路程比是a∶b。

从相遇算起,甲到达B地与乙到达A地所用的时间比是多少?【巩固】甲、乙两辆车分别同时从 A, B两地相向而行,相遇后甲又经过15分到达B地,乙又经过1时到达A地,甲车速度是乙车速度的几倍?【巩固】A,B两地相距1800米,甲、乙二人分别从A,B两地同时出发,相向而行。

相遇后甲又走了8分到达B地,乙又走了18分到达A地。

甲、乙二人每分钟各走多少米?【例 23】甲、乙两人分别从A B、两地同时出发,相向而行。

出发时他们的速,这度之比是3:2,相遇后,甲的速度提高20%,乙的速度提高13样当甲到达B地时,乙离A地还有41千米,那么A B、两地相遇__________千米。

【例 24】甲、乙二人分别从 A、 B 两地同时出发,相向而行,甲、乙的速度之比是 4 : 3,二人相遇后继续行进,甲到达 B 地和乙到达 A地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点 30千米,则 A、 B 两地相距多少千米?【巩固】甲、乙两车分别从 A、B 两地出发,在 A、B 之间不断往返行驶,,并且甲、乙两车第 2007 次相已知甲车的速度是乙车的速度的37遇(这里特指面对面的相遇)的地点与第 2008 次相遇的地点恰好相距 120 千米,那么,A、B 两地之间的距离等于多少千米?【例 25】B地在A,C两地之间.甲从B地到A地去送信,甲出发10分后,乙从B地出发到C地去送另一封信,乙出发后10分,丙发现甲、乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间。

相关文档
最新文档