2018届高三理科数学二轮复习跟踪强化训练:21 Word版含解析

合集下载

2018届高三理科数学二轮复习跟踪强化训练19 含解析 精

2018届高三理科数学二轮复习跟踪强化训练19 含解析 精

跟踪强化训练(十九)1.(2017·沈阳质检)已知数列{a n }是公差不为0的等差数列,首项a 1=1,且a 1,a 2,a 4成等比数列.(1)求数列{a n }的通项公式; (2)设数列{b n }满足b n =a n +,求数列{b n }的前n 项和T n .[解] (1)设数列{a n }的公差为d ,由已知得,a 22=a 1a 4,即(1+d )2=1+3d ,解得d =0或d =1. 又d ≠0,∴d =1,可得a n =n . (2)由(1)得b n =n +2n ,∴T n =(1+21)+(2+22)+(3+23)+…+(n +2n ) =(1+2+3+…+n )+(2+22+23+…+2n ) =n (n +1)2+2n +1-2.[解](1)由题意得,⎩⎪⎨⎪⎧S 1=a 2-2,a 1+a 2=2a 3-6,a 1+a 2+a 3=9,解得⎩⎪⎨⎪⎧a 1=1,a 2=3,a 3=5,当n ≥2时,S n -1=(n -1)a n -(n -1)n , 所以a n =na n +1-n (n +1)-(n -1)a n +(n -1)n , 即a n +1-a n =2.又a 2-a 1=2,因而数列{a n }是首项为1,公差为2的等差数列,从而a n =2n -1.T n =1×21+3×22+5×23+…+(2n -3)×2n -1+(2n -1)×2n , 2T n =1×22+3×23+5×24+…+(2n -3)×2n +(2n -1)×2n +1. 两式相减得-T n =1×21+2×22+2×23+…+2×2n -(2n -1)×2n +1 =-2+2×(21+22+23+…+2n )-(2n -1)×2n +1 =-2+2×2×(1-2n )1-2-(2n -1)×2n +1=-2+2n +2-4-(2n -1)×2n +1=-6-(2n -3)×2n +1. 所以T n =6+(2n -3)×2n +1.3.数列{a n }的前n 项和为S n ,且首项a 1≠3,a n +1=S n +3n (n ∈N *).(1)求证:{S n -3n }是等比数列;(2)若{a n }为递增数列,求a 1的取值范围. [解] (1)证明:∵a n +1=S n +3n ,(n ∈N *) ∴S n +1=2S n +3n ,∴S n +1-3n +1=2(S n -3n ),∵a 1≠3. ∴S n +1-3n +1S n -3n=2,∴数列{S n -3n }是公比为2,首项为a 1-3的等比数列. (2)由(1)得S n -3n =(a 1-3)×2n -1,∴S n =(a 1-3)×2n -1+3n , ∴当n ≥2时,a n =S n -S n -1=(a 1-3)×2n -2+2×3n -1,∵{a n }为递增数列,∴n ≥2时,(a 1-3)×2n -1+2×3n >(a 1-3)×2n -2+2×3n -1,∴n ≥2时,2n -2⎣⎢⎡⎦⎥⎤12×⎝ ⎛⎭⎪⎫32n -2+a 1-3>0, 可得n ≥2时,a 1>3-12×⎝ ⎛⎭⎪⎫32n -2,又当n =2时,3-12×⎝ ⎛⎭⎪⎫32n -2有最大值为-9,∴a 1>-9,又a 2=a 1+3满足a 2>a 1, ∴a 1的取值范围是(-9,+∞).4.(2017·昆明模拟)设数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,a n =2a n S n -2S 2n .(1)求数列{a n }的通项公式;(2)是否存在正数k ,使(1+S 1)(1+S 2)…(1+S n )≥k 2n +1对一切正整数n 都成立?若存在,求k 的取值范围;若不存在,请说明理由.[解] (1)∵当n ≥2时,a n =S n -S n -1,a n =2a n S n -2S 2n ,∴S n -S n -1=2(S n -S n -1)S n -2S 2n .∴S n -1-S n =2S n S n -1. ∴1S n-1S n -1=2.∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列, 即1S n=1+(n -1)×2=2n -1.∴S n =12n -1.当n ≥2时,a n =S n -S n -1=12n -1-12(n -1)-1=-2(2n -1)(2n -3).∴数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,-2(2n -1)(2n -3),n ≥2.(2)设b n =(1+S 1)(1+S 2)…(1+S n )2n +1,则b n +1=(1+S 1)(1+S 2)…(1+S n )(1+S n +1)2n +3.由(1)知S n =12n -1,S n +1=12n +1,∴b n +1b n =(1+S n +1)2n +12n +3=2n +2(2n +1)(2n +3)=4n 2+8n +44n 2+8n +3>1.又b n >0,∴数列{b n }是单调递增数列. 由(1+S 1)(1+S 2)…(1+S n )≥k 2n +1,得b n ≥k . ∴k ≤b 1=23=233.∴存在正数k ,使(1+S 1)(1+S 2)…(1+S n )≥k 2n +1对一切正整数n 都成立,且k 的取值范围为⎝ ⎛⎦⎥⎤0,233.。

2018年高考真题——理科数学(全国卷II)+Word版含解析(2021年整理)

2018年高考真题——理科数学(全国卷II)+Word版含解析(2021年整理)

2018年高考真题——理科数学(全国卷II)+Word版含解析(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考真题——理科数学(全国卷II)+Word版含解析(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考真题——理科数学(全国卷II)+Word版含解析(word版可编辑修改)的全部内容。

绝密★启用前2018年普通高等学校招生全国统一考试理科数学(全国卷II)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上.写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1。

A. B. C。

D.【答案】D【解析】分析:根据复数除法法则化简复数,即得结果.详解:选D。

点睛:本题考查复数除法法则,考查学生基本运算能力.2. 已知集合,则中元素的个数为A。

9 B。

8 C。

5 D. 4【答案】A【解析】分析:根据枚举法,确定圆及其内部整点个数.详解: ,当时,;当时,;当时,;所以共有9个,选A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.3。

函数的图像大致为A. AB. BC. C D。

D【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像。

详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4。

2018届高三理科数学二轮复习跟踪强化训练3 Word版含解析

2018届高三理科数学二轮复习跟踪强化训练3 Word版含解析

跟踪强化训练(三)一、选择题.(·武汉二模)设函数()=错误!若()<,则实数的取值范围是( ).(-∞,-) .(,+∞).(-) .(-∞,-)∪(,+∞)[解析]解法一:当<时,不等式()<为-<,即<,即<-,因为<<,所以>-,此时-<<;当≥时,不等式()<为<,所以≤<.故的取值范围是(-),故选.解法二:取=, ()=<,符合题意,排除,,.[答案].(·大同二模)已知函数()=的定义域是实数集,则实数的取值范围是( ).() .[] .(] .[)[解析]因为函数()=的定义域是实数集,所以≥,当=时,函数()=,其定义域是实数集;当>时,则Δ=-≤,解得<≤.综上所述,实数的取值范围是≤≤.[答案].(·太原模拟)名大学生到三家企业应聘,每名大学生至多被一家企业录用,则每家企业至少录用名大学生的情况有( ) .种.种.种.种[解析]每家企业至少录用一名大学生的情况有两类:一类是每家企业都录用一名,有=(种);一类是其中一家企业录用了名,有=(种),所以一共有+=(种),故选.[答案].以坐标原点为对称中心,两坐标轴为对称轴的双曲线的一条渐近线的倾斜角为,则该双曲线的离心率为( ).或.或.[解析]当双曲线的焦点在轴上时,双曲线的标准方程为-=(>,>),渐近线方程为=±,所以==,故双曲线的离心率====;当双曲线的焦点在轴上时,双曲线的标准方程为-=(>,>),渐近线方程为=±,所以==,则=,所以双曲线的离心率====.故选.[答案].(·浙江卷)已知,>且≠,≠,若>,则( ).(-)(-)< .(-)(-)>.(-)(-)< .(-)(-)>[解析]∵,>且≠,≠,∴当>,即->时,不等式>可化为>,即>>,∴(-)(-)<,(-)(-)>,(-)(-)>.当<<,即-<时,不等式>可化为<,即<<<,∴(-)(-)<,(-)(-)>,(-)(-)>.综上可知,选.[答案].如图,过正方体-任意两条棱的中点作直线,其中与平面平行的直线有( )。

2018届高考理科数学二轮复习课时跟踪检测试卷及答案(26份)

2018届高考理科数学二轮复习课时跟踪检测试卷及答案(26份)

课时跟踪检测(一)集合、常用逻辑用语1.(2017·全国卷Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=( ) A.{1,-3} B.{1,0}C.{1,3} D.{1,5}解析:选C 因为A∩B={1},所以1∈B,所以1是方程x2-4x+m=0的根,所以1-4+m=0,m =3,方程为x2-4x+3=0,解得x=1或x=3,所以B={1,3}.2.(2017·山东高考)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)解析:选D 由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.3.(2017·合肥模拟)已知命题q:∀x∈R,x2>0,则( )A.命题綈q:∀x∈R,x2≤0为假命题B.命题綈q:∀x∈R,x2≤0为真命题C.命题綈q:∃x0∈R,x20≤0为假命题D.命题綈q:∃x0∈R,x20≤0为真命题解析:选D 全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x=0时,x2≤0成立,所以綈q为真命题.4.(2018届高三·郑州四校联考)命题“若a>b,则a+c>b+c”的否命题是( )A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c解析:选A 命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a≤b,则a+c≤b+c”,故选A.5.(2017·石家庄模拟)“x>1”是“x2+2x>0”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选A 由x2+2x>0,得x>0或x<-2,所以“x>1”是“x2+2x>0”的充分不必要条件.6.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:选D 因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.7.(2017·唐山模拟)已知集合A={x|x2-5x-6<0},B={x|2x<1},则图中阴影部分表示的集合是( )A .{x |2<x <3}B .{x |-1<x ≤0}C .{x |0≤x <6}D .{x |x <-1}解析:选C 由x 2-5x -6<0,解得-1<x <6,所以A ={x |-1<x <6}.由2x<1,解得x <0,所以B ={x |x <0}.又图中阴影部分表示的集合为(∁U B )∩A ,因为∁U B ={x |x ≥0},所以(∁U B )∩A ={x |0≤x <6}.8.(2018届高三·河北五校联考)已知命题p :∃x 0∈(-∞,0),2x 0<3x0;命题q :∀x ∈⎝⎛⎭⎪⎫0,π2,tan x >sin x ,则下列命题为真命题的是( )A .p ∧qB .p ∨(綈q )C .(綈p )∧qD .p ∧(綈q )解析:选C 根据指数函数的图象与性质知命题p 是假命题,綈p 是真命题;∵x ∈⎝⎛⎭⎪⎫0,π2,且tan x =sin xcos x, ∴0<cos x <1,tan x >sin x , ∴q 为真命题,选C.9.(2017·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 根据祖暅原理,“A ,B 在等高处的截面积恒相等”是“A ,B 的体积相等”的充分不必要条件,即綈q 是綈p 的充分不必要条件,即命题“若綈q ,则綈p ”为真,逆命题为假,故逆否命题“若p ,则q ”为真,否命题“若q ,则p ”为假,即p 是q 的充分不必要条件,选A.10.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },若P ={x |log 2x <1},Q ={x ||x -2|<1},则P -Q =( )A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3}解析:选B 由log 2x <1,得0<x <2, 所以P ={x |0<x <2}. 由|x -2|<1,得1<x <3, 所以Q ={x |1<x <3}.由题意,得P -Q ={x |0<x ≤1}.11.(2018届高三·广西五校联考)命题p :“∃x 0∈R ,使得x 20+mx 0+2m +5<0”,命题q :“关于x 的方程2x-m =0有正实数解”,若“p 或q ”为真,“p 且q ”为假,则实数m 的取值范围是( )A .[1,10]B .(-∞,-2)∪(1,10]C .[-2,10]D .(-∞,-2]∪(0,10]解析:选B 若命题p :“∃x 0∈R ,使得x 20+mx 0+2m +5<0”为真命题,则Δ=m 2-8m -20>0,∴m <-2或m >10;若命题q 为真命题,则关于x 的方程m =2x有正实数解,因为当x >0时,2x>1,所以m >1.因为“p 或q ”为真,“p 且q ”为假,故p 真q 假或p 假q真,所以⎩⎪⎨⎪⎧m <-2或m >10,m ≤1或⎩⎪⎨⎪⎧-2≤m ≤10,m >1,所以m <-2或1<m ≤10.12.(2017·石家庄模拟)下列选项中,说法正确的是( ) A .若a >b >0,则ln a <ln bB .向量a =(1,m )与b =(m,2m -1)(m ∈R)垂直的充要条件是m =1C .命题“∀n ∈N *,3n>(n +2)·2n -1”的否定是“∀n ∈N *,3n ≥(n +2)·2n -1”D .已知函数f (x )在区间[a ,b ]上的图象是连续不断的,则命题“若f (a )·f (b )<0,则f (x )在区间(a ,b )内至少有一个零点”的逆命题为假命题解析:选D A 中,因为函数y =ln x (x >0)是增函数,所以若a >b >0,则ln a >ln b ,故A 错; B 中,若a ⊥b ,则m +m (2m -1)=0, 解得m =0,故B 错;C 中,命题“∀n ∈N *,3n>(n +2)·2n -1”的否定是“∃n 0∈N *,3n 0≤(n 0+2)·2n 0-1”,故C 错;D 中,原命题的逆命题是“若f (x )在区间(a ,b )内至少有一个零点,则f (a )·f (b )<0”,是假命题,如函数f (x )=x 2-2x -3在区间[-2,4]上的图象是连续不断的,且在区间(-2,4)内有两个零点,但f (-2)·f (4)>0,故D 正确.13.(2018届高三·辽宁师大附中调研)若集合A ={x |(a -1)x 2+3x -2=0}有且仅有两个子集,则实数a 的值为________.解析:由题意知,集合A 有且仅有两个子集,则集合A 中只有一个元素.当a -1=0,即a =1时,A =⎩⎨⎧⎭⎬⎫23,满足题意;当a -1≠0,即a ≠1时,要使集合A 中只有一个元素,需Δ=9+8(a -1)=0,解得a =-18.综上可知,实数a 的值为1或-18.答案:1或-1814.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R,B ={x |-1<x <m +1,x ∈R},若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析:A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A B ,∴m +1>3,即m >2. 答案:(2,+∞)15.(2017·广东中山一中模拟)已知非空集合A ,B 满足下列四个条件: ①A ∪B ={1,2,3,4,5,6,7}; ②A ∩B =∅;③A 中的元素个数不是A 中的元素; ④B 中的元素个数不是B 中的元素.(1)如果集合A 中只有1个元素,那么A =________; (2)有序集合对(A ,B )的个数是________.解析:(1)若集合A 中只有1个元素,则集合B 中有6个元素,6∉B ,故A ={6}.(2)当集合A 中有1个元素时,A ={6},B ={1,2,3,4,5,7},此时有序集合对(A ,B )有1个; 当集合A 中有2个元素时,5∉B,2∉A ,此时有序集合对(A ,B )有5个; 当集合A 中有3个元素时,4∉B,3∉A ,此时有序集合对(A ,B )有10个; 当集合A 中有4个元素时,3∉B,4∉A ,此时有序集合对(A ,B )有10个; 当集合A 中有5个元素时,2∉B,5∉A ,此时有序集合对(A ,B )有5个;当集合A 中有6个元素时,A ={1,2,3,4,5,7},B ={6},此时有序集合对(A ,B )有1个. 综上可知,有序集合对(A ,B )的个数是1+5+10+10+5+1=32. 答案:(1){6} (2)3216.(2017·张掖模拟)下列说法中不正确的是________.(填序号) ①若a ∈R ,则“1a<1”是“a >1”的必要不充分条件;②“p ∧q 为真命题”是“p ∨q 为真命题”的必要不充分条件; ③若命题p :“∀x ∈R ,sin x +cos x ≤2”,则p 是真命题;④命题“∃x 0∈R ,x 20+2x 0+3<0”的否定是“∀x ∈R ,x 2+2x +3>0”.解析:由1a <1,得a <0或a >1,反之,由a >1,得1a <1,∴“1a<1”是“a >1”的必要不充分条件,故①正确;由p ∧q 为真命题,知p ,q 均为真命题,所以p ∨q 为真命题,反之,由p ∨q 为真命题,得p ,q 至少有一个为真命题,所以p ∧q 不一定为真命题,所以“p ∧q 为真命题”是“p ∨q 为真命题”的充分不必要条件,故②不正确;∵sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4≤2, ∴命题p 为真命题,③正确;命题“∃x 0∈R ,x 20+2x 0+3<0”的否定是“∀x ∈R ,x 2+2x +3≥0”,故④不正确. 答案:②④课时跟踪检测(二) 平面向量与复数1.(2017·全国卷Ⅲ)复平面内表示复数z =i(-2+i)的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限解析:选C z =i(-2+i)=-2i +i 2=-1-2i ,故复平面内表示复数z =i(-2+i)的点位于第三象限.2.(2017·全国卷Ⅲ)设复数z 满足(1+i)z =2i ,则|z |=( ) A.12 B.22 C. 2 D .2解析:选C 因为z =2i1+i =-+-=i(1-i)=1+i ,所以|z |= 2.3.(2017·沈阳模拟)已知平面向量a =(3,4),b =⎝ ⎛⎭⎪⎫x ,12,若a ∥b ,则实数x 的值为( ) A .-23 B.23 C.38 D .-38解析:选C ∵a ∥b ,∴3×12=4x ,解得x =38.4.(2018届高三·西安摸底)已知非零单位向量a ,b 满足|a +b |=|a -b |,则a 与b -a 的夹角是( )A.π6 B.π3 C.π4 D.3π4解析:选D 由|a +b |=|a -b |可得(a +b )2=(a -b )2,即a ·b =0,而a ·(b -a )=a ·b -a 2=-|a |2<0,即a 与b -a 的夹角为钝角,结合选项知选D.5.(2017·湘中模拟)已知向量a =(x ,3),b =(x ,-3),若(2a +b )⊥b ,则|a |=( ) A .1 B. 2 C. 3 D .2解析:选D 因为(2a +b )⊥b ,所以(2a +b )·b =0,即(3x ,3)·(x ,-3)=3x 2-3=0,解得x =±1,所以a =(±1,3),|a |=2+32=2.6.(2017·广西五校联考)设D 是△ABC 所在平面内一点,AB ―→=2DC ―→,则( ) A .BD ―→=AC ―→-32AB ―→B .BD ―→=32AC ―→-AB ―→C .BD ―→=12AC ―→-AB ―→D .BD ―→=AC ―→-12AB ―→解析:选A BD ―→=BC ―→+CD ―→=BC ―→-DC ―→=AC ―→-AB ―→-12AB ―→=AC ―→-32AB ―→.7.(2018届高三·云南调研)在▱ABCD 中,|AB ―→|=8,|AD ―→|=6,N 为DC 的中点,BM ―→=2MC ―→,则AM ―→·NM ―→=( )A .48B .36C .24D .12解析:选C AM ―→·NM ―→=(AB ―→+BM ―→)·(NC ―→+CM ―→)=⎝ ⎛⎭⎪⎫AB ―→+23 AD ―→ ·⎝ ⎛⎭⎪⎫12 AB ―→-13 AD ―→ =12AB―→2-29AD ―→2=12×82-29×62=24. 8.(2018届高三·广西五校联考)已知a 为实数,若复数z =(a 2-1)+(a +1)i 为纯虚数,则a +i 2 0171-i=( )A .1B .0C .iD .1-i解析:选C 因为z =(a 2-1)+(a +1)i 为纯虚数,所以⎩⎪⎨⎪⎧a 2-1=0,a +1≠0,得a =1,则有1+i 2 0171-i =1+i 1-i=+2+-=i.9.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD ―→ 在BA ―→方向上的投影是( ) A .-3 5 B .-322 C .3 5 D.322解析:选 A 依题意得,BA ―→=(-2,-1),CD ―→=(5,5),BA ―→ ·CD ―→=(-2,-1)·(5,5)=-15,|BA ―→|=5,因此向量CD ―→在BA ―→方向上的投影是BA ―→·CD ―→|BA ―→|=-155=-3 5.10.(2018届高三·湖南五校联考)△ABC 是边长为2的等边三角形,向量a ,b 满足AB ―→=2a ,AC ―→=2a +b ,则向量a ,b 的夹角为( )A .30°B .60°C .120°D .150°解析:选C 法一:设向量a ,b 的夹角为θ,BC ―→=AC ―→-AB ―→=2a +b -2a =b ,∴|BC ―→|=|b |=2,|AB ―→|=2|a |=2,∴|a |=1,AC ―→2=(2a +b )2=4a 2+4a ·b +b 2=8+8cos θ=4,∴cos θ=-12,θ=120°.法二:BC ―→=AC ―→-AB ―→=2a +b -2a =b ,则向量a ,b 的夹角为向量AB ―→与BC ―→的夹角,故向量a ,b 的夹角为120°.11.(2017·长春模拟)在△ABC 中,D 为△ABC 所在平面内一点,且AD ―→=13AB ―→+12AC ―→,则S △BCD S △ABD=( )A.16B.13C.12D.23解析:选B 如图,由已知得,点D 在△ABC 中与AB 平行的中位线上,且在靠⎝ ⎛⎭⎪⎫1-12-13S近BC 边的三等分点处,从而有S △ABD =12S △ABC ,S △ACD =13S △ABC ,S △BCD =△ABC=16S △ABC ,所以S △BCD S △ABD =13. 12.(2017·全国卷Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP ―→=λAB ―→+μAD ―→,则λ+μ的最大值为( )A .3B .2 2 C. 5 D .2 解析:选A 以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,则A (0,0),B (1,0),C (1,2),D (0,2),可得直线BD 的方程为2x +y -2=0,点C 到直线BD 的距离为222+12=25,所以圆C :(x -1)2+(y -2)2=45. 因为P 在圆C 上,所以P ⎝ ⎛⎭⎪⎫1+255cos θ,2+255sin θ. 又AB ―→=(1,0),AD ―→=(0,2),AP ―→=λAB ―→+μAD ―→=(λ,2μ), 所以⎩⎪⎨⎪⎧1+255cos θ=λ,2+255sin θ=2μ,λ+μ=2+255cos θ+55sin θ=2+sin(θ+φ)≤3(其中tan φ=2),当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.13.(2017·成都模拟)若复数z =a i1+i (其中a ∈R ,i 为虚数单位)的虚部为-1,则a =________.解析:因为z =a i1+i=a-+-=a 2+a 2i 的虚部为-1,所以a2=-1,解得a =-2. 答案:-214.(2017·兰州诊断)已知向量OA ―→=(3,1),OB ―→=(-1,3),OC ―→=m OA ―→-n OB ―→(m >0,n >0),若m +n =1,则|OC ―→|的最小值为________.解析:由OA ―→=(3,1),OB ―→=(-1,3),得OC ―→=m OA ―→-n OB ―→=(3m +n ,m -3n ),因为m +n =1(m >0,n >0),所以n =1-m 且0<m <1,所以OC ―→=(1+2m,4m -3),则|OC ―→|=+2m2+m -2=20m 2-20m +10=20⎝ ⎛⎭⎪⎫m -122+5(0<m <1),所以当m =12时,|OC ―→|min = 5.答案: 515.(2018届高三·石家庄调研)非零向量m ,n 的夹角为π3,且满足|n |=λ|m |(λ>0),向量组x 1,x 2,x 3由一个m 和两个n 排列而成,向量组y 1,y 2,y 3由两个m 和一个n 排列而成,若x 1·y 1+x 2·y 2+x 3·y 3所有可能值中的最小值为4m 2,则λ=________.解析:由题意:x 1·y 1+x 2·y 2+x 3·y 3的运算结果有以下两种可能:①m 2+m ·n +n 2=m 2+λ|m ||m |cos π3+λ2m 2=⎝ ⎛⎭⎪⎫λ2+λ2+1m 2;②m ·n +m ·n +m ·n =3λ|m ||m |cos π3=3λ2m 2.又λ2+λ2+1-3λ2=λ2-λ+1=⎝ ⎛⎭⎪⎫λ-122+34>0,所以3λ2m 2=4m 2,即3λ2=4,解得λ=83.答案:8316.如图所示,已知正方形ABCD 的边长为1,点E 从点D 出发,按字母顺序D →A →B →C 沿线段DA ,AB ,BC 运动到点C ,在此过程中DE ―→·CD ―→的取值范围为________.解析:以BC ,BA 所在的直线为x 轴,y 轴,建立平面直角坐标系如图所示,可得A (0,1),B (0,0),C (1,0),D (1,1).当E 在DA 上时,设E (x,1),其中0≤x ≤1,∵DE ―→=(x -1,0),CD ―→=(0,1), ∴DE ―→·CD ―→=0;当E 在AB 上时,设E (0,y ), 其中0≤y ≤1,∵DE ―→=(-1,y -1),CD ―→=(0,1),∴DE ―→·CD ―→=y -1(0≤y ≤1),此时DE ―→·CD ―→的取值范围为[-1,0]; 当E 在BC 上时,设E (x,0),其中0≤x ≤1, ∵DE ―→=(x -1,-1),CD ―→=(0,1),∴DE ―→·CD ―→=-1.综上所述,DE ―→·CD ―→的取值范围为[-1,0]. 答案:[-1,0]课时跟踪检测(三) 不等式1.(2018届高三·湖南四校联考)已知不等式mx 2+nx -1m <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-12或x >2,则m-n =( )A.12 B .-52C.52D .-1解析:选B 由题意得,x =-12和x =2是方程mx 2+nx -1m =0的两根,所以-12+2=-n m 且-12×2=-1m (m <0),解得m =-1,n =32,所以m -n =-52.2.已知直线ax +by =1经过点(1,2),则2a +4b的最小值为( ) A. 2 B .2 2 C .4D .4 2解析:选B ∵直线ax +by =1经过点(1,2),∴a +2b =1,则2a+4b≥22a·22b=22a +2b=22,当且仅当2a =22b,即a =12,b =14时取等号.3.(2017·兰州模拟)设变量x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的最小值是( )A .5B .7C .8D .23解析:选B 作出不等式组所表示的平面区域如图中阴影部分所示,作出直线2x +3y =0,对该直线进行平移,可以发现经过⎩⎪⎨⎪⎧x +y =3,2x -y =3的交点A (2,1)时,目标函数z =2x +3y 取得最小值7.4.(2017·贵阳一模)已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3B .4C.92D.112解析:选B 由题意得x +2y =8-x ·2y ≥8-⎝⎛⎭⎪⎫x +2y 22,当且仅当x =2y 时,等号成立,整理得(x+2y )2+4(x +2y )-32≥0,即(x +2y -4)(x +2y +8)≥0,又x +2y >0,所以x +2y ≥4,即x +2y 的最小值为4.5.(2017·云南模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≥1,21-x-2,x <1,则不等式f (x -1)≤0的解集为( )A .{x |0≤x ≤2}B .{x |0≤x ≤3}C .{x |1≤x ≤2}D .{x |1≤x ≤3}解析:选D 由题意,得f (x -1)=⎩⎪⎨⎪⎧2x -2-2,x ≥2,22-x-2,x <2.当x ≥2时,由2x -2-2≤0,解得2≤x ≤3; 当x <2时,由22-x-2≤0,解得1≤x <2.综上所述,不等式f (x -1)≤0的解集为{x |1≤x ≤3}.6.(2017·武汉调研)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-3解析:选B 根据约束条件画出可行域如图①中阴影部分所示.可知可行域为开口向上的V 字型.在顶点A 处z有最小值,联立方程⎩⎪⎨⎪⎧x +y =a ,x -y =-1,得⎩⎪⎨⎪⎧x =a -12,y =a +12,即A ⎝⎛⎭⎪⎫a -12,a +12,则a -12+a ×a +12=7,解得a =3或a =-5. 当a =-5时,如图②,虚线向上移动时z 减小,故z →-∞,没有最小值,故只有a =3满足题意.7.(2017·合肥二模)若关于x 的不等式x 2+ax -2<0在区间[1,4]上有解,则实数a 的取值范围为( )A .(-∞,1)B .(-∞,1]C .(1,+∞)D .[1,+∞)解析:选A 法一:因为x ∈[1,4],则不等式x 2+ax -2<0可化为a <2-x 2x =2x -x ,设f (x )=2x-x ,x ∈[1,4],由题意得只需a <f (x )max ,因为函数f (x )为区间[1,4]上的减函数,所以f (x )max =f (1)=1,故a <1.法二:设g (x )=x 2+ax -2,函数g (x )的图象是开口向上的抛物线,过定点(0,-2),因为g (x )<0在区间[1,4]上有解,所以g (1)<0,解得a <1.8.(2017·太原一模)已知实数x ,y 满足条件⎩⎪⎨⎪⎧3x +y +3≥0,2x -y +2≤0,x +2y -4≤0,则z =x 2+y 2的取值范围为( )A .[1,13]B .[1,4]C.⎣⎢⎡⎦⎥⎤45,13D.⎣⎢⎡⎦⎥⎤45,4解析:选C 画出不等式组表示的平面区域如图中阴影部分所示,由此得z =x 2+y 2的最小值为点O 到直线BC :2x -y +2=0的距离的平方,所以z min =⎝ ⎛⎭⎪⎫252=45,最大值为点O 与点A (-2,3)的距离的平方,所以z max=|OA |2=13,故选C.9.(2017·衡水二模)若关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),则x 1+x 2+a x 1x 2的最小值是( )A.63 B.233 C.433D.263解析:选C ∵关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),∴Δ=16a 2-12a 2=4a2>0,又x 1+x 2=4a ,x 1x 2=3a 2, ∴x 1+x 2+a x 1x 2=4a +a 3a 2=4a +13a ≥24a ·13a =433,当且仅当a =36时取等号. ∴x 1+x 2+a x 1x 2的最小值是433. 10.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:(单位:亩)分别为( )A .50,0B .30,20C .20,30D .0,50解析:选B 设黄瓜、韭菜的种植面积分别为x 亩,y 亩,则总利润z =4×0.55x +6×0.3y -1.2x-0.9y =x +0.9y .此时x ,y 满足条件⎩⎪⎨⎪⎧x +y ≤50,1.2x +0.9y ≤54,x ≥0,y ≥0.画出可行域如图,得最优解为A (30,20).故黄瓜和韭菜的种植面积分别为30亩、20亩时,种植总利润最大.11.已知点M 是△ABC 内的一点,且AB ―→·AC ―→=23,∠BAC =π6,若△MBC ,△MCA ,△MAB 的面积分别为23,x ,y ,则4x +yxy的最小值为( )A .16B .18C .20D .27解析:选D 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . ∵AB ―→·AC ―→=23,∠BAC =π6,∴|AB ―→|·|AC ―→|cos π6=23,∴bc =4,∴S △ABC =12bc sin π6=14bc =1.∵△MBC ,△MCA ,△MAB 的面积分别为23,x ,y ,∴23+x +y =1,即x +y =13, ∴4x +yxy=1x +4y =3(x +y )⎝ ⎛⎭⎪⎫1x +4y=3⎝ ⎛⎭⎪⎫1+4+y x+4x y ≥3⎝⎛⎭⎪⎫5+2y x ·4x y =27, 当且仅当y =2x =29时取等号,故4x +yxy的最小值为27.12.(2017·安徽二校联考)当x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y ≤2,y -4≤x ,x -7y ≤2时,-2≤kx -y ≤2恒成立,则实数k 的取值范围是( )A .[-1,1]B .[-2,0]C.⎣⎢⎡⎦⎥⎤-15,35D.⎣⎢⎡⎦⎥⎤-15,0解析:选 D 作出不等式组表示的可行域如图中阴影部分所示,设z =kx -y ,由⎩⎪⎨⎪⎧x +2y =2,y -4=x得⎩⎪⎨⎪⎧ x =-2,y =2,即B (-2,2);由⎩⎪⎨⎪⎧x +2y =2,x -7y =2得⎩⎪⎨⎪⎧x =2,y =0,即C (2,0);由⎩⎪⎨⎪⎧y -4=x ,x -7y =2得⎩⎪⎨⎪⎧x =-5,y =-1,即A (-5,-1).要使不等式-2≤kx -y ≤2恒成立,则⎩⎪⎨⎪⎧-2≤-2k -2≤2,-2≤2k ≤2,-2≤-5k +1≤2,即⎩⎪⎨⎪⎧-2≤k ≤0,-1≤k ≤1,-15≤k ≤35,所以-15≤k ≤0.13.(2018届高三·池州摸底)已知a >b >1,且2log a b +3log b a =7,则a +1b 2-1的最小值为________.解析:令log a b =t ,由a >b >1得0<t <1,2log a b +3log b a =2t +3t =7,得t =12,即log a b =12,a=b 2,所以a +1b 2-1=a -1+1a -1+1≥2a -1a -1+1=3,当且仅当a =2时取等号.故a +1b 2-1的最小值为3. 答案:314.(2017·石家庄模拟)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤0,x -y ≤0,x 2+y 2≤4,则z =y -2x +3的最小值为________.解析:作出不等式组表示的可行域如图中阴影部分所示,因为目标函数z =y -2x +3表示区域内的点与点P (-3,2)连线的斜率.由图知当可行域内的点与点P 的连线与圆相切时斜率最小.设切线方程为y -2=k (x +3),即kx -y +3k +2=0,则有|3k +2|k 2+1=2,解得k =-125或k =0(舍去),所以z min =-125.答案:-12515.(2017·成都二诊)若关于x 的不等式ax 2-|x |+2a <0的解集为空集,则实数a 的取值范围为________.解析:ax 2-|x |+2a <0⇒a <|x |x 2+2,当x ≠0时,|x |x 2+2≤|x |2x 2×2=24(当且仅当x =±2时取等号),当x =0时,|x |x 2+2=0<24,因此要使关于x 的不等式ax 2-|x |+2a <0的解集为空集,只需a ≥24,即实数a 的取值范围为⎣⎢⎡⎭⎪⎫24,+∞. 答案:⎣⎢⎡⎭⎪⎫24,+∞ 16.(2018届高三·福州调研)不等式组⎩⎪⎨⎪⎧2x -y +1≥0,x -2y +2≤0,x +y -4≤0的解集记作D ,实数x ,y 满足如下两个条件:①∀(x ,y )∈D ,y ≥ax ;②∃(x ,y )∈D ,x -y ≤a . 则实数a 的取值范围为________.解析:由题意知,不等式组所表示的可行域D 如图中阴影部分(△ABC 及其内部)所示,由⎩⎪⎨⎪⎧x -2y +2=0,x +y -4=0,得⎩⎪⎨⎪⎧ x =2,y =2,所以点B 的坐标为(2,2).由⎩⎪⎨⎪⎧2x -y +1=0,x +y -4=0,得⎩⎪⎨⎪⎧x =1,y =3,所以点C 的坐标为(1,3).因为∀(x ,y )∈D ,y ≥ax , 由图可知,a ≤k OB ,所以a ≤1.由∃(x ,y )∈D ,x -y ≤a ,设z =x -y ,则a ≥z min .当目标函数z =x -y 过点C (1,3)时,z =x -y 取得最小值,此时z min =1-3=-2,所以a ≥-2. 综上可知,实数a 的取值范围为[-2,1]. 答案:[-2,1]课时跟踪检测(四) 函数的图象与性质[A 级——“12+4”保分小题提速练]1.函数f (x )=⎩⎪⎨⎪⎧ax +b ,x ≤0,log c ⎝ ⎛⎭⎪⎫x +19,x >0的图象如图所示,则a +b +c =( )A.43 B.73 C .4D.133解析:选D 将点(0,2)代入y =log c ⎝ ⎛⎭⎪⎫x +19,得2=log c 19,解得c =13.再将点(0,2)和(-1,0)分别代入y =ax +b ,解得a =2,b =2,∴a +b +c =133.2.(2018届高三·武汉调研)已知函数f (x )的部分图象如图所示,则f (x )的解析式可以是( )A .f (x )=2-x22xB .f (x )=cos xx 2C .f (x )=-cos 2xxD .f (x )=cos xx解析:选D A 中,当x →+∞时,f (x )→-∞,与题图不符,故不成立;B 为偶函数,与题图不符,故不成立;C 中,当x >0,x →0时,f (x )<0,与题图不符,故不成立.选D.3.下列函数中,既是奇函数又是减函数的是( ) A .f (x )=x 3,x ∈(-3,3) B .f (x )=tan x C .f (x )=x |x |D .f (x )=ln 2e e --x x解析:选D 选项A 、B 、C 、D 对应的函数都是奇函数,但选项A 、B 、C 对应的函数在其定义域内都不是减函数,故排除A 、B 、C ;对于选项D ,因为f (x )=ln 2e e --x x,所以f (x )=(e -x -e x)ln 2,由于函数g (x )=e -x与函数h (x )=-e x 都是减函数,又ln 2>0,所以函数f (x )=(e -x-e x)ln 2是减函数,故选D.4.函数f (x )= -x 2+9x +10-2x -的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10]解析:选D 要使原函数有意义,则⎩⎪⎨⎪⎧-x 2+9x +10≥0,x -1>0,x -1≠1,解得1<x ≤10且x ≠2,所以函数f (x )的定义域为(1,2)∪(2,10]. 5.(2017·全国卷Ⅰ)已知函数f (x )=ln x +ln(2-x ),则( ) A .f (x )在(0,2)单调递增 B .f (x )在(0,2)单调递减C .y =f (x )的图象关于直线x =1对称D .y =f (x )的图象关于点(1,0)对称解析:选 C 由题易知,f (x )=ln x +ln(2-x )的定义域为(0,2),f (x )=ln[x (2-x )]=ln[-(x-1)2+1],由复合函数的单调性知,函数f (x )=ln x +ln(2-x )在(0,1)单调递增,在(1,2)单调递减,所以排除A 、B ;又f ⎝ ⎛⎭⎪⎫12=ln 12+ln ⎝ ⎛⎭⎪⎫2-12=ln 34,f ⎝ ⎛⎭⎪⎫32=ln 32+ln ⎝⎛⎭⎪⎫2-32=ln 34,所以f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32=ln 34,所以排除D.故选C. 6.函数f (x )=x x2的图象大致是( )解析:选 A 由题意知,函数f (x )的定义域为(-∞,0)∪(0,+∞),f (-x )=-πx-x2=x x2=f (x ),∴f (x )为偶函数,排除C 、D ; 当x =1时,f (1)=cos π1=-1<0,排除B ,故选A. 7.(2018届高三·衡阳八中月考)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1) D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:选B 因为函数f (x +2)是偶函数,所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称.又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52,即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 8.(2017·甘肃会宁一中摸底)已知函数f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,则实数a的取值范围是( )A.⎣⎢⎡⎭⎪⎫-1,12B.⎝⎛⎭⎪⎫-1,12C .(-∞,-1]D.⎝ ⎛⎭⎪⎫0,12 解析:选A 法一:当x ≥1时,ln x ≥0,要使函数f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,只需⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥0,解得-1≤a <12.法二:取a =-1,则函数f (x )的值域为R ,所以a =-1满足题意,排除B 、D ;取a =-2,则函数f (x )的值域为(-∞,-1)∪[0,+∞),所以a =-2不满足题意,排除C ,故选A.9.(2018届高三·辽宁实验中学摸底)已知函数f (x )=(x -a )(x -b )(其中a >b ),若f (x )的图象如图所示,则函数g (x )=a x +b 的图象大致为( )解析:选A 由一元二次方程的解法易得(x -a )(x -b )=0的两根为a ,b ,根据函数零点与方程的根的关系,可得f (x )=(x -a )(x -b )的零点就是a ,b ,即函数f (x )的图象与x 轴交点的横坐标为a ,b .观察f (x )=(x -a )·(x -b )的图象,可得其与x 轴的两个交点分别在区间(-2,-1)与(0,1)上,又由a >b ,可得-2<b <-1,0<a <1.函数g (x )=a x+b ,由0<a <1可知其是减函数,又由-2<b <-1可知其图象与y 轴的交点在x 轴的下方,分析选项可得A 符合这两点,B 、C 、D 均不满足,故选A.10.函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在(-1,3)上的解集为( )A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1)解析:选C 作出函数f (x )的图象如图所示.当x ∈(-1,0)时,由xf (x )>0得x ∈(-1,0); 当x ∈(0,1)时,由xf (x )>0得x ∈∅; 当x ∈(1,3)时,由xf (x )>0得x ∈(1,3). 故x ∈(-1,0)∪(1,3).11.(2017·安徽六安一中测试)已知函数y =3-|x |3+|x |的定义域为[a ,b ](a ,b ∈Z),值域为[0,1],则满足条件的整数对(a ,b )共有( )A .6个B .7个C .8个D .9个解析:选B 函数y =3-|x |3+|x |=63+|x |-1,易知函数是偶函数,x >0时是减函数,所以函数的图象如图所示,根据图象可知,函数y =3-|x |3+|x |的定义域可能为[-3,0],[-3,1],[-3,2],[-3,3],[-2,3],[-1,3],[0,3],共7种,所以满足条件的整数对(a ,b )共有7个.12.已知函数f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( )A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值解析:选C 作出函数g (x )=1-x 2和函数|f (x )|=|2x-1|的图象如图①所示,得到函数h (x )的图象如图②所示,由图象得函数h (x )有最小值-1,无最大值.13.若函数f (x )=a -12x+1为奇函数,则a =________. 解析:由题意知f (0)=0,即a -12+1=0,解得a =12.答案:1214.已知f (x )=ax 3+bx +1(ab ≠0),若f (2 017)=k ,则f (-2 017)=________.解析:由f (2 017)=k 可得,a ×2 0173+b ×2 017+1=k ,∴2 0173a +2 017b =k -1,∴f (-2 017)=-a ×2 0173-b ×2 017+1=2-k .答案:2-k15.(2017·安徽二校联考)已知f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x,则f (log 49)=______.解析:因为log 49=log 23>0,又f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,所以f (log 49)=f (log 23)=-22log 3-=-221log 3-=-13.答案:-1316.已知y =f (x )是偶函数,当x >0时,f (x )=x +4x,且当x ∈[-3,-1]时,n ≤f (x )≤m 恒成立,则m -n 的最小值是________.解析:∵当x ∈[-3,-1]时,n ≤f (x )≤m 恒成立, ∴n ≤f (x )min 且m ≥f (x )max ,∴m -n 的最小值是f (x )max -f (x )min , 由偶函数的图象关于y 轴对称知,当x ∈[-3,-1]时,函数的最值与x ∈[1,3]时的最值相同,又当x >0时,f (x )=x +4x,在[1,2]上递减,在[2,3]上递增,且f (1)>f (3), ∴f (x )max -f (x )min =f (1)-f (2)=5-4=1. 故m -n 的最小值是1. 答案:1[B 级——中档小题强化练]1.函数f (x )=1+ln ⎝ ⎛⎭⎪⎫x 2+2e 的图象大致是( )解析:选D 因为f (0)=ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D. 2.(2018届高三·东北三校联考)已知函数f (x )=ln(|x |+1)+x 2+1,则使得f (x )>f (2x -1)成立的x 的取值范围是 ( )A.⎝ ⎛⎭⎪⎫13,1 B.⎝ ⎛⎭⎪⎫-∞,13∪(1,+∞) C .(1,+∞)D.⎝⎛⎭⎪⎫-∞,13 解析:选A 易知函数f (x )为偶函数,且当x ≥0时,f (x )=ln(x +1)+x 2+1 是增函数, ∴使得f (x )>f (2x -1)成立的x 满足|2x -1|<|x |, 解得13<x <1.3.(2017·潍坊一模)设函数f (x )为偶函数,且∀x ∈R ,f ⎝ ⎛⎭⎪⎫x -32=f ⎝ ⎛⎭⎪⎫x +12,当x ∈[2,3]时,f (x )=x ,则当x ∈[-2,0]时,f (x )=( )A .|x +4|B .|2-x |C .2+|x +1|D .3-|x +1|解析:选D 因为f ⎝ ⎛⎭⎪⎫x -32=f ⎝ ⎛⎭⎪⎫x +12, 所以f (x )=f (x +2),得f (x )的周期为2. 因为当x ∈[2,3]时,f (x )=x , 所以当x ∈[0,1]时,x +2∈[2,3],f (x )=f (x +2)=x +2.又f (x )为偶函数,所以当x ∈[-1,0]时,-x ∈[0,1],f (x )=f (-x )=-x +2,当x ∈[-2,-1]时,x +2∈[0,1],f (x )=f (x +2)=x +4,所以当x ∈[-2,0]时,f (x )=3-|x +1|.4.(2017·安庆二模)如图,已知l 1⊥l 2,圆心在l 1上、半径为1 m 的圆O 沿l 1以1 m/s 的速度匀速竖直向上移动,且在t =0时,圆O 与l 2相切于点A ,圆O 被直线l 2所截得到的两段圆弧中,位于l 2上方的圆弧的长记为x ,令y =cos x ,则y 与时间t (0≤t ≤1,单位:s)的函数y =f (t )的图象大致为( )解析:选B 法一:如图所示,cosx2=设∠MON =α,由弧长公式知x =α,在Rt △AOM 中,|AO |=1-t ,|OA ||OM |=1-t ,∴y =cos x =2cos 2x 2-1=2(t -1)2-1(0≤t ≤1).故其对应的大致图象应为B.法二:由题意可知,当t =1时,圆O 在直线l 2上方的部分为半圆,所对应的弧长为π×1=π,所以cos π=-1,排除A 、D ;当t =12时,如图所示,易知∠BOC =2π3,所以cos 2π3=-12<0,排除C ,故选B.5.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=________.解析:因为f (x )是奇函数,且当0≤x ≤1时,f (x )=2x (1-x ),所以当-1≤x <0时,0<-x ≤1,f (-x )=-2x (1+x )=-f (x ),即f (x )=2x (1+x ).又f (x )的周期为2,所以f ⎝ ⎛⎭⎪⎫-52=f ⎝⎛⎭⎪⎫-2-12=f ⎝ ⎛⎭⎪⎫-12=2×⎝ ⎛⎭⎪⎫-12×12=-12.答案:-126.(2017·张掖模拟)已知定义在R 上的函数f (x ),对任意的实数x ,均有f (x +3)≤f (x )+3,f (x +2)≥f (x )+2且f (1)=2,则f (2 017)的值为________.解析:∵f (x +3)≤f (x )+3,f (x +2)≥f (x )+2, ∴f (x +1)+2≤f (x +3)≤f (x )+3, ∴f (x +1)≤f (x )+1,又f (x )+3+f (x +2)≥f (x +3)+f (x )+2, 即f (x +2)+1≥f (x +3),∴f (x +1)+1≥f (x +2)≥f (x )+2, ∴f (x +1)≥f (x )+1,∴f (x +1)=f (x )+1,利用叠加法,得f (2 017)=2 018.答案:2 018[C 级——压轴小题突破练]1.设m ∈Z ,对于给定的实数x ,若x ∈⎝ ⎛⎦⎥⎤m -12,m +12,则我们就把整数m 叫做距实数x 最近的整数,并把它记为{x },现有关于函数f (x )=x -{x }的四个命题:①f ⎝ ⎛⎭⎪⎫-12=-12;②函数f (x )的值域是⎝ ⎛⎦⎥⎤-12,12;③函数f (x )是奇函数;④函数f (x )是周期函数,其最小正周期为1. 其中,真命题的个数为( ) A .1 B .2 C .3D .4解析:选B ①∵-1-12<-12≤-1+12,∴⎩⎨⎧⎭⎬⎫-12=-1, ∴f ⎝ ⎛⎭⎪⎫-12=-12-⎩⎨⎧⎭⎬⎫-12=-12+1=12, 所以①是假命题;②令x =m +a ,m ∈Z ,a ∈⎝ ⎛⎦⎥⎤-12,12,则f (x )=x -{x }=a ,∴f (x )∈⎝ ⎛⎦⎥⎤-12,12,所以②是真命题; ③∵f ⎝ ⎛⎭⎪⎫12=12-0=12,f ⎝ ⎛⎭⎪⎫-12=12≠-f ⎝ ⎛⎭⎪⎫12, ∴函数f (x )不是奇函数,故③是假命题; ④∵f (x +1)=(x +1)-{x +1}=x -{x }=f (x ), ∴函数f (x )的最小正周期为1,故④是真命题. 综上,真命题的个数为2,故选B.2.如图所示,在△ABC 中,∠B =90°,AB =6 cm ,BC =8 cm ,点P 以 1 cm/s 的速度沿A →B →C 的路径向C 移动,点Q 以2 cm/s 的速度沿B →C →A 的路径向A 移动,当点Q 到达A 点时,P ,Q 两点同时停止移动.记△PCQ 的面积关于移动时间t 的函数为S =f (t ),则f (t )的图象大致为( )解析:选A 当0≤t ≤4时,点P 在AB 上,点Q 在BC 上,此时PB =6-t ,CQ =8-2t ,则S =f (t )=12QC ×BP =12(8-2t )×(6-t )=t 2-10t +24; 当4<t ≤6时,点P 在AB 上,点Q 在CA 上,此时AP =t ,P 到AC 的距离为45t ,CQ =2t -8,则S=f (t )=12QC ×45t =12(2t -8)×45t =45(t 2-4t );当6<t ≤9时,点P 在BC 上,点Q 在CA 上,此时CP =14-t ,QC =2t -8,则S =f (t )=12QC ×CP sin∠ACB =12(2t -8)(14-t )×35=35(t -4)(14-t ).综上,函数f (t )对应的图象是三段抛物线,依据开口方向得图象是A. 3.(2017·河北邯郸一中月考)已知函数f 1(x )=|x -1|,f 2(x )=13x +1,g (x )=f 1x +f 2x2+|f 1x-f 2x2,若a ,b ∈[-1,5],且当x 1,x 2∈[a ,b ]时,g x 1-g x 2x 1-x 2>0恒成立,则b-a 的最大值为________.解析:当f 1(x )≥f 2(x )时,g (x )=f 1x +f 2x2+f 1x -f 2x2=f 1(x );当f 1(x )<f 2(x )时,g (x )=f 1x +f 2x2+f 2x -f 1x2=f 2(x ).综上,g (x )=⎩⎪⎨⎪⎧f 1x ,f 1xf 2x ,f 2x ,f 1x <f 2x ,即g (x )是f 1(x ),f 2(x )两者中的较大者.在同一平面直角坐标系中分别画出函数f 1(x )与f 2(x )的图象,如图所示,则g (x )的图象如图中实线部分所示.由图可知g (x )在[0,+∞)上单调递增,又g (x )在[a ,b ]上单调递增,故a ,b ∈[0,5],所以b -a 的最大值为5.答案:54.(2017·湘中名校联考)定义在R 上的函数f (x )在(-∞,-2)上单调递增,且f (x -2)是偶函数,若对一切实数x ,不等式f (2sin x -2)>f (sin x -1-m )恒成立,则实数m 的取值范围为________.解析:因为f (x -2)是偶函数, 所以函数f (x )的图象关于x =-2对称. 又f (x )在(-∞,-2)上为增函数, 则f (x )在(-2,+∞)上为减函数,所以不等式f (2sin x -2)>f (sin x -1-m )恒成立等价于|2sin x -2+2|<|sin x -1-m +2|, 即|2sin x |<|sin x +1-m |,两边同时平方, 得3sin 2x -2(1-m )sin x -(1-m )2<0, 即(3sin x +1-m )(sin x -1+m )<0,即⎩⎪⎨⎪⎧3sin x +1-m >0,sin x -1+m <0或⎩⎪⎨⎪⎧3sin x +1-m <0,sin x -1+m >0,即⎩⎪⎨⎪⎧3sin x >m -1,sin x <1-m 或⎩⎪⎨⎪⎧3sin x <m -1,sin x >1-m ,即⎩⎪⎨⎪⎧m -1<-3,1-m >1或⎩⎪⎨⎪⎧m -1>3,1-m <-1,即m <-2或m >4,故m 的取值范围为(-∞,-2)∪(4,+∞). 答案:(-∞,-2)∪(4,+∞)课时跟踪检测(五) 基本初等函数、函数与方程[A 级——“12+4”保分小题提速练]1.若f (x )是幂函数,且满足f f=2,则f ⎝ ⎛⎭⎪⎫19=( ) A.12 B.14 C .2D .4解析:选B 设f (x )=x α,由ff=9α3α=3α=2,得α=log 32,∴f ⎝ ⎛⎭⎪⎫19=⎝ ⎛⎭⎪⎫19log 32=14. 2.(2017·云南模拟)设a =60.7,b =log 70.6,c =log 0.60.7,则a ,b ,c 的大小关系为( ) A .c >b >a B .b >c >a C .c >a >bD .a >c >b解析:选D 因为a =60.7>1,b =log 70.6<0,0<c =log 0.60.7<1,所以a >c >b . 3.函数f (x )=|log 2x |+x -2的零点个数为( ) A .1 B .2 C .3D .4解析:选B 函数f (x )=|log 2x |+x -2的零点个数,就是方程|log 2x |+x -2=0的根的个数.令h (x )=|log 2x |,g (x )=2-x ,画出两函数的图象,如图. 由图象得h (x )与g (x )有2个交点,∴方程|log 2x |+x -2=0的解的个数为2.4.(2017·河南适应性测试)函数y =a x-a (a >0,a ≠1)的图象可能是( )解析:选C 由函数y =a x-a (a >0,a ≠1)的图象过点(1,0),得选项A 、B 、D 一定不可能;C 中0<a <1,有可能,故选C.5.已知奇函数y =⎩⎪⎨⎪⎧fx ,x >0,g x ,x <0.若f (x )=a x(a >0,a ≠1)对应的图象如图所示,则g (x )=( )A.⎝ ⎛⎭⎪⎫12-xB .-⎝ ⎛⎭⎪⎫12xC .2-xD .-2x解析:选D 由图象可知,当x >0时,函数f (x )单调递减,则0<a <1,∵f (1)=12,∴a =12,即函数f (x )=⎝ ⎛⎭⎪⎫12x ,当x <0时,-x >0,则f (-x )=⎝ ⎛⎭⎪⎫12-x =-g (x ),即g (x )=-⎝ ⎛⎭⎪⎫12-x =-2x,故g (x )=-2x,x <0,选D.6.已知f (x )=a x和g (x )=b x是指数函数,则“f (2)>g (2)”是“a >b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C 由题可得,a >0,b >0且a ≠1,b ≠1. 充分性:f (2)=a 2,g (2)=b 2, 由f (2)>g (2)知,a 2>b 2,再结合y =x 2在(0,+∞)上单调递增, 可知a >b ,故充分性成立; 必要性:由题可知a >b >0,构造函数h (x )=f x g x =a x b x =⎝ ⎛⎭⎪⎫a b x ,显然ab>1,所以h (x )单调递增,故h (2)=a 2b2>h (0)=1,所以a 2>b 2,故必要性成立.7.函数f (x )=e x+x -2的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)解析:选C 法一:∵f (0)=e 0+0-2=-1<0,f (1)=e 1+1-2=e -1>0,∴f (0)f (1)<0,故函数f (x )=e x+x -2的零点所在的一个区间是(0,1),选C.法二:函数f (x )=e x+x -2的零点,即函数y =e x的图象与y =-x+2的图象的交点的横坐标,作出函数y =e x与直线y =-x +2的图象如图所示,由图可知选C.8.已知函数f (x )=ln x +3x -8的零点x 0∈[a ,b ],且b -a =1,a ,b ∈N *,则a +b =( ) A .0 B .2 C .5D .7解析:选 C ∵f (2)=ln 2+6-8=ln 2-2<0,f (3)=ln 3+9-8=ln 3+1>0,且函数f (x )=ln x +3x -8在(0,+∞)上为单调递增函数,∴x 0∈[2,3],即a =2,b =3,∴a +b =5.9.(2018届高三·湖南四校联考)设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,g x ,x <0,若f (x )为奇函数,则g ⎝ ⎛⎭⎪⎫-14的值为( )A .-14B.14 C .-2D .2解析:选D 法一:当x >0时,f (x )=log 2x , ∵f (x )为奇函数,∴当x <0时,f (x )=-log 2(-x ), 即g (x )=-log 2(-x ), ∴g ⎝ ⎛⎭⎪⎫-14=-log 214=2. 法二:g ⎝ ⎛⎭⎪⎫-14=f ⎝ ⎛⎭⎪⎫-14=-f ⎝ ⎛⎭⎪⎫14=-log 214=-log 22-2=2.10.(2017·杭州二模)已知直线x =m (m >1)与函数f (x )=log a x (a >0且a ≠1),g (x )=log b x (b >0且b ≠1)的图象及x 轴分别交于A ,B ,C 三点,若AB ―→=2BC ―→,则( )A .b =a 2B .a =b 2C .b =a 3D .a =b 3。

2018届高三理科数学二轮复习跟踪强化训练:24 Word版含解析

2018届高三理科数学二轮复习跟踪强化训练:24 Word版含解析

跟踪强化训练(二十四)一、选择题1.(2017·广西三市第一次联合调研)若抛物线y 2=2px (p >0)上的点A (x 0,2)到其焦点的距离是A 到y 轴距离的3倍,则p 等于( )A.12 B .1 C.32 D .2[解析] 由题意3x 0=x 0+p 2,x 0=p 4,则p 22=2,∵p >0,∴p =2.故选D.[答案] D2.(2017·深圳一模)过点(3,2)且与椭圆3x 2+8y 2=24有相同焦点的椭圆方程为( )A.x 25+y 210=1 B.x 210+y 215=1 C.x 215+y 210=1D.x 210+y 25=1[解析] 椭圆3x 2+8y 2=24的焦点为(±5,0),可得c =5,设所求椭圆的方程为x 2a 2+y 2b 2=1,可得9a 2+4b 2=1,又a 2-b 2=5,得b 2=10,a 2=15,所以所求的椭圆方程为x 215+y 210=1.故选C.[答案] C3.(2017·福州模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右顶点与抛物线y 2=8x 的焦点重合,且其离心率e =32,则该双曲线的方程为( )A.x 24-y 25=1B.x 25-y 24=1C.y 24-x 25=1 D.y 25-x 24=1[解析] 易知抛物线y 2=8x 的焦点为(2,0),所以双曲线的右顶点是(2,0),所以a =2.又双曲线的离心率e =32,所以c =3,b 2=c 2-a 2=5,所以双曲线的方程为x 24-y 25=1,选A.[答案] A4.(2017·武汉调研)椭圆C :x 24+y 23=1的左、右顶点分别为A 1、A 2,点P 在C 上且直线P A 2斜率的取值范围是[-2,-1],那么直线P A 1斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,34B.⎣⎢⎡⎦⎥⎤38,34 C.⎣⎢⎡⎦⎥⎤12,1 D.⎣⎢⎡⎦⎥⎤34,1 [解析] 椭圆的左顶点为A 1(-2,0)、右顶点为A 2(2,0),设点P (x 0,y 0),则x 204+y 203=1,得y 20x 20-4=-34.而k P A 2=y 0x 0-2,k P A 1=y 0x 0+2,所以k P A 2·k P A 1=y 20x 20-4=-34.又k P A 2∈[-2,-1],所以k P A 1∈⎣⎢⎡⎦⎥⎤38,34.故选B.[答案] B5.(2017·合肥质检)已知双曲线y 24-x 2=1的两条渐近线分别与抛物线y 2=2px (p >0)的准线交于A ,B 两点.O 为坐标原点.若△OAB 的面积为1,则p 的值为( )A .1 B. 2 C .2 2 D .4[解析] 双曲线的两条渐近线方程为y =±2x ,抛物线的准线方程为x =-p2,故A ,B 两点的坐标为⎝ ⎛⎭⎪⎫-p 2,±p ,|AB |=2p ,所以S △OAB=12·2p ·p 2=p 22=1,解得p =2,故选B.[答案] B6.已知椭圆x 24+y 2b 2=1(0<b <2),左,右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( )A .1 B. 2 C.32 D. 3[解析] 由椭圆的方程,可知长半轴长a =2;由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中,通径最短,即2b 2a =3,可求得b 2=3,即b =3,故选D.[答案] D7.(2017·长沙一模)A 是抛物线y 2=2px (p >0)上一点,F 是抛物线的焦点,O 为坐标原点,当|AF |=4时,∠OF A =120°,则抛物线的准线方程是( )A .x =-1B .y =-1C .x =-2D .y =-2[解析] 过A 向准线作垂线,设垂足为B ,准线与x 轴的交点为D .因为∠OF A =120°,所以△ABF 为等边三角形,∠DBF =30°,从而p =|DF |=2,因此抛物线的准线方程为x =-1.选A.[答案] A8.(2017·广州综合测试)已知F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆C 上存在点P 使∠F 1PF 2为钝角,则椭圆C 的离心率的取值范围是( )A.⎝ ⎛⎭⎪⎫22,1B.⎝ ⎛⎭⎪⎫12,1 C.⎝⎛⎭⎪⎫0,22D.⎝ ⎛⎭⎪⎫0,12 [解析] 解法一:设P (x 0,y 0),由题易知|x 0|<a ,因为∠F 1PF 2为钝角,所以PF 1→·PF 2→<0有解,即c 2>x 20+y 20有解,即c 2>(x 20+y 20)min ,又y 20=b 2-b 2a 2x 20,x 20<a 2,故x 20+y 20=b 2+c 2a2x 20∈[b 2,a 2),所以(x 20+y 20)min=b 2,故c 2>b 2,又b 2=a 2-c 2,所以e 2=c 2a 2>12,解得e >22,又0<e <1,故椭圆C 的离心率的取值范围是⎝ ⎛⎭⎪⎫22,1,选A.解法二:椭圆上存在点P 使∠F 1PF 2为钝角⇔以原点O 为圆点,以c 为半径的圆与椭圆有四个不同的交点⇔b <c ,如图,由b <c ,得a 2-c 2<c 2,即a 2<2c 2,解得e =c a >22,又0<e <1,故椭圆C 的离心率的取值范围是⎝ ⎛⎭⎪⎫22,1,选A. [答案] A9.(2017·杭州第一次质检)设双曲线x 24-y 23=1的左、右焦点分别为F 1,F 2,过F 1的直线l 交双曲线左支于A ,B 两点,则|BF 2|+|AF 2|的最小值为( )A.192 B .11 C .12 D .16[解析] 由双曲线定义可得|AF 2|-|AF 1|=2a =4,|BF 2|-|BF 1|=2a =4,两式相加可得|AF 2|+|BF 2|=|AB |+8,由于AB 为经过双曲线的左焦点与左支相交的弦,而|AB |min =2b 2a =3,故|AF 2|+|BF 2|=|AB |+8≥3+8=11.故选B.[答案] B10.(2017·武汉市武昌区高三三调)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别为l 1,l 2,经过右焦点F 垂直于l 1的直线分别交l 1,l 2于A ,B 两点.若|OA |,|AB |,|OB |成等差数列,且AF →与FB →反向,则该双曲线的离心率为( )A.52B. 3C. 5D.52[解析] 设实轴长为2a ,虚轴长为2b ,令∠AOF =α,则由题意知tan α=ba ,在△AOB 中,∠AOB =180°-2α,tan ∠AOB =-tan2α=ABOA ,∵|OA |,|AB |,|OB |成等差数列,∴设|OA |=m -d ,|AB |=m ,|OB |=m +d ,∵OA ⊥BF ,∴(m -d )2+m 2=(m +d )2,整理,得d =14m ,∴-tan2α=-2tan α1-tan 2α=AB OA =m 34m =43,解得b a =2或b a =-12(舍去),∴b =2a ,c =4a 2+a 2=5a ,∴e =ca = 5.故选C.[答案] C11.(2017·济宁模拟)如图,椭圆的中心在坐标原点O ,顶点分别是A 1,A 2,B 1,B 2,焦点分别为F 1,F 2,延长B 1F 2与A 2B 2交于P 点,若∠B 1P A 2为钝角,则此椭圆的离心率的取值范围为()A.⎝ ⎛⎭⎪⎫0,5+14 B.⎝ ⎛⎭⎪⎫5+14,1 C.⎝ ⎛⎭⎪⎫0,5-12 D.⎝ ⎛⎭⎪⎫5-12,1 [解析] 设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),∠B 1P A 2为钝角可转化为B 2A 2→,F 2B 1→所夹的角为钝角,则(a ,-b )·(-c ,-b )<0,得b 2<ac ,即a 2-c 2<ac ,故⎝ ⎛⎭⎪⎫c a 2+c a -1>0,即e 2+e -1>0,e >5-12或e <-5-12,又0<e <1,∴5-12<e <1,故选D.[答案] D12.(2017·兰州模拟)已知F 1,F 2为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,以F 1F 2为直径的圆与双曲线右支的一个交点为P ,PF 1与双曲线相交于点Q ,且|PQ |=2|QF 1|,则该双曲线的离心率为( )A. 5 B .2 C. 3 D.52[解析] 如图,连接PF 2,QF 2.由|PQ |=2|QF 1|,可设|QF 1|=m ,则|PQ |=2m ,|PF 1|=3m ;由|PF 1|-|PF 2|=2a ,得|PF 2|=|PF 1|-2a =3m-2a ;由|QF 2|-|QF 1|=2a ,得|QF 2|=|QF 1|+2a =m +2a .∵点P 在以F 1F 2为直径的圆上,∴PF 1⊥PF 2,∴|PF 1|2+|PF 2|2=|F 1F 2|2.由|PQ |2+|PF 2|2=|QF 2|2,得(2m )2+(3m -2a )2=(m +2a )2,解得m =43a ,∴|PF 1|=3m =4a ,|PF 2|=3m -2a =2a .∵|PF 1|2+|PF 2|2=|F 1F 2|2,|F 1F 2|=2c ,∴(4a )2+(2a )2=(2c )2,化简得c 2=5a 2,∴双曲线的离心率e =c 2a 2=5,故选A.[答案] A 二、填空题13.(2017·洛阳统考)已知F 1、F 2分别是双曲线3x 2-y 2=3a 2(a >0)的左、右焦点,P 是抛物线y 2=8ax 与双曲线的一个交点,若|PF 1|+|PF 2|=12,则抛物线的准线方程为__________________.[解析] 将双曲线方程化为标准方程得x 2a 2-y 23a 2=1,∴其焦点坐标为(±2a,0),(2a,0)与抛物线的焦点重合,联立抛物线与双曲线方程得⎩⎨⎧x 2a 2-y 23a2=1,y 2=8ax⇒x =3a ,而由⎩⎪⎨⎪⎧|PF 1|+|PF 2|=12,|PF 1|-|PF 2|=2a ⇒|PF 2|=6-a ,∴|PF 2|=3a +2a =6-a ,得a =1,∴抛物线的方程为y 2=8x ,其准线方程为x =-2.[答案] x =-214.(2017·海口模拟)椭圆x 2a 2+y 2b 2=1(a >b >0)的焦距为23,左、右焦点分别为F 1,F 2,点P 是椭圆上一点,∠F 1PF 2=60°,△PF 1F 2的面积为23,则椭圆的标准方程为__________________.[解析] 由题意,得c =3, ∴a 2-b 2=c 2=3.∵∠F 1PF 2=60°, △PF 1F 2的面积为23,∴12|PF 1|·|PF 2|·sin ∠F 1PF 2=34|PF 1|·|PF 2|=23, ∴|PF 1|·|PF 2|=8.又∵|PF 1|+|PF 2|=2a ,由余弦定理得4c 2=12=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos60°=(|PF 1|+|PF 2|)2-3|PF 1|·|PF 2|=4a 2-3×8,解得a 2=9,故b 2=6,因此椭圆的方程为x 29+y26=1.[答案] x 29+y 26=115.(2017·全国卷Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为________.[解析] ∵AM =AN =b ,∠MAN =60°,∴△MAN 是等边三角形, ∴在△MAN 中,MN 上的高h =32b .∵点A (a,0)到渐近线bx -ay =0的距离d =ab a 2+b 2=ab c ,∴abc =32b ,∴e =c a =23=233.[答案]23 316.(2017·西安四校联考)已知双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,过F1的直线分别交双曲线的两条渐近线于P、Q两点,若P恰为线段F1Q的中点,且QF1⊥QF2,则此双曲线的渐近线方程为____________.[解析]根据题意,P是线段F1Q的中点,QF1⊥QF2,且O是线段F1F2的中点,故OP⊥F1Q,而两条渐近线关于y轴对称,故∠POF1=∠QOF2,又∠POF1=∠POQ,所以∠QOF2=60°,渐近线的斜率为±3,故渐近线方程为y=±3x.[答案]y=±3x。

2018届高三理科数学二轮复习跟踪强化训练12 含解析 精品

2018届高三理科数学二轮复习跟踪强化训练12 含解析 精品

跟踪强化训练(十二)1.已知函数f (x )=1x +a ln x (a ≠0,a ∈R ). (1)若a =1,求函数f (x )的极值和单调区间;(2)若在区间(0,e]上至少存在一点x 0,使得f (x 0)<0成立,求实数a 的取值范围.[解] (1)当a =1时, f ′(x )=-1x 2+1x =x -1x 2, 令f ′(x )=0,得x =1,又f (x )的定义域为(0,+∞),由f ′(x )<0得0<x <1,由f ′(x )>0得x >1,所以当x =1时,f (x )有极小值1,f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)f ′(x )=-1x 2+a x =ax -1x 2,且a ≠0,令f ′(x )=0,得到x =1a ,若在区间(0,e]上存在一点x 0,使得f (x 0)<0成立,即f (x )在区间(0,e]上的最小值小于0.当1a <0,即a <0时,f ′(x )<0在(0,e]上恒成立,即f (x )在区间(0,e]上单调递减,故f (x )在区间(0,e]上的最小值为f (e)=1e +a lne =1e +a ,由1e +a <0,得a <-1e ,即a ∈⎝⎛⎭⎪⎫-∞,-1e .当1a >0,即a >0时,①若e ≤1a ,则f ′(x )≤0对x ∈(0,e]成立,所以f (x )在区间(0,e]上单调递减,则f (x )在区间(0,e]上的最小值为f (e)=1e +a lne =1e +a >0, 显然f (x )在区间(0,e]上的最小值小于0不成立. ②若0<1a <e ,即a >1e 时,则所以f (x )在区间(0,e]上的最小值为f ⎝ ⎛⎭⎪⎫1a =a +a ln a , 由f ⎝ ⎛⎭⎪⎫1a =a +a ln 1a =a (1-ln a )<0,得1-ln a <0,解得a >e ,即a ∈(e ,+∞).综上可知,a ∈⎝ ⎛⎭⎪⎫-∞,-1e ∪(e ,+∞).2.(2017·北京西城区模拟)已知函数f (x )=2ln x -x 2+ax (a ∈R ). (1)当a =2时,求f (x )的图象在x =1处的切线方程;(2)若函数g (x )=f (x )-ax +m 在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点,求实数m的取值范围.[解] (1)当a =2时,f (x )=2ln x -x 2+2x ,f ′(x )=2x -2x +2,切点坐标为(1,1),切线的斜率k =f ′(1)=2,则切线方程为y -1=2(x -1),即y =2x -1. (2)g (x )=2ln x -x 2+m ,则g ′(x )=2x -2x =-2(x +1)(x -1)x.因为x ∈⎣⎢⎡⎦⎥⎤1e ,e ,所以当g ′(x )=0时,x =1. 当1e <x <1时,g ′(x )>0;当1<x <e 时,g ′(x )<0.所以g (x )在⎣⎢⎡⎦⎥⎤1e ,1上单调递增,在[1,e]上单调递减. 故g (x )在x =1处取得极大值g (1)=m -1.又g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2,g (e)=m +2-e 2, g (e)-g ⎝ ⎛⎭⎪⎫1e =4-e 2+1e 2<0, 则g (e)<g ⎝ ⎛⎭⎪⎫1e ,所以g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最小值是g (e). g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点的条件是⎩⎨⎧g (1)=m -1>0g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2≤0,解得1<m ≤2+1e 2,所以实数m 的取值范围是⎝ ⎛⎦⎥⎤1,2+1e 2.3.已知函数f (x )=a ln x +1(a >0). (1)当x >0时,求证:f (x )-1≥a ⎝ ⎛⎭⎪⎫1-1x ;(2)在区间(1,e)上f (x )>x 恒成立,求实数a 的取值范围. [解] (1)证明:设φ(x )=f (x )-1-a ⎝ ⎛⎭⎪⎫1-1x =a ln x -a ⎝ ⎛⎭⎪⎫1-1x (x >0),则φ′(x )=a x -ax 2.令φ′(x )=0,则x =1,当0<x <1时,φ′(x )<0,所以φ(x )在(0,1)上单调递减;当x >1时,φ′(x )>0,所以φ(x )在(1,+∞)上单调递增,故φ(x )在x =1处取到极小值也是最小值,故φ(x )≥φ(1)=0,即f (x )-1≥a ⎝⎛⎭⎪⎫1-1x .(2)由f (x )>x ,x ∈(1,e),得a ln x +1>x ,即a >x -1ln x . 令g (x )=x -1ln x (1<x <e),则g ′(x )=ln x -x -1x(ln x )2.令h (x )=ln x -x -1x (1<x <e),则h ′(x )=1x -1x 2>0, 故h (x )在区间(1,e)上单调递增,所以h (x )>h (1)=0.因为h (x )>0,所以g ′(x )>0,即g (x )在区间(1,e)上单调递增, 则g (x )<g (e)=e -1,即x -1ln x <e -1, 所以a 的取值范围为[e -1,+∞). 4.(2017·陕西西安三模)已知函数f (x )=e xx . (1)求曲线y =f (x )在点P ⎝ ⎛⎭⎪⎫2,e 22处的切线方程;(2)证明:f (x )>2(x -ln x ).[解] (1)因为f (x )=e xx ,所以f ′(x )=e x·x -e xx 2=e x(x -1)x 2, f ′(2)=e 24,又切点为⎝ ⎛⎭⎪⎫2,e 22,所以切线方程为y -e 22=e 24(x -2),即e 2x -4y =0.(2)设函数g (x )=f (x )-2(x -ln x )=e xx -2x +2ln x ,x ∈(0,+∞),则g ′(x )=e x (x -1)x 2-2+2x =(e x-2x )(x -1)x 2,x ∈(0,+∞). 设h (x )=e x -2x ,x ∈(0,+∞),则h ′(x )=e x -2,令h ′(x )=0,则x =ln2.当x ∈(0,ln2)时,h ′(x )<0;当x ∈(ln2,+∞)时,h ′(x )>0. 所以h (x )min =h (ln2)=2-2ln2>0,故h (x )=e x -2x >0. 令g ′(x )=(e x -2x )(x -1)x 2=0,则x =1. 当x ∈(0,1)时,g ′(x )<0;当x ∈(1,+∞)时,g ′(x )>0. 所以g (x )min =g (1)=e -2>0,故g (x )=f (x )-2(x -ln x )>0,从而有f (x )>2(x -ln x ).。

2018届高三理科数学二轮复习跟踪强化训练:13Word版含解析

2018届高三理科数学二轮复习跟踪强化训练:13Word版含解析

若 f 58π= 2,f 181π=0,且 f(x)的最小正周期大于 2π,则 (
)
A .ω=23,φ=1π2
B.
ω=
23,
φ=-
11π 12
C.
1 ω=3,
φ=-
11π 24
D.ω=
1 3,φ=
7π 24
[ 解析 ]
∵f 58π=2,f 181π=0,f(x)的最小正周期大于
T 2π,∴4=
181π-58π=34π,得 T= 3π,则 ω= 2Tπ=23,
4
4
44
A .- 3或 0 B.3或 0 C.- 3 D.3
[ 解析 ] 把 2sinθ=1+cosθ两边平方,整理得,5cos2θ+2cosθ-3
=0,分解因式得 (5cosθ-3)(cosθ+1)=0,∴cosθ=- 1 或35.当 cosθ=
-1 时,θ=2kπ+ π,k∈Z ,∴tanθ=0;当 cosθ=35时,sinθ=45,∴tanθ
= ________.
[ 解析 ] 设点 P(a,2a)(a≠0)为角 θ终边上任意一点,根据三角函
y 数的定义有 tanθ=x=2,再根据诱导公式,得
sin 32π+θ+cos π-θ -cosθ- cosθ sin π2-θ-sin π- θ = cosθ-sinθ
-2 = 1-tanθ=2.
[ 答案 ] 2
B
错误;因为
f -712π=
sin

-712π+π3 =-
1 2≠
±1,所以
C
错误;由- π2+2kπ≤2x+π3≤π2+
2kπ,k∈Z 得- 512π+kπ≤x≤1π2+ kπ,k∈Z ,即函数 f(x)的单调递增区

2018届高三理科数学二轮复习跟踪强化训练9 含解析 精品

2018届高三理科数学二轮复习跟踪强化训练9 含解析 精品

跟踪强化训练(九)一、选择题1.(2017·湖南怀化调研)已知函数f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2的零点为x 0,则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)[解析] ∵f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2在(0,+∞)上是增函数,又f (1)=ln1-⎝ ⎛⎭⎪⎫12-1=ln1-2<0,f (2)=ln2-⎝ ⎛⎭⎪⎫120<0,f (3)=ln3-⎝ ⎛⎭⎪⎫121>0,∴x 0∈(2,3),故选C. [答案] C2.(2017·孝感一模)若函数f (x )=(m -2)x 2+mx +(2m +1)的两个零点分别在区间(-1,0)和区间(1,2)内,则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,14B.⎝ ⎛⎭⎪⎫-14,12 C.⎝ ⎛⎭⎪⎫14,12 D.⎣⎢⎡⎦⎥⎤-14,12 [解析]依题意并结合函数f (x )的图象可知,⎩⎪⎨⎪⎧m ≠2,f (-1)·f (0)<0,f (1)·f (2)<0,即⎩⎪⎨⎪⎧m ≠2,[m -2-m +(2m +1)](2m +1)<0,[m -2+m +(2m +1)][4(m -2)+2m +(2m +1)]<0,解得14<m <12.[答案] C3.已知函数f (x )=-2x 2+1,函数g (x )=⎩⎪⎨⎪⎧log 2(x +1),x >0,2x ,x ≤0,则函数y =|f (x )|-g (x )的零点的个数为( )A .3B .4C .5D .6[解析] 函数y =|f (x )|-g (x )的零点的个数,即|f (x )|-g (x )=0的根的个数,可得|f (x )|=g (x ),画出函数|f (x )|,g (x )的图象如图所示,观察函数的图象,则它们的交点为5个,即函数的零点个数为5,选C.[答案] C4.函数f (x )=2sinπx -x +1的零点个数为( ) A .4 B .5 C .6 D .7[解析] 令2sinπx -x +1=0,得2sinπx =x -1,令h (x )=2sinπx ,g (x )=x -1,则f (x )=2sinπx -x +1的零点个数问题就转化为函数h (x )与g (x )的图象的交点个数问题.h (x )=2sinπx 的最小正周期为T =2ππ=2,画出两个函数的图象,如图所示,因为h (1)=g (1),h ⎝ ⎛⎭⎪⎫52>g ⎝ ⎛⎭⎪⎫52,g (4)=3>2,g (-1)=-2,所以两个函数图象的交点共5个,所以f (x )=2sinπx -x +1的零点个数为5.[答案] B5.(2016·全国卷Ⅲ)已知a =2 43 ,b =425,c =25 13 ,则( ) A .b <a <c B .a <b <c C .b <c <a D .c <a <b[解析] 因为a =2 43 =16 13 ,b =425=16 15 ,c =25 13 ,且幂函数y =x 13在R 上单调递增,∴c >a ,指数函数y =16x 在R 上单调递增,∴a >b ,所以b <a <c .[答案] A6.(2017·河北石家庄一模)已知函数f (x )=e xx -kx (e 为自然对数的底数)有且只有一个零点,则实数k 的取值范围是( )A .(0,2) B.⎝ ⎛⎭⎪⎫0,e 24 C .(0,e) D .(0,+∞)[解析] 由题意,知x ≠0,函数f (x )有且只有一个零点等价于方程e x x -kx =0只有一个根,即方程e x x 2=k 只有一个根,设g (x )=e xx 2,则函数g (x )=e xx 2的图象与直线y =k 只有一个交点.因为g ′(x )=(x -2)e xx 3,所以函数g (x )在(-∞,0)上为增函数,在(0,2)上为减函数,在(2,+∞)上为增函数,g (x )的极小值为g (2)=e 24,且x →0时,g (x )→+∞,x →-∞时,g (x )→0,x →+∞时,g (x )→+∞,则g (x )的图象如图所示,由图易知0<k <e 24,故选B.[答案] B 二、填空题7.(2017·河北石家庄模拟)若函数f (x )=m +⎝ ⎛⎭⎪⎫13x的零点是-2,则实数m =________.[解析] 由m +⎝ ⎛⎭⎪⎫13-2=0,得m =-9.[答案] -98.某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未出租的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元,要使租赁公司的月收益最大,则每辆车的月租金应定为________元.[解析] 设每辆车的月租金为x (x >3000)元,则租赁公司月收益为y =⎝⎛⎭⎪⎫100-x -300050·(x -150)-x -300050×50,整理得y =-x 250+162x -21000=-150(x -4050)2+307050.所以当x =4050时,y 取最大值为307050,即当每辆车的月租金定为4050元时,租赁公司的月收益最大为307050元.[答案] 40509.(2016·泰安模拟)已知f (x )=⎩⎪⎨⎪⎧e -x ,x ≤0x ,x >0,g (x )=f (x )-12x -b 有且仅有一个零点时,b 的取值范围是________.[解析] 要使函数g (x )=f (x )-x2-b 有且仅有一个零点,只需要函数f (x )的图象与函数y =x2+b 的图象有且仅有一个交点,通过在同一坐标系中同时画出两个函数的图象并观察得,要符合题意须满足b ≥1或b =12或b ≤0.[答案] b ≥1或b =12或b ≤0 三、解答题10.(2017·贵州调研)设函数f (x )=⎪⎪⎪⎪⎪⎪1-1x (x >0).(1)作出函数f (x )的图象;(2)当0<a <b ,且f (a )=f (b )时,求1a +1b 的值;(3)若方程f (x )=m 有两个不相等的正根,求m 的取值范围. [解] (1)如图所示.(2)∵f (x )=⎪⎪⎪⎪⎪⎪1-1x = ⎩⎪⎨⎪⎧1x -1,x ∈(0,1],1-1x ,x ∈(1,+∞),故f (x )在(0,1]上是减函数,而在(1,+∞)上是增函数. 由0<a <b 且f (a )=f (b ),得0<a <1<b ,且1a -1=1-1b ,∴1a +1b =2.(3)由函数f (x )的图象可知,当0<m <1时,函数f (x )的图象与直线y =m 有两个不同的交点,即方程f (x )=m 有两个不相等的正根.11.(2017·江西三校联考)食品安全问题越来越引起人们的重视,农药、化肥的滥用给人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入P (单位:万元)、种黄瓜的年收入Q (单位:万元)与投入a (单位:万元)满足P =80+42a ,Q =14a +120,设甲大棚的投入为x (单位:万元),每年两个大棚的总收益为f (x )(单位:万元).(1)求f (50)的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益f (x )最大?[解] (1)依题意f (x )=80+42x +14(200-x )+120=-14x +42x+250,其中⎩⎪⎨⎪⎧x ≥20,200-x ≥20,所以20≤x ≤180.故f (50)=-14×50+42×50+250=277.5. (2)由(1)知f (x )=-14x +42x +250(20≤x ≤180), 令x =t ,则25≤t ≤65,y =-14t 2+42t +250=-14(t -82)2+282,因此当t =82时函数取得最大值282,此时x =128,故投入甲大棚128万元,乙大棚72万元时,总收益最大,最大总收益是282万元.12.(2017·威海模拟)已知函数f (x )=log 4(4x +1)+kx (k ∈R )是偶函数.(1)求k 的值.(2)设g (x )=log 4⎝ ⎛⎭⎪⎫a ·2x-43a ,若方程f (x )=g (x )有且仅有一解,求实数a 的取值范围.[解] (1)由函数f (x )是偶函数可知,f (x )=f (-x ),所以log 4(4x +1)+kx =log 4(4-x +1)-kx ,所以log 44x +14-x +1=-2kx ,即x =-2kx对一切x ∈R 恒成立,所以k =-12. (2)由已知f (x )=g (x ),有且仅有一解,即方程log 4(4x +1)-12x =log 4(a ·2x -43a )有且只有一个实根,即方程2x +12x =a ·2x -43a 有且只有一个实根.令t =2x>0,则方程(a -1)t 2-43at -1=0有且只有一个正根.①当a =1时,则t =-34不合题意;②当a ≠1时,若方程有两个相等的根,Δ=0,解得a =34或-3. 若a =34,则t =-2,不合题意; 若a =-3,则t =12;③因为0不是方程的根,若方程有一个正根与一个负根,即-1a -1<0,解得a >1.综上所述,实数a 的取值范围是{-3}∪(1,+∞).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

跟踪强化训练(二十一)一、选择题1.(2017·贵阳一中适应性考试)已知l为平面α内的一条直线,α,β表示两个不同的平面,则“α⊥β”是“l⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[解析]若l为平面α内的一条直线且l⊥β,则α⊥β,反过来则不一定成立,所以“α⊥β”是“l⊥β”的必要不充分条件,故选B.[答案] B2.(2017·福建泉州模拟)设a,b是互不垂直的两条异面直线,则下列命题成立的是()A.存在唯一直线l,使得l⊥a,且l⊥bB.存在唯一直线l,使得l∥a,且l⊥bC.存在唯一平面α,使得a⊂α,且b∥αD.存在唯一平面α,使得a⊂α,且b⊥α[解析]过直线a上一点,作b的平行线c,则直线a,c确定一个平面,易证垂直于该平面的直线同时垂直于直线a和b,由于这样的直线有无数条,故A错误;由空间两直线夹角的定义易证,若l ∥a且l⊥b,则b⊥a,故B错;过直线a上一点作b的平行线n,记a,n确定的平面为a,显然b∥α,即存在性成立,假设存在平面α,β,使得a⊂α,a⊂β,且b∥α,b∥β,则α∩β=a,所以b∥a,与题意矛盾,故唯一性成立,故C正确;假设存在平面α,使得a⊂α,且b⊥α,则b⊥a,与题意矛盾,故D错误.[答案] C3.(2017·宁波统考)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l[解析]因为m⊥α,l⊥m,l⊄α,所以l∥α.同理可得l∥β.又因为m,n为异面直线,所以α与β相交,且l平行于它们的交线.故选D.[答案] D4.已知a,b,l表示空间中三条不同的直线,α,β,γ表示空间中三个不同的平面,则下列四个命题中正确的命题序号为()①若a⊥α,b⊥β,l⊥γ,a∥b∥l,则α∥β∥γ;②若α⊥γ,β⊥γ,且α∩β=l,则l⊥γ;③若a⊂α,b⊂β,α∩β=a,l⊥a,l⊥b,则l⊥β;④若a,b为异面直线,a⊥α,b⊥β,l⊥a,l⊥b,l⊄α,l⊄β,则α与β相交,且交线平行于l.A.①②④B.①②③C.②③④D.①③④[解析]对于①,a,b,l就相当于平面α,β,γ的法线,因为a ∥b∥l,所以α∥β∥γ,所以①正确;显然②是正确的;对于③,若a∥b,由线面垂直的判定定理可知,直线l不一定垂直于β,只有当a与b相交时,l⊥β,所以③不正确;对于④,由a⊥α,l⊥a,且l⊄α,得l∥α.又b⊥β,l⊥b,l⊄β,所以l∥β.由直线a,b为异面直线,且a⊥α,b⊥β,得α与β相交,否则a∥b,与a,b异面矛盾,故α与β相交,且交线平行于l,所以④正确.[答案] A5.(2016·全国卷Ⅰ)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n 所成角的正弦值为()A.32 B.22 C.33 D.13[解析]因为过点A的平面α与平面CB1D1平行,平面ABCD∥平面A1B1C1D1,所以m∥B1D1∥BD,又A1B∥平面CB1D1,所以n∥A1B,则BD与A1B所成的角为所求角,所以m,n所成角的正弦值为32,选A.[答案] A6.(2017·温州十校联考)如图,点E为正方形ABCD边CD上异于点C,D的动点,将△ADE沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,则下列三种说法中正确的个数是()①存在点E使得直线SA⊥平面SBC;②平面SBC内存在直线与SA平行;③平面ABCE内存在直线与平面SAE平行.A.0 B.1 C.2 D.3[解析]由题图,得SA⊥SE,若存在点E使得直线SA⊥平面SBC,则SA⊥SB,SA⊥SC,则SC,SB,SE三线共面,则点E与点C重合,与题设矛盾,故①错误;因为SA与平面SBC相交,所以在平面SBC 内不存在直线与SA平行,故②错误;显然,在平面ABCE内,存在直线与AE平行,由线面平行的判定定理得平面ABCE内存在直线与平面SAE平行,故③正确.选B.[答案] B二、填空题7.(2017·定州二模)如图,在正方体ABCD-A1B1C1D1中,AB=2,E为AD的中点,点F在CD上,若EF∥平面AB1C,则EF=________.[解析]根据题意,因为EF∥平面AB1C,EF⊂平面ABCD,平面ABCD∩平面AB1C=AC,所以EF∥AC.又E是AD的中点,所以F是CD的中点.因为在Rt△DEF中,DE=DF=1,故EF= 2.[答案] 28.(2017·云南省11校高三调研)已知m,n是两条不同的直线,α,β为两个不同的平面,有下列四个命题:①若α⊥β,m⊂α,n⊂β,则m⊥n;②若m⊥α,n⊥β,m⊥n,则α⊥β;③若m∥α,n∥β,m∥n,则α∥β;④若m⊥α,n∥β,α∥β,则m⊥n.其中所有正确命题的序号是________.[解析]对于①,当两个平面互相垂直时,分别位于这两个平面内的两条直线未必垂直,因此①不正确.对于②,依据结论“由空间一点向一个二面角的两个半平面(或半平面所在平面)引垂线,这两条垂线所成的角与这个二面角的平面角相等或互补”可知②正确.对于③,分别与两条平行直线平行的两个平面未必平行,因此③不正确.对于④,由n∥β得,在平面β内必存在直线n1平行于直线n;由m⊥α,α∥β得m⊥β,m⊥n1;又n1∥n,因此有m⊥n,④正确.综上所述,所有正确命题的序号是②④.[答案]②④9.(2017·运城一模)在△ABC中,∠C=90°,∠B=30°,AC=1,M为AB的中点,将△BCM沿CM折起,使点A,B间的距离为2,则点M到平面ABC的距离为________.[解析]在平面图形中,由已知得AB=2,AM=BM=MC=1,BC=3,∴△AMC为等边三角形,取CM的中点D,连接AD,则AD⊥CM,设AD的延长线交BC于E,则AD=32,DE=36,CE=33.根据题意知,折起后的图形如图所示,由BC2=AC2+AB2,知∠BAC=90°,又cos∠ECA=33,连接AE,则AE2=CA2+CE2-2CA·CE cos∠ECA=23,于是AC2=AE2+CE2,∴∠AEC=90°,∴AE⊥BC.∵AD2=AE2+ED2,∴AE⊥DE,又BC,DE⊂平面BCM,BC∩DE =E,∴AE⊥平面BCM,即AE是三棱锥A-BCM的高,设点M到平面ABC的距离为h,∵S△BCM=34,AE=63,所以由V A-BCM=V M-ABC ,可得13×34×63=13×12×2×1×h ,∴h =12.[答案] 12三、解答题10.(2017·江苏卷)如图,在三棱锥A -BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ;(2)AD ⊥AC .[证明] (1)在平面ABD 内,因为AB ⊥AD ,EF ⊥AD ,所以EF ∥AB .又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ∥平面ABC .(2)因为平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,BC ⊂平面BCD ,BC ⊥BD ,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC ∩AB =B ,AB ⊂平面ABC ,BC ⊂平面ABC ,所以AD ⊥平面ABC .又因为AC ⊂平面ABC ,所以AD ⊥AC .11.(2017·南昌摸底)在三棱柱ABC -A 1B 1C 1中,侧面ABB 1A 1为矩形,AB =1,AA 1=2,D 为AA 1的中点,BD 与AB 1交于点O ,CO ⊥侧面ABB 1A 1.(1)证明:BC ⊥AB 1;(2)若OC =OA ,求直线C 1D 与平面ABC 所成角的正弦值.[解] (1)证明:由题意,tan ∠ABD =AD AB =22,tan ∠AB 1B =AB BB 1=22, 由图可知0<∠ABD ,∠AB 1B <π2,所以∠ABD =∠AB 1B ,所以∠ABD +∠BAB 1=∠AB 1B +∠BAB 1=π2,所以AB 1⊥BD ,又CO ⊥侧面ABB 1A 1,∴AB 1⊥CO .又BD 与CO 交于点O ,所以AB 1⊥平面CBD ,又因为BC ⊂平面CBD ,所以BC ⊥AB 1.(2)如图,以O 为原点,分别以OD ,OB 1,OC 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系O -xyz ,则A ⎝ ⎛⎭⎪⎫0,-33,0,B ⎝ ⎛⎭⎪⎫-63,0,0,C ⎝⎛⎭⎪⎫0,0,33, B 1⎝ ⎛⎭⎪⎫0,233,0,D ⎝ ⎛⎭⎪⎫66,0,0, 又因为CC 1→=2AD →,所以C 1⎝ ⎛⎭⎪⎫63,233,33. 所以AB →=⎝ ⎛⎭⎪⎫-63,33,0,AC →=⎝⎛⎭⎪⎫0,33,33, DC 1→=⎝ ⎛⎭⎪⎫66,233,33. 设平面ABC 的法向量为n =(x ,y ,z ),则根据⎩⎨⎧AB →·n =0,AC →·n =0可得⎝ ⎛ -63x +33y =0,33y +33z =0.令x =1,则y =2,z =-2,所以n=(1,2,-2)是平面ABC的一个法向量,设直线C1D 与平面ABC所成角为α,则sinα=|DC1→·n||DC1→||n|=35555.12.(2017·贵州省贵阳市高三监测)如图所示,该几何体由一个直三棱柱ADE-BCF和一个正四棱锥P-ABCD组合而成,AD⊥AF,AE=AD=2.(1)证明:平面P AD⊥平面ABFE;(2)若正四棱锥P-ABCD的高为1,求二面角C-AF-P的余弦值.[解](1)证明:∵直三棱柱ADE-BCF中,AB⊥平面ADE,∴AB⊥AD,又AD⊥AF,AB∩AF=A,∴AD⊥平面ABFE,∵AD⊂平面P AD,∴平面P AD⊥平面ABFE.(2)∵AD∥BC,AD⊥平面ABFE,∴BC⊥平面ABFE,且AB⊥BF,建立以B为坐标原点,BA,BF,BC所在直线分别为x轴,y轴,z轴的空间直角坐标系,如图所示.∵正四棱锥P -ABCD 的高为1,AE =AD =2,∴A (2,0,0),E (2,2,0),F (0,2,0),C (0,0,2),P (1,-1,1), ∴AF →=(-2,2,0),CF →=(0,2,-2),P A →=(1,1,-1),设n 1=(x 1,1,z 1)是平面ACF 的一个法向量,则n 1⊥AF →,n 1⊥CF →, ∴⎩⎨⎧n 1·AF →=0,n 1·CF →=0,即⎩⎪⎨⎪⎧-2x 1+2=0,2-2z 1=0, 解得x 1=1,z 1=1,即n 1=(1,1,1).设n 2=(x 2,1,z 2)是平面P AF 的一个法向量,则n 2⊥AF →,n 2⊥P A →, ∴⎩⎨⎧n 2·AF →=0,n 2·P A →=0,即⎩⎪⎨⎪⎧-2x 2+2=0,x 2+1-z 2=0, 解得x 2=1,z 2=2,即n 2=(1,1,2).∴cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=1+1+23×6=223, 又二面角C -AF -P 是锐角,22∴二面角C-AF-P的余弦值是3.。

相关文档
最新文档