专题02 大题好拿分【基础版】(20题)(原卷版)
专题02氮及其化合物的性质-2023-2024学年高一下学期期中化学常考点必杀200题(原卷版)

20232024学年高一下学期期中化学常考点必杀200题专题02 氮及其化合物的性质(20题,16+4型)一、单选题1.氮是各种生物体生命活动不可缺少的重要元素,下列过程不属于氮的固定的是 A .在一定条件下由氨气和二氧化碳合成尿素B .雷雨闪电时,大气中产生了一氧化氮C .豆科农作物的根瘤菌使空气中的氮转化为氨D .工业合成氨 2.下列有关物质的性质与用途具有对应关系的是 A .2NO 显红棕色,可用于火箭燃料中的氧化剂 B .氨水具有碱性,可用于去除烟气中的2SO C .3HNO 具有强酸性,可用于实验室制取氢气 D .4NH Cl 受热易分解,可用作铵态氮肥3.已知3NH 可用于检验输送2Cl 的管道是否发生泄漏,有关反应的化学方程式为3222NH 3Cl N 6HCl +=+,该反应属于A .化合反应B .分解反应C .置换反应D .复分解反应4.下列反应可用离子方程式“2H OH H O +-+=”表示的是A .3NaHCO 溶液与NaOH 溶液混合B .3HNO 溶液与澄清石灰水混合C .22NH H O ⋅溶液与HCl 溶液混合D .44NH HSO 溶液与()2Ba OH 溶液混合5.利用氨的催化氧化原理制备硝酸并进行喷泉实验,装置如图所示(省略夹持装置),下列说法正确的是A .可以利用43ΔNH Cl NH HCl ↑↑+制备氨气B .一段时间后,可以在圆底烧瓶观察到无色喷泉C .若要液体充满圆底烧瓶,理论上通入的()()32NH :O n n 小于1∶2D .1mol 3NH 完全转化为硝酸,转移电子的数目为8A N 6.下列实验操作、现象及得出的结论均正确的是 选项实验操作实验现象结论A向盛装某溶液的试管中加入NaOH 溶液,加热,并将湿润的蓝色石蕊试纸靠近试管口试纸未变红该溶液中不存在4NH +B用洁净的玻璃棒蘸取某溶液,在酒精灯外焰上灼烧火焰呈黄色该溶液中一定存在Na + C 将稀硫酸滴入碳酸氢钠溶液中 产生无色无味的气体非金属性:C<SD将质量、大小相同的铁片分别加入浓硝酸和稀硝酸中 稀硝酸中的铁片溶解并产生气泡,浓硝酸中的铁片无明显现象 氧化性:稀硝酸>浓硝酸A .AB .BC .CD .D7.氮及其化合物的转化关系如下图所示,则下列说法不正确的是A .路线①②③是工业生产硝酸的主要途径B .路线∶、∶、∶是雷电固氮生成硝酸的主要途径C .上述所有反应都是氧化还原反应D .氮气可在足量的氧气中通过一步反应生成2NO8.氮是生命的基础,氮及其化合物在生产生活中具有广泛应用。
专题02 二次函数的实际应用(30题)(原卷版)

专题第02讲二次函数的实际应用(30题)1.(2022秋•泰兴市期末)一水果店售卖一种水果,以8元/千克的价格进货,经过往年销售经验可知:以12元/千克售卖,每天可卖60千克;若每千克涨价0.5元,每天要少卖2千克;若每千克降价0.5元,每天要多卖2千克,但不低于成本价.设该商品的价格为x元/千克时,一天销售总质量为y千克.(1)求y与x的函数关系式.(2)若水果店货源充足,每天以固定价格x元/千克销售(x≥8),试求出水果店每天利润W与单价x的函数关系式,并求出当x为何值时,利润达到最大.2.(2023•朝阳)某超市以每件10元的价格购进一种文具,销售时该文具的销售单价不低于进价且不高于19元.经过市场调查发现,该文具的每天销售数量y(件)与销售单价x(元)之间满足一次函数关系,部分数据如下表所示:销售单价x/元…121314……363432…每天销售数量y/件(1)直接写出y与x之间的函数关系式;(2)若该超市每天销售这种文具获利192元,则销售单价为多少元?(3)设销售这种文具每天获利w(元),当销售单价为多少元时,每天获利最大?最大利润是多少元?3.(2023•海淀区校级开学)电缆在空中架设时,两端挂起的电缆下垂可以近似的看成抛物线的形状.如图,在一个斜坡BD上按水平距离间隔60米架设两个塔柱,每个塔柱固定电缆的位置离地面高度为27米(AB =CD=27米),以过点A的水平线为x轴,水平线与电缆的另一个交点为原点O建立平面直角坐标系,如图所示.经测量,AO=40米,斜坡高度12米(即B、D两点的铅直高度差).结合上面信息,回答问题:(1)若以1米为一个单位长度,则D点坐标为,下垂电缆的抛物线表达式为.(2)若电缆下垂的安全高度是13.5米,即电缆距离坡面铅直高度的最小值不小于13.5米时,符合安全要求,否则存在安全隐患.(说明:直线GH⊥x轴分别交直线BD和抛物线于点H、G.点G距离坡面的铅直高度为GH的长),请判断上述这种电缆的架设是否符合安全要求?请说明理由.4.(2023春•江岸区校级月考)如图,在斜坡底部点O处安装一个的自动喷水装置,喷水头(视为点A)的高度(喷水头距喷水装置底部的距离)是1.8米,自动喷水装置喷射出的水流可以近似地看成抛物线.当喷射出的水流与喷水装置的水平距离为8米时,达到最大高度5米.以点O为原点,自动喷水装置所在的直线为y轴,建立平面直角坐标系.(1)求抛物线的解析式;(2)斜坡上距离O水平距离为10米处有一棵高度为1.75米的小树NM,MN垂直水平地面且M点到水平地面的距离为2米.①记水流的高度为y1,斜坡的高度为y2,求y1﹣y2的最大值(斜坡可视作直线OM);②如果要使水流恰好喷射到小树顶端的点N,直接写出自动喷水装置应向后平移(即抛物线向左)多少米?5.(2023•武汉模拟)如图,灌溉车为绿化带浇水,喷水口H离地竖直高度OH为1.2m.可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3m,竖直高度EF=0.5m.下边缘抛物线是由上边缘抛物线向左平移得到,上边抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.4m,灌溉车到绿化带的距离OD为d(单位:m).(1)求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;(2)求下边缘抛物线与x轴的正半轴交点B的坐标;(3)要使灌溉车行驶时喷出的水能浇灌到整个绿化带,直接写出d的取值范围.6.(2022秋•华容区期末)农户销售某农产品,经市场调查发现:若售价为6元/千克,日销售量为40千克,若售价每提高1元/千克,日销售量就减少2千克.现设售价为x元/千克(x≥6且为正整数).(1)若某日销售量为24千克,求该日产品的单价;(2)若政府将销售价格定为不超过18元/千克.设每日销售额为w元,求w关于x的函数表达式,并求w的最大值和最小值;(3)市政府每日给农户补贴a元后(a为正整数),发现最大日收入(日收入=销售额+政府补贴)还是不超过450元,并且只有5种不同的单价使日收入不少于440元,请直接写出所有符合题意的a的值.7.(2023春•蔡甸区月考)如图,抛物线AB,AC是某喷水器喷出的水抽象而成,抛物线AB由抛物线AC 向左平移得到,把汽车横截面抽象为矩形DEFG,其中DE=米,DG=2米,OA=h米,抛物线AC表达式为y=a(x﹣2)2+h+,h=,且点A,B,D,G,C均在坐标轴上.(1)求抛物线AC表达式.(2)求点B的坐标.(3)要使喷水器喷出的水能洒到整个汽车,记OD长为d米,直接写出d的取值范围.8.(2022秋•华容区期末)如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y 轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高.球第一次落地点后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式.(2)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取,)9.(2023•淮安一模)某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?10.(2023•盘锦)某工厂生产一种产品,经市场调查发现,该产品每月的销售量y(件)与售价x(万元/件)之间满足一次函数关系,部分数据如表:每件售价x/万元…2426283032…月销售量y/件…5248444036…(1)求y与x的函数关系式(不写自变量的取值范围).(2)该产品今年三月份的售价为35万元/件,利润为450万元.①求:三月份每件产品的成本是多少万元?②四月份工厂为了降低成本,提高产品质量,投资了450万元改进设备和革新技术,使每件产品的成本比三月份下降了14万元.若四月份每件产品的售价至少为25万元,且不高于30万元,求这个月获得的利润w(万元)关于售价x(万元/件)的函数关系式,并求最少利润是多少万元.11.(2023春•江都区月考)某企业生产并销售某种产品,假设销售量与产量相等,图中的线段AB表示该产品每千克生产成本y1(单位:元)与产量x(单位:kg)之间的函数关系;线段CD表示该产品销售价y2(单位:元)与产量x(单位:kg)之间的函数关系,已知0<x≤120,m>60.(1)求线段AB所表示的y1与x之间的函数表达式;(2)若m=90,该产品产量为多少时,获得的利润最大?最大利润是多少?(3)若60<m<70,该产品产量为多少时,获得的利润最大?最大利润是多少?12.(2023•梁溪区模拟)为加强劳动教育,各校纷纷落实劳动实践基地.某校学生在种植某种高产番茄时,经过试验发现:①当每平方米种植2株番茄时,平均单株产量为8.4千克;②在每平方米种植的株数不超过10的前提下,以同样的栽培条件,株数每增加1株,平均单株产量减少0.8千克.(1)求平均单株产量y(千克)与每平方米种植的株数x(x为整数,且2≤x<10)之间的函数关系式;(2)已知学校劳动基地共有10平方米的空地用于种植这种番茄.问:当每平方米种植多少株时,该学校劳动基地能获得最大的产量?最大产量为多少千克?13.(2023春•仓山区校级期末)根据以下素材,探索完成任务.如何设计大棚苗木种植方案?素材1:图1中有一个大棚苗木种植基地及其截面图,其下半部分是一个长为20m,宽为1m的矩形,其上半部分是一条抛物线,现测得,大棚顶部的最高点距离地面5m.素材2:种植苗木时,每棵苗木高1.76m,为了保证生长空间,相邻两棵苗木种植点之间间隔1m,苗木顶部不触碰大棚,且种植后苗木成轴对称分布.(1)任务1:确定大棚上半部分形状.根据图2建立的平面直角坐标系,通过素材1提供的信息确定点的坐标,求出抛物线的函数关系式;(2)任务2:探究种植范围.在图2的坐标系中,在不影响苗木生长的情况下,确定种植点的横坐标的取值范围.14.(2023•岳麓区校级二模)从2020年开始,越来越多的商家向线上转型发展,“直播带货”已经成为商家的一种促销的重要手段.某商家在直播间销售一种进价为每件10元的日用商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)满足y=﹣10x+400,设销售这种商品每天的利润为W(元).(1)求W与x之间的函数关系式;(2)该商家每天想获得1250元的利润,又要减少库存,应将销售单价定为多少元?(3)若销售单价不低于28元,且每天至少销售50件时,求W的最大值.15.(2022秋•蜀山区校级期末)某超市经销甲、乙两种商品.商品甲每千克成本为20元,经试销发现,该种商品每天销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系,商品乙的成本为4元/千克,销售单价为10元/千克,但每天供货总量只有80千克,且能当天销售完.为了让利消费者,超市开展了“买一送一”活动,即买1千克的商品甲,免费送1千克的商品乙.(1)直接写出销售量y与销售单价x之间的函数表达式;(2)设这两种商品的每天销售总额为S元,求出S(元)与x(元/千克)的函数关系式;(注:商品的销售额=销售单价×销售量)(3)设这两种商品销售总利润为W,若商品甲的售价不低于成本,不超过成本的150%,当销售单价定为多少时,才能使当天的销售总利润最大?最大利润是多少?(注:销售总利润=两种商品的销售总额﹣两种商品的总成本)16.(2023春•莲池区校级期中)为促进学生德智体美劳全面发展,推动文化学习与体育锻炼协调发展,某校举办了学生趣味运动会.该校计划用不超过5900元购买足球和篮球共36个,分别作为运动会团体一、二等奖的奖品.已知足球单价170元,篮球单价160元.(1)学校至多可购买多少个足球?(2)受卡塔尔世界杯的影响,学校商议决定按(1)问的结果购买足球作为一等奖奖品,以鼓励更多学生热爱足球,同时商场也对足球和篮球的价格进行调整,足球单价下降了a%,篮球单价上涨了,最终学校购买奖品的经费比计划经费的最大值节省了155元,求a的值.17.(2023春•宜都市期末)某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间具有一次函数关系:y=ax+b.当x=5时,y=40;当x=30时,y=140.B 城生产产品的每件成本为7万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本之和为660万元时,求A,B两城各生产产品多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D 两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,若A,B 两城总运费之和的最小值为150万元,求m的值.18.(2023•海淀区校级四模)某公园修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安装一个可调节角度的喷水头,从喷水头喷出的水柱形状是一条抛物线.建立如图所示的平面直角坐标系,抛物线形水柱的竖直高度y(单位:m)与到池中心的水平距离x(单位:m)满足的关系式近似为y=a (x﹣h)2+k(a<0).(1)在某次安装调试过程中,测得x与y的部分对应值如下表:水平距离x/m00.51 1.52 2.53竖直高度y/m 2.25 2.81253 2.8125 2.25 1.31250根据表格中的数据,解答下列问题:①水管的长度是m;②求出y与x满足的函数解析式y=a(x﹣h)2+k(a<0);(2)安装工人在上述基础上进行了下面两种调试:①不改变喷水头的角度,将水管长度增加1m,水柱落地时与池中心的距离为d1;②不改变水管的长度,调节喷水头的角度,使得水柱满足y=﹣0.6(x﹣1.5)2+3.6,水柱落地时与池中心的距离为d2.则比较d1与d2的大小关系是:d1d2(填“>”或“=”或“<”)19.(2023•罗山县三模)实心球是中考体育项目之一.在掷实心球时,实心球被掷出后的运动路线可以看作是抛物线的一部分.已知小军在一次掷实心球训练中,第一次投掷时出手点距地面1.8m,实心球运动至最高点时距地面3.4m,距出手点的水平距离为4m.设实心球掷出后距地面的竖直高度为y(m),实心球距出手点的水平距离为x(m).如图,以水平方向为x轴,出手点所在竖直方向为y轴建立平面直角坐标系.(1)求第一次掷实心球时运动路线所在抛物线的表达式.(2)若实心球投掷成绩(即出手点与着陆点的水平距离)达到12.4m为满分,请判断小军第一次投掷实心球能否得满分.(3)第二次投掷时,实心球运动的竖直高度y与水平距离x近似满足函数关系y=﹣0.08(x﹣5)2+3.8记小军第一次投掷时出手点与着陆点的水平距离为d1,第二次投掷时出手点与着陆点的水平距离为d2,则d1d2.(填“>”“<”“=”)20.(2023•花溪区校级一模)过山车是一项富有刺激性的娱乐工具,在乘坐过山车的过程中能够亲身体验由能量守恒、加速度和力交织在一起产生的效果,那感觉真是妙不可言.如图是合肥某乐园中部分过山车滑道所抽象出来的函数图象,线段AB是一段直线滑道,且AB长为米,点A到地面距离OA=6米,点B到地面距离BE=3米,滑道B﹣C﹣D可以看作一段抛物线,最高点为C(8,4).(1)求滑道B﹣C﹣D部分抛物线的函数表达式;(2)当小车(看成点)沿滑道从A运动到D的过程中,小车距离x轴的垂直距离为2.5米时,它到出发点A的水平距离是多少?(3)现在需要对滑道C﹣D部分进行加固,建造某种材料的水平和竖直支架CF,PH,PG.已知这种材料的价格是75000元/米,为了预算充足,至少需要申请多少元的资金.21.(2022秋•丰都县期末)抛实心球是丰都中考体育考试项目之一,如图1是一名男生投实心球情境,实心球行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图2所示,掷出时,起点处高度为1.9m,当水平距离为4m时,实心球行进至最高点3.5m处.(1)求y关于x的函数表达式;(2)根据中考体育考试评分标准(男生版),投掷过程中,实心球从起点到落地点的水平距离大于等于9.7m时,即可得满分10分.该男生在此项考试中能否得满分,请说明理由.22.(2022秋•建昌县期末)2022年11月,“中国传统制茶技艺及其相关习俗”申遗成功,弘扬茶文化,倡导“和美雅静”的生活方式已成时尚.某茶商经销某品牌茶,成本为50元/千克,经市场调查发现,每周的销量y(千克)与销售单价x(元/千克)满足一次函数关系,部分数据列表如下:566575…销售单价x(元/千克)销量y(千克)12811090…(1)求y与x的一次函数关系式;(2)求该茶商这一周销售该品牌茶叶所获利润w(元)的最大值.23.(2023•锦州二模)近年来国家出台政策要求电动车上牌照,“保安全、戴头盔”出行.某头盔专卖店购进一批单价为36元的头盔.在销售中,通过分析销售情况发现这种头盔的月销售量y(个)与售价x(元/个)(42≤x≤72)满足一次函数关系,下表是其中的两组对应值.售价x(元/个)…5055…月销售量y(个)…10090…(1)求y与x之间的函数关系式;(2)专卖店的优惠活动:若购买一个这种头盔,就赠送一个成本为6元的头盔面罩.请问这种头盔的售价定为多少元时,月销售利润最大,最大月销售利润是多少元?24.(2023•金湖县三模)某超市购进甲、乙两种商品,已知购进5件甲商品和2件乙商品,需80元:购进3件甲商品和4件乙商品,需90元.(1)甲、乙两种商品的进货单价分别是多少?(2)设甲商品的销售单价为x(单位:元/件),在销售过程中发现:当12≤x≤18时,甲商品的日销售量y(单位:件)与销售单价x之间存在一次函数关系,x、y之间的部分数值对应关系如表:销售单价x(元/件)1218日销售量y(件)164请写出当12≤x≤18时,y与x之间的函数关系式;(3)在(2)的条件下,设甲商品的日销售利润为w元,当甲商品的销售单价x(元/件)定为多少时,日销售利润最大?最大利润是多少?25.(2022秋•新抚区期末)疫情防控常态化,全国人民同心抗疫.某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售,市场调查发现,线下的月销量y(件)与线下售价x(元/件,且12≤x≤16)之间满足一次函数关系,部分数据如下表:x(元/件)12131415y(件)1000900800700(1)求y与x之间的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为600件.当x为何值时,线上和线下销售月利润总和W达到最大?最大利润是多少?(3)要使(2)中月利润总和W不低于4400元,请直接写出x的取值范围.26.(2023•嘉鱼县模拟)为巩固扶贫攻坚成果,我县政府督查各部门和单位对口扶贫情况.某单位的帮扶对象种植的农产品在某月(按30天计)的第x天(x为正整数)的销售价格p(元/千克)关于x的函数关系为p=,销售量y(千克)与x之间的关系如图所示.(1)直接写出y与x之间的函数关系式和x的取值范围;(2)求该农产品的销售量有几天不超过60千克?(3)当月第几天,该农产品的销售额最大,最大销售额是多少?(销售额=销售量×销售价格)27.(2023•云梦县校级三模)李丽大学毕业后回家乡创业,开了一家服装专卖店代理品牌服装的销售.已知该品牌服装进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),每天付员工的工资每人82元,每天应支付其他费用106元.(1)直接写出日销售y(件)与销售价x(元/件)之间的函数关系式;(2)当某天的销售价为48元/件时,收支恰好平衡(收入=支出),求该店员工人数;(3)若该店只有2名员工,则每天能获得的最大利润是多少元?此时,每件服装的价格应定为多少元?28.(2023•卧龙区二模)如图,在斜坡底部点O处安装一个自动喷水装置,喷水头(视为点A)的高度(喷水头距喷水装置底部的距离)是1.8米,自动喷水装置喷射出的水流可以近似地看成抛物线.当喷射出的水流与喷水装置的水平距离为8米时,达到最大高度5米.以点O为原点,自动喷水装置所在的直线为y轴,建立平面直角坐标系.(1)求抛物线的函数关系式;(2)斜坡上距离O水平距离为10米处有一棵高度为1.75米的小树NM,MN垂直水平地面,且M点到水平地面的距离为2米,绿化工人向左水平移动喷水装置后,水流恰好喷射到小树顶端的点N,求自动喷水装置向左水平平移(即抛物线向左)了多少米?29.(2023•竞秀区二模)过山车是一项富有刺激性的娱乐工具,深受年轻游客的喜爱.某游乐场修建了一款大型过山车.如图所示,A→B→C为这款过山车的一部分轨道(B为轨道最低点),它可以看成一段抛物线,其中OA=16.9米,OB=13米(轨道厚度忽略不计).(1)求抛物线A→B→C的函数表达式;(2)在轨道上有两个位置P和C到地面的距离均为n米,当过山车运动到C处时,又进入下坡段C→E (接口处轨道忽略不计,E为轨道最低点),已知轨道抛物线C→E→F的形状与抛物线A→B→C完全相同,E点坐标为(33,0),求n的值;(3)现需要对轨道下坡段A→B进行安全加固,建造某种材料的水平和竖直支架GD、GM、HI、HN,且要求MN=2OM,已知这种材料的价格是100000元/米,请计算OM多长时,造价最低?最低造价为多少元?30.(2023•利辛县模拟)如图,某小区的景观池中安装一雕塑OA,OA=2米,在点A处安装喷水装置,喷出两股水流,两股水流可以抽象为平面直角坐标系中的两条抛物线(图中的C1,C2)的部分图象,两条抛物线的形状相同且顶点的纵坐标相同,且经测算发现抛物线C2的最高点(顶点)C距离水池面2.5米,且与OA的水平距离为2米.(1)求抛物线C2的解析式;(2)求抛物线C1与x轴的交点B的坐标;(3)小明同学打算操控微型无人机在C1,C2之间飞行,为了无人机的安全,要求无人机在竖直方向上的活动范围不小于0.5米,设无人机与OA的水平距离为m,求m的取值范围.。
专题02 代数式(2大考点)(原卷版)

专题02 代数式(原卷版)考点一:整式运算(幂运算、乘除、因式分解、分式)1.(2023·福建·统考中考真题)下列计算正确的是( ) A .(a 2)3=a 6 B .a 6÷a 2=a 3 C .a 3⋅a 4=a 12 D .a 2−a =a2.(2022·福建·统考中考真题)化简(3a 2)2的结果是( ) A .9a 2 B .6a 2 C .9a 4 D .3a 43.(2021·福建·统考中考真题)下列运算正确的是( ) A .2a −a =2 B .(a −1)2=a 2−1 C .a 6÷a 3=a 2 D .(2a 3)2=4a 64.(2020·福建·统考中考真题)下列运算正确的是( ) A .3a 2−a 2=3 B .(a +b)2=a 2+b 2 C .(−3ab 2)2=−6a 2b 4 D .a ⋅a −1=1(a ≠0)5.(2019·福建·统考中考真题)下列运算正确的是( ). A .a ·a 3= a 3 B .(2a )3=6a 3 C .a 6÷a 3= a 2 D .(a 2)3-(-a 3)2=06.(2023·福建·统考中考真题)已知1a +2b =1,且a ≠−b ,则ab−aa+b 的值为___________.7.(2021·福建·统考中考真题)已知非零实数x ,y 满足y =x x+1,则x−y+3xyxy的值等于_________.8.(2019·福建·统考中考真题)因式分解:a 2−9=_____考点二:分式化简求值10.(2022·福建·统考中考真题)先化简,再求值:(1+1a )÷a 2−1a,其中a =√2+1.11.(2020·福建·统考中考真题)先化简,再求值:(1−1x+2)÷x 2−1x+2,其中x =√2+1.12.(2019·福建·统考中考真题)先化简,再求值:(x -1)÷(x -2x−1x),其中x =√2+1一、单选题1.(2023·山东济南·统考二模)下列计算正确的是()A.(3a3)2=9a6B.a3+a2=2a5C.(a+b)2=a2+b2D.(a4)3=a72.(2023·江苏南京·统考一模)下列计算中,结果正确的是()A.a2+a4=a6B.a2⋅a4=a8C.(a3)2=a9D.a6÷a2=a43.(2023·山东济宁·一模)下列运算正确的是()A.3m2+4m2=7m4B.4m3×5m3=20m3C.(−2m)3=−6m3D.m10÷m5=m54.(2023·安徽滁州·校联考二模)下列因式分解正确的是()A.−2x+4=−2(x−2)B.2m(m−n)=2m2−2mnC.a3+a2+a=a(a2+a)D.x2−x−3=x(x−1)−3 5.(2023·贵州铜仁·统考一模)下列计算错误的是()A.|−2|=2B.a2⋅a−3=1a C.a2−1a−1=a+1D.(a2)3=a36.(2023·四川成都·校考三模)下列计算正确的是()A.(−3x3)3=27x9B.(1−x)2=1−2x+x2C.y8÷y2=y4D.(a+b)2=a2+b27.(2023·广东·校联考一模)下列运算中,正确()A.3a2−a2=2B.(a2)3=a5C.a3⋅a6=a9D.(2a2)2=2a48.(2023春·北京海淀·七年级校考期中)下列计算正确的是()A.x+x2=x3B.x2•x3=x6C.x9÷x3=x3D.(x3)2=x6 9.(2023秋·辽宁沈阳·七年级统考期中)下列计算正确的是()A.2(x+y)=2x+y B.2m+3n=5mnC.x2+2x2=3x4D.−m2n+nm2=0二、填空题11.(2023·广东东莞·东莞市东华初级中学校考一模)因式分解:2a 3−8ab 2=______.12.(2023·浙江杭州·统考一模)设M =x +y ,N =x ﹣y ,P =xy .若M =99,N =98,则P =______.13.(2023·福建·模拟预测)若a 满足a 2−a −2=0,则(a +1a+2)÷(a −2+3a+2)=__________.14.(2023·广东·九年级专题练习)若a 2+3=2b ,则a 3﹣2ab+3a =_____.15.(2023·四川成都·统考中考真题)已知2a 2−7=2a ,则代数式(a −2a−1a)÷a−1a 2的值为_________.16.(2023春·江苏苏州·七年级星海实验中学校考期中)已知:a m =4,a n =2,则a 3m−2n 的值是__.三、解答题|tan30°−1|+(√32)−1.18.(2023春·安徽马鞍山·七年级统考期末)先化简,再求值(1﹣2m+2m 2+2m+1)÷(1−1m ),其中m =2.19.(2023·湖南怀化·统考模拟预测)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=√2−1.20.(2023春·江苏镇江·七年级统考期中)先因式分解,再计算求值:(a+b2)2−(a−b2)2,其中a=−18,b=2.21.(2023春·江苏·七年级期中)例:已知x−1x =3,求x2+1x2的值.解:因为x−1x =3,所以(x−1x)2=9,则x2−2+1x2=9,所以x2+1x2=11.观察以上解答,解答以下问题:已知x+1x=3,求下列各式的值.(1)x4+1x4;(2)x3−2x2−2x+3.22.(2023春·重庆南岸·八年级重庆市第十一中学校校考阶段练习)先化简,再求值:x2x2−1÷(1x+1+x−1);从−1,0,1,2中任选一个代入求值23.(2023·福建泉州·九年级统考学业考试)先化简,再求值:a 2−4a 2−4a+4÷a+2a−2−1a+2,其中a =√3−224.(2023·四川达州·统考二模)(1)计算:√12+|1−√3|−2cos30°−(12)−2. (2)先化简,再求值:(m 2−1m−2−m −1)÷m+1m 2−4m+4,选一个适合的m 值代入求值.25.(2023·江西吉安·统考模拟预测)先化简a 2−4a 2+4a+4÷a−2a 2+2a +a 2−a a−1,然后从0,1,2,3中选一个合适的a 值代入求解.。
专题02 倍长中线模型(原卷版)(人教版)

专题02 倍长中线模型【基本模型】【例题精讲】V(2)如图2,AD是ABC=;AC BF(3)如图3,在四边形^,试猜想线段CE DE例2.(培优综合1)阅读(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是________;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.例4.(培优综合3)在ABC V 中,点P 为BC 边中点,点M .CN ^直线a 于点N ,连接PM ,PN .(1)如图1,若点B ,P 在直线a 的异侧,延长(2)若直线a 绕点A 旋转到图7BMP CNP S S +=△△,1BM =(3)若过P 点作PG ^直线a 于点(2)如图2,若A O D 、、三点不在同一条直线上,AC 与BD AE BE OE 、、之间的数量关系,并给予证明;(3)如图3,在(2)的条件下作BC 的中点F ,连接OF ,直接写出【变式训练】1.如图所示,在ABC D 中,AD 交BC 于点D ,点E 是BC 中点,EF ∥AD 交CA 的延长线于点F ,交AB 于点G ,若BG CF =,求证:AD 为BAC Ð的平分线.2.阅读理解:(1)如图1,在ABC V 中,若10AB =,6AC =,求BC 边上的中线AD 的取值范围.解决此问题可以用如下方法:延长AD 到点E ,使得AD DE =,再连接BE ,把AB ,AC ,2AD 集中在ABE V 中,利用三角形三边关系即可判断中线AD 的取值范围是______.(2)解决问题:如图2,在ABC V 中,D 是BC 边上的中点,DE DF ^,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,求证:BE CF EF +>.(3)问题拓展:如图3,在ABC V 中,D 是BC 边上的中点,延长DA 至E ,使得AC BE =,求证:CAD BED Ð=Ð.4.如图,△ABC中,AB=AC,(1)求证:AD=AE;【课后训练】+<B.BE+A.BE CF EFA.50°B.603.在△ABC中,AB=AC,点EF⊥AE,若点F在BD的垂直平分线上,示)4.请阅读下列材料:(1)如图1,①若AB AC =,请直接写出EAC BCD Ð-Ð=______;②连接DE ,若2AE DE =,求证:DEB AEC Ð=Ð;(2)如图2,连接FB ,若FB AC =,试探究线段CF 和DF 之间的数量关系,并说明理由.8.已知ABC V 中,(1)如图1,点E 为BC 的中点,连AE 并延长到点F ,使=FE EA ,则BF 与AC 的数量关系是________.(2)如图2,若AB AC =,点E 为边AC 一点,过点C 作BC 的垂线交BE 的延长线于点D ,连接AD ,若DAC ABD Ð=Ð,求证:AE EC =.(3)如图3,点D 在ABC V 内部,且满足AD BC =,BAD DCB Ð=Ð,点M 在DC 的延长线上,连AM 交BD 的延长线于点N ,若点N 为AM 的中点,求证:DM AB =.。
2024-2025学年 第22章 二次函数 专题02 实际应用问题 常考题型汇总(原卷版)

2024-2025学年第22章二次函数专题02 实际应用问题常考题型汇总(原卷版)一.选择题1.如图1是某城市广场音乐喷泉,出水口A处的水流呈抛物线形,该水流喷出的高度y(m)与水平距离x(m)之间的关系如图2所示,点B为该水流的最高点,点C为该水流的落地点,且BD⊥OC,垂足为点D,OA=2m.若BD=6m,OD=2m,则OC的长为()A.4m B.5m C.D.第1题第2题2.如图,小明在某次投篮中,球的运动路线是抛物线y=﹣0.2x2+3.5的一部分,若命中篮圈中心,则他与篮圈底的距离l是()A.3m B.3.5m C.4m D.4.5m3.某市新建一座景观桥.如图,桥的拱肋ADB可视为抛物线的一部分,桥面AB可视为水平线段,桥面与拱肋用垂直于桥面的杆状景观灯连接,拱肋的跨度AB为40米,桥拱的最大高度CD为16米(不考虑灯杆和拱肋的粗细),则与CD的距离为5米的景观灯杆MN的高度为()A.13米B.14米C.15米D.16米第3题第4题4.如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t﹣5t2.下列叙述正确的是()A.小球的飞行高度不能达到15m B.小球的飞行高度可以达到25mC.小球从飞出到落地要用时4s D.小球飞出1s时的飞行高度为10m5.如图是一款抛物线型落地灯筒示意图,防滑螺母C为抛物线支架的最高点,灯罩D距离地面1.5米,最高点C 距灯柱的水平距离为1.6米,灯柱AB=1.5米,若茶几摆放在灯罩的正下方,则茶几到灯柱的距离AE为()米.A.3.2 B.0.32 C.2.5 D.1.66.如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t﹣5t2,下列对方程20t﹣5t2=15的两根t1=1与t2=3的解释正确的是()A.小球的飞行高度为15m时,小球飞行的时间是1s B.小球飞行3s时飞行高度为15m,并将继续上升C.小球从飞出到落地要用4s D.小球的飞行高度可以达到25m7.某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为()元.A.50 B.90 C.80 D.708.如图,用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长为18m.设矩形菜园的边AB的长为x m,面积为S m2,其中AD≥AB.有下列结论:①x的取值范围为5≤x≤10;②AB的长有两个不同的值满足该矩形菜园的面积为100m2;③矩形菜园ABCD的面积的最大值为.其中,正确结论的个数是()A.0 B.1 C.2 D.3第8题第9题9.如图1是莲花山景区一座抛物线形拱桥,按图2所示建立平面直角坐标系,得到抛物线解析式为y=,正常水位时水面宽AB为36m,当水位上升5m时水面宽CD为()A.10m B.12m C.24m D.48m10.中国廊桥是桥梁与房屋的珠联璧合,代表着中国人的智慧和造艺,是世界文明宝库的一大奇观.如图,这是某座下方为抛物线形的廊桥示意图,已知抛物线的表达式为,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF长为()A.米B.16米C.米D.米第10题第11题11.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降2.5米时,水面的宽度为米.()A.3 B.6 C.8 D.912.如图,排球运动员站在点O处练习发球,将球从点O正上方2m的A处发出,把球看成点,其运行的高度y(单位:m)与运行的水平距离x(单位:m)满足关系式,已知球网与点O的水平距离为9m,第12题第13题13.如图,人民医院在某流感高发时段,用防护隔帘布临时搭建了一隔离区,隔离区一面靠长为10m的墙,隔离区分成两个区域,中间也用防护隔帘布隔开.已知整个隔离区所用防护隔帘布总长为24m,如果隔离区出入口的大小不计,并且隔离区靠墙的一面不能超过墙长,小明认为:隔离区的最大面积为48m2;小亮认为:隔离区的面积可能为36m2,你认为他们俩的说法是()A.小明正确,小亮错误 B.小明错误,小亮正确 C.两人均正确 D.两人均错误14.廊桥是我国古老的文化遗产.如图是某座抛物线形廊桥的示意图,已知水面AB宽48m,拱桥最高处点C到水面AB的距离为12m,为保护该桥的安全,现要在该抛物线上的点E,F处安装两盏警示灯,若要保证两盏灯的水平距离EF是24m,则警示灯E距水面AB的高度为()A.12m B.11m C.10m D.9m二.填空题(共14小题)15.如图,有一个截面边缘为抛物线型的水泥门洞.门洞内的地面宽度为8m,两侧距地面4m高处各有一盏灯,两灯间的水平距离为6m,则这个门洞内部顶端离地面的距离为.第15题第16题16.漪汾桥是太原市首座对称双七拱吊桥,每个桥拱可近似看作抛物线.如图是其中一个桥拱的示意图,拱跨AB =60m,以AB的中点O为坐标原点,AB所在直线为x轴,过点O垂直于AB的直线为y轴建立平面直角坐标系,通过测量得AE=2m,DE⊥AB且DE=1.16m,则桥拱(抛物线)的函数表达式为.17.如图1是一座抛物线形拱桥,图2是其示意图,桥拱与水平桥面相交于A、B两点,桥拱最高点C到AB的距离为9m,AB=36m,D、E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7m,则DE的长为m.第17题第18题19.如图,同学们在操场上玩跳大绳游戏,绳甩到最高处时的形状是抛物线型,摇绳的甲、乙两名同学拿绳的手的间距为6米,到地面的距离AO与BD均为0.9米,绳子甩到最高点C处时,最高点距地面的垂直距离为1.8米.身高为1.4米的小吉站在距点O水平距离为m米处,若他能够正常跳大绳(绳子甩到最高时超过他的头顶),则m 的取值范围是.第19题第21题20.超市销售的某商品进价10元/件.在销售过程中发现,该商品每天的销售量y(件)与售价x(元/件)之间满足函数关系式y=﹣5x+150(10≤x≤30),则利润w和售价x之间的函数关系为,该商品售价定为元/件时,每天销售该商品获利最大.21.如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高米,现要水半放置横截面为正方形的箱子,其中两个顶点在抛物线上的最大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子正方形的最大边长为米.22.要建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3米,水柱落地处离池中心3米,水管长应为米.第22题第23题23.某单位要对拱形大门进行粉刷,如图是大门示意图,门柱AD和BC高均为0.75米,门宽AB为9米,上方门拱可以近似的看作抛物线的一部分,最高点到地面AB的最大高度为4.8米,工人师傅站在倾斜木板AM上,木板点M一端恰好落在门拱上且到点A的水平距离AN为7.5米,工人师傅能刷到的最大垂直高度为2.4米,则在MA上方区域中,工人师傅刷不到的最大水平宽度为米.24.如图①,“东方之门”通过简单的几何曲线处理,将传统文化与现代建筑融为一体,最大程度地传承了苏州的历史文化.如图②,“门”的内侧曲线呈抛物线形,已知其底部宽度为80m,高度为200m.则离地面150m处的水平宽度(即CD的长)为.第24题第25题25.如图是某拱桥的截面示意图.已知桥底呈抛物线,主桥底部跨度OA=400米,以O为原点,OA所在直线为x轴建立平面直角坐标系,桥面BF∥OA,抛物线最高点E离路面距离EF=10米,BC=120米,CD⊥BF,O,D,B三26.漪汾桥是太原市首座对称双七拱吊桥,每个桥拱可近似看作抛物线.如图是其中一个桥拱的示意图,拱跨AB =60m,以AB的中点O为坐标原点,AB所在直线为x轴,过点O垂直于AB的直线为y轴建立平面直角坐标系,通过测量得AE=2m,DE⊥AB且DE=1.16m,则桥拱最高点到桥面的距离OC为m.27.掷实心球是中学生体质健康检测中的一项,体育老师给出标准示范围,小明发现实心球飞行路线是一条抛物线,若不考虑空气阻力,实心球的飞行高度y(米)与飞行的水平距离x(米)之间具有函数关系y=﹣,则小明这次实心球训练的成绩为.28.如图1,是一座抛物线型拱桥侧面示意图,水面宽AB与桥长CD均为12m,在距离D点3m的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.如图2,桥面上方有3根高度均为5m的支柱CG、OH、DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为2m,下面结论正确的是(填写正确结论序号).①图1抛物线型拱桥的函数表达式y=﹣x2.②图2右边钢缆抛物线的函数表达式y=2+2.③图2左边钢缆抛物线的函数表达式y=2+2.④图2在钢缆和桥拱之间竖直装饰若干条彩带,彩带长度的最小值是3m.三.解答题29.某商场计划用5400元购买一批商品,若将进价降低10%,则可以多购买该商品30件.市场调查反映:售价为每件25元时,每天可卖出250件.如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)求该商品原来的进价;(2)在进价没有改变的条件下,若每天所得的销售利润2000元时,且销量尽可能大,商品的售价是多少元;(3)在进价没有改变的条件下,商场的营销部在调控价格方面,提出了A,B两种营销方案.方案A:每件商品涨价不超过5元;方案B:每件商品的利润至少为16元.请比较哪种方案的最大利润更高,并30.电商平台经销某种品牌的儿童玩具,进价为50元/个.经市场调查发现:每周销售量y(个)与销售单价x(元/个)满足一次函数关系(其中x为整数,且50≤x≤100).部分数据如下表所示:销售单价x(元/个)55 60 70销售量y(个)220 200 160根据以上信息,解答下列问题:(1)求y与x的函数关系式;(2)求每周销售这种品牌的儿童玩具获得的利润W元的最大值;(3)电商平台希望每周获得不低于1100元的利润,请计算销售单价的范围.31.某机械厂每月固定生产甲、乙两种零件共80万件,并能全部售出.甲零件每件成本10元,售价16元;乙零件每件成本8元,售价12元.设生产甲零件x万件.所获总利润y万元.(1)写出y与x的函数关系式;(2)如果每月投入的总成本不超过740万元,应该怎样安排甲、乙零件的产量,可使所获的总利润最大?最大总利润是多少万元?(3)该厂在销售中发现:某月甲零件售价每提高1元,甲零件销量会减少5万件,乙零件售价不变,不管生产多少都能卖出,在(2)获得最大利润的情况下,为了获得更大的利润,该厂决定提高甲零件的售价,并重新调整甲、乙零件的生产数量,求甲零件售价提高多少元时,可获总利润最大?最大总利润是多少万元?32.在跳绳时,绳甩到最高处的形状可近似看作抛物线,如图,已知甲、乙两名学生拿绳的手间距为6米,距地面均为1米,绳的最高点距离地面的高度为4米,以水平地面为x轴,垂直于地面且过绳子最高点的直线为y轴,建立平面直角坐标系,如图.(1)求抛物线的函数表达式;(2)身高为1.57米的小明此时进入跳绳,他站直时绳子刚好通过他的头顶,小明与甲的水平距离小于小明与乙的水平距离,求小明离甲的水平距离.33.如图1,排球场长为18m,宽为9m,网高为2.24m,队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点时,高度为2.88m,即BA=2.88m,这时水平距离OB=7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2.(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式<不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由.(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:≈取1.4)34.某校初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮建立如图的平面直角坐标系.(1)求出抛物线的解析式;(2)若队员与篮圈中心的水平距离为7m,篮圈距地面3m,问此球能否准确投中?35.高楼火灾越来越受到重视,某区消防中队开展消防技能比赛,如图,在一废弃高楼距地面10m的点A和其正上方点B处各设置了一个火源.消防员来到火源正前方,水枪喷出的水流看作抛物线的一部分(水流出口与地面的距离忽略不计),第一次灭火时,站在水平地面上的点C处,水流恰好到达点A处,且水流的最大高度为12m.待A处火熄灭后,消防员退到点D处,调整水枪进行第二次灭火,使水流恰好到达点B处,已知点D到高楼的水平距离为12m,假设两次灭火时水流的最高点到高楼的水平距离均为3m.建立如图所示的平面直角坐标系.(1)求消防员第一次灭火时水流所在抛物线的解析式;(2)若两次灭火时水流所在抛物线的形状相同,求A、B 之间的距离;(3)若消防员站在到高楼水平距离为9m的地方,想要扑灭距地面高度12~18m范围内的火苗,当水流最高点到高楼的水平距离始终为3m时,直接写出a的取值范围.36.如图1,一辆灌溉车正为绿化带浇水,喷水口H离地面竖直高度为h=1.2米.建立如图2所示的平面直角坐标系,可以把灌溉车喷出水的上、下边缘抽象为两条抛物线的部分图象,把绿化带横截面抽象为矩形DEFG,其水平宽度DE=1.8米,竖直高度EF=1.1米,若下边缘抛物线是由上边缘抛物线向左平移得到的,上边缘抛物线最高点A离喷水口的水平距离为2米,高出喷水口0.4米,灌溉车到绿化带的距离OD为d米.(1)求上边缘抛物线的函数解析式;(2)下边缘抛物线与x轴交点B的坐标为;(3)若d=2.2米,则灌溉车行驶时喷出的水能否浇灌到整个绿化带?请说明理由.37.消防员正在对一处着火点A进行喷水灭火,水流路线L为抛物线的一部分.建立如图所示的平面直角坐标系,已知消防车上的喷水口B高出地面2m,距离原点的水平距离为6m,着火点A距离点B的水平距离为10m,且点B,A分别位于y轴左右两侧,抛物线L的解析式为(其中b,c为常数).(1)写出点B的坐标,求c与b之间满足的关系式.(2)若着火点A高出地面3m,①求水流恰好经过着火点A时抛物线L的解析式,并求它的对称轴;②为彻底消除隐患,消防员对距着火点A水平距离1m的范围内继续进行喷水,直接写出抛物线(水流路线)L解析式中b的取值范围(包含端点)及c的最小值.38.跳大绳是天家喜欢的传统体育运动,绳子两端由两人拉着旋转,绳子离开地面时呈抛物线状,有一次跳大绳,甲、乙两人的手A、B离地面高度都为1米,现以地面为x轴,过点A向地面作的垂线为y轴,建立如图所示的平面直角坐标系,AB=6米,绳子甩到最高处C点离地面2.8米,此时所有点都处于同一平面内.(1)求此时绳子所对应的抛物线表达式;(2)身高1.55米的小红跳入绳中,在绳子的正下方来回跳动,则她离A点的水平方向上的最小距离和最大距离分别是多少米?(3)若身高与小红相同的一群同学想同时跳绳,相互间的间距为0.8米,则此绳最多可容纳多少人一起跳?39.某宾馆有100个房间供游客居住,当每个房间每天的定价是200元时,房间会全部住满,当每个房间每天的定价每增加5元时,就会有一个房间空闲,空闲的房间可以出租储存货物,每个空闲房间每天储存货物可获得50元的利润,如果游客居住房间,宾馆需对每个房间每天额外支出40元的各种费用,储存货物不需要额外支出费用,设空闲房间有x间.(1)用含x的式子表示下列各量.①供游客居住的房间数是间;②每个房间每天的定价是元;③该宾馆每天的总利润w是元;(2)若游客居住每天带来的总利润不低于21600元时,求空闲房间每天储存货物获得的最大总利润是多少元?(3)该宾馆计划接受130吨的货物存储,每个房间最多可以存储3吨,当每间房价定价为多少元时,宾馆每天的总利润w最大,最大利润是多少元?40.宜昌某农副加工厂2023年年初投入80万元经销某种农副产品,由于物美价廉,在惠农网商平台推广下,该产品火爆畅销全国各地.已知该产品的成本为20元/件,经市场调查发现,该产品的销售单价定为25元到30元之间较为合理,该产品每年的销售量y(万件)与售价x(元/件)之间满足一种函数关系,售价x(元/件)与y (万件)的对应关系如表:x…20 26 28 31 35 …y…20 14 12 9 5 …(1)求该产品每年的销售量y(万件)与售价x(元/件)之间的函数关系式;(2)2023年年底该工厂共盈利16万元,2024年国家惠农政策力度更大,生产技术也有所提高,使得该特产的成本平均每件减少了1元.①求2023年该特产的售价;②该产品2024年售价定为多少时,工厂利润最大?最大利润是多少?41.掷实心球是宝鸡市高中阶段学校招生体育考试的选考项目.如图1是一名男生投实心球,实心球行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图2所示,掷出时起点处高度为,当水平距离为4m时,实心球行进至最高点3m处.(1)求y关于x的函数表达式;(2)根据宝鸡市高中阶段学校招生体育考试男生评分标准,投掷过程中,实心球从起点到落地点的水平距离大于等于9.60m时,得分为满分10分.请计算说明该男生在此项考试中是否得满分.42.如图,一个圆形水池的中央安装了一个柱形喷水装置OA,A处的喷头向外喷水,喷出的水流沿形状相同的曲线向各个方向落下,水流的路线是抛物线y=a(x﹣)2+4的一部分,落点B距离喷水柱底端O处3.5米.(1)写出水流到达的最大高度,并求a的值;(2)在保证水流形状不变的前提下,调整喷水柱OA的高度,使水流落在宽(EF)为米,内侧(点E)距点O为4米的环形区域内(含E,F),直接说出喷水柱OA的高度是变大还是变小,并求它变化的高度h(h>0)(米)的取值范围.43.如图1,一辆灌溉车正为绿化带浇水,喷水口H离地面竖直高度为h=1.2米,建立如图2所示的平面直角坐标系,可以把灌溉车喷出水的上、下边缘抽象为两条抛物线的部分图象,把绿化带横截面抽象为矩形DEFG,其水平宽度DE=2米,竖直高度EF=0.8米,若下边缘抛物线是由上边缘抛物线向左平移得到的,上边缘抛物线最高点A离喷水口的水平距离为2米,高出喷水口0.4米,灌溉车到绿化带的距离OD为d米.(1)求上边缘抛物线的函数解析式;(2)求下边缘抛物线与x轴交点B的坐标;(3)若d=3.2米,则灌溉车行驶时喷出的水(填“能”或“不能”)浇灌到整个绿化带.44.海豚是生活在海洋里的一种动物,它行动敏捷,弹跳能力强.海豚表演是武汉海昌极地海洋公园最吸引人的节目之一.在进行跳水训练时,海豚身体(看成一点)在空中的运行路线可以近似看成抛物线的一部分.如图,在某次训练中以海豚起跳点O为原点,以O与海豚落水点所在的直线为x轴,垂直于水面的直线为y轴建立平面直角坐标系.海豚离水面的高度y(单位:m)与距离起跳点O的水平距离x(单位:m)之间具有函数关系y=ax2+2x,海豚在跳起过程中碰到(不改变海豚的运动路径)饲养员放在空中的离O点水平距离为3m,离水面高度为4.5m 的小球.(1)求海豚此次训练中离水面的最大高度是多少m?(2)求当海豚离水面的高度是时,距起跳点O的水平距离是多少m?(3)在海豚起跳点与落水点之间漂浮着一个截面长CD=6m,高DE=4m的泡沫箱,若海豚能够顺利跳过泡沫箱(不碰到),求点D横坐标n的取值范围.45.如图①为某悬索桥的示意图,其两座桥塔间的主索的形状近似于抛物线,桥塔与锚锭间的主索形状近似于直线,吊索间距均为2米,桥塔和吊索均与水平桥面垂直.如图②,已知桥塔AD和BC的高度为10米,水平桥长AB为32米,桥塔间的主索最低点P距桥面2米,锚锭E,F到桥塔AD,BC的距离均为16米,E,A,B,F四点共线,以CD为x轴,CD的垂直平分线为y轴(恰好经过点P),建立平面直角坐标系xOy.(1)求该抛物线的表达式;(2)为了满足桥梁的使用安全性,长度不小于4米的吊索需要使用密度更高、抗风性能更好的新型吊索,求这座悬索桥所需新型吊索的数量;(3)对桥梁进行维护检修时,发现需要在桥塔AD左右的主索上各加一条竖直钢索进行加固,要求桥塔AD左右的加固钢索相距8米,则最少需要准备加固钢索多少米?46.某公园要在小广场建造一个喷泉景观.在小广场中央O处垂直于地面安装一个高为1.25米的花形柱子OA,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上抛物线路径如图1所示,为使水流形状较为美观,设计成水流在距OA的水平距离为1米时达到最大高度,此时离地面2.25米.(1)以点O为原点建立如图2所示的平面直角坐标系,水流到OA水平距离为x米,水流喷出的高度为y米,求出在第一象限内的抛物线解析式(不要求写出自变量的取值范围);(2)张师傅正在喷泉景观内维修设备期间,喷水管意外喷水,但是身高1.76米的张师傅却没有被水淋到,此时他离花形柱子OA的距离为d米,求d的取值范围;(3)为了美观,在离花形柱子4米处的地面B、C处安装射灯,射灯射出的光线与地面成45°角,如图3所示,光线交汇点P在花形柱子OA的正上方,其中光线BP所在的直线解析式为y=﹣x+4,求光线与抛物线水流之间的最小垂直距离.47.如图①,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度OH=1.5米.如图②,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=2米,竖直高度EF=1米.下边缘抛物线可以看作由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2米,高出喷水口0.5米,灌溉车到l的距离OD为d米.(1)求上边缘抛物线的函数表达式,并求喷出水的最大射程OC;(2)求下边缘抛物线与x轴的正半轴交点B的坐标;(3)要使灌溉车行驶时喷出的水能浇灌到整个绿化带(即矩形DEFC位于上边缘抛物线和下边缘抛物线所夹区域内),求d的取值范围.48.某市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w万元.(毛利润=销售额﹣生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(2)求w与x之间的函数关系式;(3)由于受资金的影响,今年投入生产的费用不会超过360万元,求今年可获得最大毛利润。
专题02 一元二次方程的解法(基础)(原卷版)

专题02 一元二次方程的解法要点一、直接开平方法解一元二次方程1.直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.2.直接开平方法的理论依据:平方根的定义.3.能用直接开平方法解一元二次方程的类型有两类:①形如关于x的一元二次方程,可直接开平方求解.若,则;表示为,有两个不等实数根;若,则x=O;表示为,有两个相等的实数根;若,则方程无实数根.②形如关于x的一元二次方程,可直接开平方求解,两根是.要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.要点二、一元二次方程的解法---配方法1.配方法解一元二次方程:(1)配方法解一元二次方程:将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式.要点三、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.要点四、一元二次方程的求根公式一元二次方程,当时,.要点五、用公式法解一元二次方程的步骤用公式法解关于x的一元二次方程的步骤:①把一元二次方程化为一般形式;②确定a、b、c的值(要注意符号);③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用.要点六、因式分解法解一元二次方程1.用因式分解法解一元二次方程的步骤 (1)将方程右边化为0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解. 2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.一、单选题1.(2020·江苏扬州市·九年级月考)一元二次方程20x px q ++=的两根为3、4,那么二次三项式2x px q ++可分解为( ) A .()()34x x +-B .()()34x x -+C .()()34x x --D .()()34x x ++2.(2020·淮南市龙湖中学九年级月考)若用配方法解一元二次方程2610x x --=,则原方程可变形为( ) A .()231x -=B .()2310x -=C .()231x +=D .()2310x +=3.(2020·邢台市第七中学九年级期中)下列方程中,有两个不相等的实数根的是( ) A .x 2=0B .x ﹣3=0C .x 2﹣5=0D .x 2+2=04.(2020·南京师范大学附属中学树人学校九年级月考)将方程(x ﹣1)2=6化成一元二次方程的一般形式,正确的是( ) A .x 2﹣2x+5=0B .x 2﹣2x ﹣5=0C .x 2+2x ﹣5=0D .x 2+2x+5=5.(2020·海林市朝鲜族中学九年级月考)若|x 2﹣4x+4|x+y 的值为( ) A .3 B .4 C .6 D .9二、填空题6.(2020·河南信阳市·九年级月考)已知()222(1)160y y +++-=,那么21y +=______.7.(2020·太平乡初级民族中学九年级月考)定义新运算®:对于任意实数a 、b 都有:a ®b =a 2+ab ,如果3®4=32+3×4=9+12=21,那么方程x ®2=0的解为________.8.(2020·全国八年级课时练习)配方法不仅可以用来解一元二次方程,还可以用来解决很多问题.例如:因为3a 2≥0,所以3a 2-1≥-1,即:3a 2-1就有最小值-1.只有当a=0时,才能得到这个式子的最小值-1.同样,因为-3a 2≤0.所以-3a 2+1≤1,即:-3a 2+1就有最大值1,只有当a=0时,才能得到这个式子的最大值1.(1)当x= 时,代数式-2(x+1)2-1有最大值(填“大”或“小”值为 .(2)当x= 时,代数式 2x 2+4x+1有最小值(填“大”或“小”)值为 . (3)矩形自行车场地ABCD 一边靠墙(墙长10m ),在AB 和BC 边各开一个1米宽的小门(不用木板),现有能围成14m 长的木板,当AD 长为多少时,自行车场地的面积最大?最大面积是多少?9.(2020·上海市静安区实验中学八年级课时练习)方程220(40)x px q p q ++=-≥的根是___________.三、解答题10.(2020·云南昆明市·九年级期末)解方程: (1)22410x x --=(配方法)(2)2(1)66x x +=+11.(2020·河北石家庄市·九年级期中)定义新运算“⊕”如下:当a b ≥时,a b ab b ⊕=+;当a b <时,a b ab a ⊕=-,解方程()()2120x x -⊕+=12.(2020·淮南市龙湖中学九年级月考)解方程:2x -6=3x(x -3). 小明是这样解答的:将方程左边分解因式,得2(x -3)=3x(x -3).……第一步 方程两边同时除以(x -3),得2=3x.……第二步解得x =23.……第三步 (1)小明的解法从第________步开始出现错误; (2)写出正确的解答过程.13.(2018·洛阳市洛龙区龙城双语初级中学九年级月考)先化简,再求值:2212111x x x x x --⎛⎫÷+- ⎪-+⎝⎭,其中x 是方程260x x +-=的根. 14.(2020·全国八年级课时练习)用适当的方法解下列方程: 、1、2x 510x -+=、 、2、()()23x-2x-2x =、 、3、()()22231y y +=-.15.(2020·全国八年级课时练习)若正比例函数y=(a ﹣1)23a x -的图象经过点(﹣2,b 2+5),求a ,b 的值.。
专题02 古诗词景物形象鉴赏-2023年中考语文考前抓大分技法之古诗词鉴赏(原卷版)

专题01 古诗词景物形象鉴赏(原卷版)【考点穿透】【考向阐释】古代诗歌中景物形象是指诗歌中描绘的自然景象(如贺知章(味柳》中的“柳”》和人文景象(如陶渊明(归困园层》中的“方宅”“草屋”“远人村”“墟里烟”)。
“情动于中而形于外”,诗人的感情一旦被激活,他们触目所见,均带上强烈的主观色彩。
在他们所摄取的景物中,很少有纯自然的景物。
因为“国破”,即使“城春”,他们也会看到存在因伤时而进射出泪水,失群的春鸟因恨别而惊修地发出哀喂。
诗入触景生情,移情于物,虽不直接言情,情已充溢其间。
鉴赏诗中这些形象的特点,品味这些形象所蕴含的意义与思想情感就是设题点、赋分点。
中高考对于景物形象的考查一般分为两种类型:意象货析、意境品味。
1.意象赏析意象,是诗歌中熔铸了作者根据现实生活中的各无品可上者主观感情的客观景象,是作者思想内容和艺术感体易秘食加以艺术概括所形成的具有一定意象资桥极日士要华是体先动的自然景象。
意象赏析题目主要考查抓住关键词句,识别诗歌意象,根据体现景物特点的关键词语、句子概括诗歌意象特点;结合诗歌主旨分析诗人选取意象的用意;分析意象在表情达意方面方面的作用与效果。
2.意境品味意境是诗歌通过形象描写表现出来的境界和情调,是诗歌中呈现的情景交融、虚实相生的形象及其诱发和开拓的审美想象空间。
意境品味题目主要考查对形象的解读、对画面的描绘理解以及对情感的把握。
【方法探究】一、景物形象鉴赏要求1.“诗中赏画”。
古代写景诗大多具有“诗中有画”的特征。
赏析画面美,从以下几个方面入手:物象的组合方式;画面色彩;动态;静态。
2.“画中品诗”。
由景象画面的色调,把握诗人的情感思想。
一般而言,诗歌描绘的形象画面是鲜活、明丽和昂扬向上的色调,其内在形象即情感则是高昂乐观的;反之,外在形象画面是阴暗、凄冷和低沉的色调,其内在形象情感则是低沉伤感的。
二、意象赏析角度设问方式及答题思路设问示例:1.诗中运用了哪些意象?结合全诗分析意象在全诗中的作用。
专题02 地图(专项测试)(原卷版)-2023年中考地理一轮复习讲练测

专题02 地图测试(原卷版)(时间90分钟,共100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(每小题2分,共50分)读某校园平面示意图,完成下面小题。
1.图中传达室位于教学楼的()A.东北方向B.西南方向C.西北方向D.东南方向2.图中测得旗杆到学校大门的图上直线距离为2厘米,则两地的实地相距()A.10米B.40米C.100米D.400米我国的首都——北京(40°N,116°E)。
结合下列图幅相同的四幅地图,完成下面小题。
3.关于该图的叙述,正确的是()A.比例尺最大的①图B.所示范围最小的是②图C.内容最详细的是③图D.比例尺最小的④图4.我国首都北京地表获得太阳光热最多的季节是()A.春季B.夏季C.秋季D.冬季5.暑假,李明和家人到北京旅游,他们要查阅北京的故宫、颐和园等景点,下列最适合他们参考的地图是()A.中国政区图B.北京市政区图C.北京市人口分布图 D.北京市交通导游图图例是地图的“语言”,能够非常形象地表达地图的内容,有助于我们更好地认识地图。
据此回答小题。
6.下面四种图例,表示铁路的是()A.B.C.D.7.在广东省地图中,不可能出现的图例是()A.B.C.D.2022年10月16日,中国共产党第二十次全国代表大会在北京人民大会堂开幕,据此完成下面小题。
8.要确定大会举行地点,最好查阅()A.中国地形图B.中国政区图C.北京市水系图D.北京市城区图9.参会人员利用手机高德地图查询乘车路线。
高德地图与纸质地图相比,优点有()①信息容量小②便于携带③更新速度快④制图精度低⑤信息数字化A.①②④B.②③④C.②③⑤D.③④⑤地图是学习地理的重要工具,学会使用地图,可以帮助同学们更好的掌握和查找地理信息。
读图完成下面小题。
10.小丽同学在完成作业时,遇上了“安第斯山脉位于洲。
”的难题,请帮助她从下列地图中选择合适的地图查找相关的信息()A.世界地形图B.世界气候分布图C.世界人口分布图D.世界政区图11.图中A点与B点的相对高度约为()A.200米B.500米C.800米D.1000米12.图中甲、乙、丙、丁四地处于山地地形的是()A.甲B.乙C.丙D.丁13.下图示意四种地形类型的剖面,下面说法正确的是()A.①为山地,海拔多在500米以上,坡度较缓B.②为盆地,四周多被山地高原环绕,中部地势较低C.③为丘陵,海拔多在500米以下,相对高度较大D.④为平原,海拔一般在200米以下,广阔平坦读四幅等高线地形示意图(米),完成下面小题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年度下学期期末考试备考黄金30题系列
大题好拿分(人教版必修三、必修四)【基础版】
(解答题20道)
班级:________ 姓名:________
解答题
1.以下茎叶图记录了甲,乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以
X 表示.
(1)如果8X =,求乙组同学植树棵数的平均数和方差;
(2)如果9X =,分别从甲,乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.(注:方差()()()222
2121n s x x x x x x n ⎡⎤=
-+-++-⎣
⎦
,其中x 为1x , 2x ,……, n x 的平均数)
2.中国科学院亚热带农业生态研究所2017年10月16日正式发布一种水稻新种质,株高可达2.2米以上,具有高产、抗倒伏、抗病虫害、酎淹涝等特点,被认为开启了水稻研制的一扇新门.以下是,A B 两组实验田中分别抽取的6株巨型稻的株高,数据如下(单位:米).
A : 1.7 1.8 1.9 2.2 2.4 2.5
B : 1.8 1.9 2.0 2.0 2.4 2.5
(1)绘制,A B 两组数据的茎叶图,并求出A 组数据的中位数和B 组数据的方差;
(2)从A 组样本中随机抽取2株,请列出所有的基本事件,并求至少有一株超过B 组株高平均值的概率. 3.宁德被誉为“中国大黄鱼之乡”,海域面积4.46万平方公里,水产资源极为丰富.“宁德大黄鱼”作为福建宁德地理标志产品,同时也是宁德最具区域特色的海水养殖品种,全国80%以上的大黄鱼产自宁德,年产值超过60亿元.现有一养殖户为了解大黄鱼的生长状况,对其渔场中100万尾鱼的净重(单位:克)进行抽样检测,将抽样所得数据绘制成频率分布直方图如图.其中产品净重的范围是[]96,106,已知样本中产 品净重小于100克的有360尾.
(1)计算样本中大黄鱼的数量;
(2)假设样本平均值不低于101.3克的渔场为A级渔场,否则为B级渔场.那么要使得该渔场为A级渔场,96,98的大黄鱼最多有几尾?
则样本中净重在[)
(3)为提升养殖效果,该养殖户进行低沉性配合饲料养殖,净重小于98克的每4万尾合用一个网箱,大于等于98克的每3万尾合用一个网箱.根据(2)中所求的最大值,估计该养殖户需要准备多少个网箱?4.“奶茶妹妹”对某时间段的奶茶销售量及其价格进行调查,统计出售价元和销售量杯之间的一组数据如下表所示:
通过分析,发现销售量对奶茶的价格具有线性相关关系.
(Ⅰ)求销售量对奶茶的价格的回归直线方程;
(Ⅱ)欲使销售量为杯,则价格应定为多少?
附:线性回归方程为,其中,
5.某种商品价格与该商品日需求量之间的几组对照数据如下表:
(1)求关于的线性回归方程;
(2)利用(1)中的回归方程,当价格元/时,日需求量的预测值为多少?
参考公式:线性回归方程,其中
6.某公司的广告费支出x 与销售额y (单位:万元)之间有下列对应数据
回归方程为ˆ,y
bx a =+其中1
2
21
n
i i
i n
i
i x y nx y
b x
nx
==-=-∑∑,.a y bx =-
(1)画出散点图,并判断广告费与销售额是否具有相关关系;
(2)根据表中提供的数据,求出y 与x 的回归方程ˆy
bx a =+; (3)预测销售额为115万元时,大约需要多少万元广告费。
7.我国上是世界严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准x (吨),用水量不超过x 的部分按平价收费,超过x 的部分按议价收费,为了了解全市民月用水量的分布情况,通过抽样,获得了100位居民某年的月用水量(单位:吨),将数据按照[)0,0.5, [)0.5,1,…, []4,4.5分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中a 的值;
(Ⅱ)已知该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由; (Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x (吨),估计x 的值,并说明理由;
8.如图所示,四边形ABCD 是边长为2的菱形, 3
BAD π
∠=
.
(Ⅰ)求AB AC ⋅的值;
(Ⅱ)若点P 在线段AB 及BC 上运动,求()
AB AC AP +⋅的最大值. 9.已知角α的终边与单位圆交于点43,55P ⎛⎫ ⎪⎝⎭
(1)求sin ,cos ,tan ααα的值;
(2)求
()()
sin 2sin 22cos ππααπα⎛⎫
++- ⎪
⎝⎭-的值.
10.已知向量,.
(Ⅰ)求的值;
(Ⅱ)若
,求的值.
11
.已知向量2m =(
,, sin cos n x x =(,), 0,2x π⎛⎫
∈ ⎪⎝⎭
. (1)若m n ⊥,求tan x 的值; (2)若向量m n ,的夹角为
3
π
,求sin 4x π⎛
⎫
-
⎪⎝
⎭
的值. 12.已知3ππ2α<<
, 4sin 5
α=-. (I )求cos α的值.
(II )求sin23tan αα+的值. 13.已知函数的部分图象如图所示.
(1)求函数的解析式; (2)若函数
在
上取得最小值时对应的角度为.求半径为2,圆心角为的扇形的面积.
14.若函数()()sin f x A x ωϕ=+, (0,0,)2
2
A π
π
ωϕ>>-
<<
的部分图像如下图所示.
(1)求函数()f x 的解析式及其对称中心;
(2)若将函数()f x 图像上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()g x 的图像,求函数()g x 在区间[]0,π上的单调区间. 15.已知函数f (x )=2 sin (x+
6
π
)。
(1)若点P (1,α的终边上,求:cos α和f (α-6
π
)的值;
(2)若x ∈ [3
π
-
,
2
π
],求f (x )的值域。
16.在平面直角坐标系xOy 中,已知,,A B C 三点的坐标分别为()()()2,1,3,5,,3A B C m - (Ⅰ)若AB AC ⊥,求实数m 的值
(Ⅱ)若,,A B C 三点能构成三角形,求实数m 的取值范围. 17.已知1tan 42
πα⎛
⎫
+
= ⎪
⎝
⎭ (Ⅰ)求tan α的值.
(Ⅱ)求22cos sin2αα+的值.
18.已知,且
,求β的值.
19.(1)化简:
;
(2)已知tan 2α=,求
()()sin sin 23cos cos 2ππααπαπα⎛⎫
+-+ ⎪
⎝⎭⎛⎫
++- ⎪⎝⎭
的值.
20.已知函数()()()sin 0,0,0f x A x A ωϕωϕπ=+
>><<的图像如图所示.
(1)求,,A ωϕ的值; (2)若,212x ππ⎡⎤
∈-
⎢⎥⎣⎦
,求()f x 的值域.。