09年中考数学反比例函数复习测试题

合集下载

中考数学复习《反比例函数》专项测试卷(带答案)

中考数学复习《反比例函数》专项测试卷(带答案)

中考数学复习《反比例函数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点()1,2A x ,()2,1B x -和()3,4C x 都在反比例函数8y x=的图像上,则1x ,2x 和3x 的大小关系是( ) A.123x x x <<B.231x x x <<C.132x x x <<D.213x x x <<2.若点()26-,在反比例函数ky x=的图象上,则下列说法正确的是( ) A.该函数的图象经过点()34--,B.该函数的图象位于第一、三象限C.当0x >时,y 的值随x 值的增大而增大D.当1x >-时,4y >3.如图,在同一平面直角坐标系中函数y ax a =+与函数ay x=的图象可能是( ) A. B. C. D.4.如图,点A 是双曲线()160y x x =-<上的一点,点B 是双曲线()60y x x=-<上的一点,AB 所在直线垂直x 轴于点C ,点M 是y 轴上一点,连接MA 、MB ,则MAB △的面积为( )A.5B.6C.10D.165.如图,点A ,B 为反比例函数()0ky x x=>的图象上的两点,且满足45AOB ∠=︒,若点A 的坐标为()3,5,则点B 的坐标是( ).A.15215,2⎛⎫ ⎪ ⎪⎝⎭B.1010,2⎛ ⎝⎭C.()8,2D.()8,36.如图,已知点A 、B 分别在反比例函数y =1x (x >0),y =-4x(x >0)的图象上,且OA⊥OB ,则OBOA的值为( )A.4B.2C.14D.127.如图,在ABC 中2AC BC == 90ACB ∠=︒ AC x ∥轴 点D 是AB 的中点 点C 、D 在(k 0,x 0)ky x=≠>的图象上 则k 的值为( )A.1-B.2-C.1D.28.已知蓄电池的电压为定值(电压三星近总度阻) 使用蓄电池时 电流(单位:A )与电阻尺(单位:Ω)是反比例函数关系 它的图象如图所示 下列说法不正确的是( )A.函数解析式为60I R=B.蓄电池的电压是C.当6ΩR =时 8A I =D.当10A I ≤时 6R ≥Ω9.如图 在平面直角坐标系中直线24y x =-+与x 轴、y 轴分别交于A 、B 两点 以AB 为边在第一象限作正方形ABCD 点D 在双曲线()0ky k x=≠上.将正方形沿x 轴负方向平移a 个单位长度后 点C 恰好落在该双曲线上 则a 的值( )A.1B.2C.3D.410.如图 直线22y x =-与x 轴 y 轴分别交于点A B 与反比例函数()0ky k x=>图像交于点C .点D 为x 轴上一点(点D 在点A 右侧) 连接BD 以BA BD 为边作ABDE E 点刚好在反比例函数图像上 设(),E m n 连接EC DC 若1()2ACED S AD AD n =+四边形 则k 的值为( )A.8B.10C.12D.1611.如图 直线y kx =与双曲线3y x -=在同一坐标系中如图所示 则不等式3x-<的解集为( )A.01x <<B.1x <-C.1x <-或01x <<D.10x -<<或1x >12.智能手机已遍及生活中的各个角落 手机拍照功能也越来越强 高档智能手机还具有调焦(调整镜头和感光芯片的距离)的功能.为了验证手机摄像头的放大率(摄像头的放大率是指成像长度与实物长度的比值 也可计算为像距与物距的比值) 小明用某透镜进行了模拟成像实验 得到如图所示的像距v 随物距u 变化的关系图像 下列说法不正确的是( )A.当物距为45.0cm 时 像距为13.0cmB.当像距为15.0cm 时 透镜的放大率为2C.物距越大 像距越小D.当透镜的放大率为1时 物距和像距均为20cm13.某商家设计了一个水箱水位自动报警仪 其电路图如图1所示 其中定值电阻110ΩR =2R 是一个压敏电阻 用绝缘薄膜包好后放在一个硬质凹形绝缘盒中放入水箱底部 受力面水平 承受水压的面积S 为0.012m 压敏电阻的阻值随所受液体压力F 的变化关系如图2所示(水深h 越深 压力F 越大) 电源电压保持6V 不变 当电路中的电流为0.3A 时 报警器(电阻不计)开始报警 水的压强随深度变化的关系图象如图3所示(参考公式:UI R=1000Pa 1kPa =).则下列说法中不正确的是( )2R F pS =A.当水箱未装水()时 压强p 为0kPaB.当报警器刚好开始报警时 水箱受到的压力F 为40NC.当报警器刚好开始报警时 水箱中水的深度h 是0.8mD.若想使水深1m 时报警 应使定值电阻1R 的阻值为 二、填空题14.一个圆柱形蓄水池的底面半径为x cm 蓄水池的侧面积为40π2cm 则这个蓄水池的高h (cm )与底面半径x (cm )之间的函数关系式为_____.15.在反比例函数12my x-=的图象上的图象在二、四象限 则m 的取值范围是_______. 16.若点()11,A y -、21,4B y ⎛⎫- ⎪⎝⎭、()31,C y 都在反比例函数21x k y +=(k 为常数)的图象上 则1y 、2y 、3y 的大小关系为_____.17.如图 点(3,1)P -是反比例函数m y x =的图象上的一点 设直线y kx =与双曲my x=的两个交点分别为P 和P 当mkx x>时 写出x 的取值范围_____.18.如图 在平面直角坐标系xOy 中正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10 点D 是边AB 上靠近点A 的三等分点 将⊥OAD 沿直线OD 折叠后得到⊥OA ′D 若反比例函数y kx=(k ≠0)的图象经过A ′点 则k 的值为_____. 0m h =12Ω19.如图 在平面直角坐标系中直线12y k x =+与x 轴交于点A 与y 轴交于点B 与双曲线2(0)k y x x=>交于点C 连接OC .若52,sin 5OBC S BOC =∠=△ 则12k +的值是______.20.如图 点1A 2A 3A …在反比例函数()10y x x=>的图象上 点1B 2B 3B … n B 在y 轴上 且11212323B OA B B A B B A ∠=∠=∠=直线y x =与双曲线1y x=交于点1A 111B A OA ⊥ 2221B A B A ⊥ 3323B A B A ⊥ … 则2023B 的坐标是________.三、解答题21.如图所示 一次函数y kx b =+的图象与反比例函数my x=的图象相交于两点(1),A n (2,1)B -- 与y 轴相交于点C .(1)求反比例函数和一次函数解析式; (2)直接写出:不等式mkx b x+>解集是______; (3)依据相关数据求AOB 的面积.22.如图 菱形OABC 的边OA 在y 轴正半轴上 点B 的坐标为()48,.反比例函数11k y x=的图象经过菱形对角线AC OB ,的交点D 设直线OC 的解析式为22y k x =.(1)求反比例函数的解析式; (2)求菱形OABC 的边长;(3)请结合图象直接写出不等式120k k x x-<的解集. 23.如图▱OABC 的顶点O 与坐标原点重合 边OA 在x 轴正半轴上 60AOC ∠=︒2OC = 反比例函数()0ky x x=>的图像经过顶点C 与边AB 交于点D.(1)求反比例函数的表达式.(2)尺规作图:作OCB ∠的平分线交x 轴于点E.(保留作图痕迹 不写作法) (3)在(2)的条件下 连接DE 若DE CE ⊥ 求证:AD AE =. 24.如图 已知一次函数26y x =+与反比例函数()0ky x x=>的图象交于点()1,A m 与x 轴交于点B .(1)填空:m 的值为______ 反比例函数的解析式为______; (2)直接写出当0x >时 26kx x+<的解集; (3)点P 是线段AB 上一动点(不与A 、B 点重合) 过P 作直线PM x ∥轴交反比例函数的图象于点M 连接BM .若PMB △的面积为S 求S 的取值范围.25.如图 已知抛物线2y x bx =+与x 轴交于O (4,0)A 两点 点B 的坐标为(0,3)-. (1)求抛物线的对称轴;(2)已知点P 在抛物线的对称轴上 连接OP BP .若要使OP BP +的值最小 求出点P 的坐标;(3)将抛物线在x 轴下方的部分沿x 轴翻折 其余部分保持不变 得到一个新的图象.当直线(0)y x m m =+≠与这个新图象有两个公共点时 在反比例函数y mx=的图象中y 的值随x 怎样变化?判断并说明理由.26.如图 在平面直角坐标系中正六边形ABCDEF 的对称中心P 在反比例函数()10,0ky k x x=>>的图象上 边AB 在x 轴上 点F 在y 轴上 已知23AB =.(1)判断点E 是否在该反比例函数的图象上 请说明理由;(2)求出直线EP :()20y ax b a =+≠的解析式 并根据图象直接写出当0x >时 不等式kax b x+>的解集. 27.如图① 有一块边角料ABCDE 其中AB BC DE EA 是线段 曲线CD 可以看成反比例函数图象的一部分.测量发现:90A E ∠=∠=︒ 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4.(1)小宁把A B C D E 这5个点先描到平面直角坐标系上 记点A 的坐标为()1,0-;点B 的坐标为()1,1-.请你在图②中补全平面直角坐标系并画出图形ABCDE ; (2)求直线BC 曲线CD 的函数表达式;(3)小宁想利用这块边角料截取一个矩形MNQP 其中M N 在AE 上(点M 在点N 左侧)点P 在线段BC 上 点Q 在曲线CD 上.若矩形的面积是53则=_________.参考答案1.答案:B解析:将三点坐标分别代入函数解析式8y x=得: 182x = 解得14x =; 28-1x =解得28x =-; 384x =解得; 824-<<故选:B. 2.答案:C解析:⊥点()26-,在函数ky x=的图象上 ⊥2(6)120k =⨯-=-< ⊥函数ky x=位于第二、四象限 在每个象限内 y 的值随x 的增大增大 ⊥()341212-⨯-=≠-⊥该函数的图象不经过点()34--,把=1x -代入12y x=求得12y = ⊥当10x -<<时 12y > 综上 只有选项C 说法正确 故选:C. 3.答案:A解析:当0a >时 一次函数图像经过第一、二、三象限 反比例函数图像位于一、三象限 可知A 符合题意;32x =231x x x ∴<<当0a <时 一次函数图像经过第二、三、四象限 反比例函数图像位于二、四象限 可知B C D 不符合题意.故选:A.4.答案:A解析:如图所示 作MN BA ⊥交BA 的延长线于N则12AMB S BA MN =⋅设点A 的坐标为16a a ⎛⎫- ⎪⎝⎭, <0aAB 所在直线垂直x 轴于点CB ∴点坐标为6a a ⎛⎫- ⎪⎝⎭,16610AB a a a ⎛⎫∴=---=- ⎪⎝⎭ MN a =()11101105222ABM S AB MN a a a a ⎛⎫⎛⎫∴=⋅=⨯-⨯=⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭故选:A.5.答案:A解析:将OA 绕O 点顺时针旋转90︒到OC 连接AB 、CB作AM y ⊥轴于MCN x ⊥轴于N点A 的坐标为()3,53AM ∴= 5OM =45AOB ∠=︒45BOC ∠=︒∴在AOB 和COB △中OA OC AOB COBOB OB =⎧⎪∠=∠⎨⎪=⎩(SAS)AOB COB ∴△≌△AB CB ∴=90AOM AON CON AON ∠+∠=︒=∠+∠AOM CON ∴∠=∠ 在AOM 和CON 中AOM CON AMO ONCOA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩ (AAS)AOM CON ∴△≌△3CN AM ∴== 5ON OM == (5,3)C ∴-点A 为反比例函数(0)k y x x=>图象上的点 3515k ∴=⨯= 15y x ∴=设B 点的坐标为15(,)m m AB CB =22221515(3)(5)(5)(3)m m m m ∴-+-=-++解得215m =(负数舍去)15215,B ⎛∴ ⎝⎭故选A.6.答案:B解析:作AC y ⊥轴于C BD y ⊥轴于D 如图点A 、B 分别在反比例函数1(0)y x x => 4(0)y x x=->的图象上 11122OAC S ∆∴=⨯= 1|4|22OBD ∆=⨯-=OA OB ⊥90AOB ∠=︒∴90AOC BOD ∴∠+∠=︒AOC DBO ∴∠=∠Rt AOC Rt OBD ∴∆∆∽ ∴212()2AOC OBD S OA S OB ∆∆== ∴12OA OB =. ∴2OB OA=. 故答案为B. 7.答案:B解析:设(0,)A b 根据题意(2,)C b - (2,2)B b -+点D 是AB 的中点(1,1)D b ∴-+点C 、D 在(k 0,x 0)k y x=≠>的图象上 2(1)k b b ∴=-=-+解得1b =22k b ∴=-=-故选:B.8.答案:C解析:设图象过蓄电池的电压是A 、B 选项正确 不符合题意;当=6ΩR 时 (A 6010)6I ==∴C 选项错误 符合题意;当10I =时 6R =由图象知:当10A I ≤时 6R ≥Ω∴D 选项正确 不符合题意;故选:C.9.答案:B解析:作CE y ⊥轴于点E 交双曲线于点G 作DF x ⊥轴于点F在24y x =-+中令0x = 解得4y =∴B 的坐标是(0,4)令0y = 解得2x =∴A 的坐标是(2,0)kI R =(5,12)60k ∴=60I R ∴=∴60V ∴4OB ∴= 2OA =90BAD ∠=︒90BAO DAF ∴∠+∠=︒直角ABO △中90BAO OBA ∠+∠=︒DAF OBA ∴∠=∠在OAB △和FDA △中DAF OBA BOA AFD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)OAB FDA ∴≌△△同理 OAB FDA BEC ≌≌△△△ 4AF OB EC ∴=== 2DF OA BE ===∴D 的坐标是(6,2) C 的坐标是(4,6)点D 在双曲线(0)k y k x=≠上 6212k ∴=⨯=∴函数的解析式是:12y x =把6y =代入12y x=得:2x = 422a ∴=-=故选B.10.答案:C解析:直线与x 轴 y 轴分别交于点A B(1,0)A ∴ (0,2)B -作EF x ⊥轴于F 如图所示:22y x =-四边形是平行四边形在和中E 点刚好在反比例函数图像上设C 的纵坐标为hABDE AE BD ∴=//DE AB DAE ADB ∴∠=∠AEF △DBO △EAF BDO AFE DOB AE BD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)AEF DBO ∴≌△△2EF OB ∴==AF OD =1DF OA ∴==(,)E m n 2m AD ∴=+2n =2(2)k mn AD ∴==+122AD k ∴=-//DE BC AED CED S S ∴=△△()11122222ACD CED ACD AED ACED S S S S S AD h AD AD h ∴=+=+=⋅+⋅=+四边形△△△△()12ACED S AD AD n =+四边形122h AD k ∴==-C 的纵坐标为代入得解得反比例函数图像经过点C 解得 20k =(舍去) 12k∴=故选:C.11.答案:D解析:有题意可知 当3y =时 33x= 解得=1x - ∴直线y kx =与双曲线3y x=在第二象限交点的坐标为1,3)- 由中心对称可得 直线y kx =与双曲线3y x=在第四象限交点的坐标为3)- ∴观察图象可得 不等式3kx x<的解集为10x <<或1x >. 故选:D.12.答案:B解析:由函数图象可知:当物距为45.0cm 时 像距为13.0cm 故选项A 说法正确;由函数图象可知:当像距为15.0cm 时 物距为300cm . 放大率为15.00.530.0= 故选项B 说法错误;由函数图象可知:物距越大 像距越小 故选项C 说法正确;由题意可知:当透镜的放大率为1时 物距和像距均为20cm 故选项D 说法正确 故选:B.13.答案:B解析:A.由图3得:当0h =时 0p = 故此项说法正确;122-22y x =-12222x -=-14x k =11(,2)42C k k ∴-(0)k y k x=>11(2)42k k k ∴-=112k =B.当报警器刚好开始报警时 260.310R =+ 解得210R =Ω 由图2可求得:2800R F =80010F∴= 解得80F N = 故此项说法错误; C.当报警器刚好开始报警时 由上得80F N = 则有800.01p =⨯ 8P p k a ∴= 由图3求得10p h = 810h = 解得:0.8h = 故此项说法正确;D.当报警器刚好开始报警时:1260.3R R =+ 1220R R ∴+=Ω 当1h =时 10110kPa p =⨯= 100000.01100F N ∴=⨯= 28008100R ==Ω 120812R ∴=-=Ω 故此项说法正确. 故选:B.14.答案:20h x = 解析:根据题意 得240x h ππ⋅= ⊥20h x=. 故答案为:20h x=. 15.答案:12m > 解析:由题意得 反比例函数12m y x -=的图象在二、四象限内 则120m -< 解得12m >. 故答案为12m >. 16.答案:213y y y << 解析:反比例函数2(1k k y x+=为常数) 210k +> ∴该函数图象在第一、三象限 在每个象限内y 随x 的增大而减小点1(1,)A y -、1(4B 2)y 、3(1,)C y 都在反比例函数2(1k k y x +=为常数)的图象上 114-<- 点A 、B 在第三象限 点C 在第一象限213y y y ∴<<故答案为:213y y y <<.17.答案:-3<x <0或x >3 解析:⊥直线y =kx 与双曲线y =m x的两个交点分别为P 和P ′ P (-3 1) ⊥P ′的坐标为(3 -1)当mx >kx 时 x 的取值范围为-3<x <0或x >3故答案为:-3<x <0或x >3. 18.答案:48解析:如图所示:过A '作EF OC ⊥于F 交AB 于E⊥90OA D '∠=︒90OA F DA E ∴∠'+∠'=︒⊥90A F AOF O ∠'+∠'=︒D AOF AE ∴'=∠'∠D A FO AE '=∠∠'A OF DA E ∴''∠△△设A '(m n )OF m ∴= A F n '=.正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10点D 是边AB 上靠近点A 的三等分点∴ 103DE m = 10A E n '=-.310103m n m m ==-- 解得:m =6 n =8. ∴A '(6,8) ∴ 反比例函数中k =xy (0k ≠)=48 故答案为:48.19.答案:9解析:据题意可知(0,2)B 设(,)Cx y 52,sin OBC S BOC =∠=△1222x ∴⨯= 52xOC = 解得2,25x OC ==2225OC x y =+=即2425y +=得4y = 故(2,4)C 将(2,4)C 代入直线12y k x =+ 双曲线2(0)k y x x => 得到 121,8k k == 故12189k k +=+= 故答案为:9.20.答案:(0,22023解析:联立1y xy x =⎧⎪⎨=⎪⎩解得1x =由题意可知145AOB ∠=︒111B A OA ⊥11OA B ∴△为等腰直角三角形1122OB OA ∴==过2A 作22A H OB ⊥交y 轴于H 则容易得到21A H B H = 设21A H B H x == 则()2,2A x x +()21x x ∴+=解得121x = 221x =-(舍去)2121A H B H ∴== 1212222B B B H ==2222222OB ∴=+=同理可得323OB =则2n OB n =即(0,2n B n(20230,22023B ∴故答案为:(0,22023. 21.答案:(1)2y x = 1y x =+ (2)1x >或20x -<<(3)32解析:(1)反比例函数m y x =的图象过(2,1)--∴反比例函数的解析式为:2y x = 点(1),A n 在反比例函数图象上∴12n ⨯=∴2n =∴点A 的坐标为(1,2)将点A B 坐标代入一次函数y kx b =+中得221k b k b +=⎧⎨-+=-⎩解得11k b =⎧⎨=⎩∴一次函数的解析式为:1y x =+.(2)根据图象可知 不等式0m kx b x+>>的解集是:1x >或20x -<<. 故答案为:1x >或20x -<<; (3)过点A 作AG y ⊥轴于点G 过点B 作BH y ⊥轴于点H 如下图所示:一次函数1y x =+与y 轴相交于点C∴C 点坐标为(0,1)∴1OC =A 点坐标为(1,2)∴1AG =B 点坐标为(2,1)--∴2BH =∴11123222AOB AOC BOC S S S ⨯⨯=+=+=△△△. 22.答案:(1)18y x = (2)5 (3)463x <或63x << 解析:(1)⊥菱形OABC 的对角线交于点D⊥OD DB =⊥点B 的坐标为()48,⊥点D 的坐标为()24, 又⊥反比例函数11k y x=经过点D ⊥1248k =⨯= ⊥18y x =; (2)过点B 作BE y ⊥轴于点E设OA AB a == 则8AE a =- 4BE =在Rt ABE 中222BE AE AB += 即()22248x x +-= 解得:5x =⊥菱形OABC 的边长为5;(3)⊥点B 的坐标为()48, 5BC =⊥点C 的坐标为()43,代入22y k x =得:234k = 解得:234k =⊥234y x =令1y y = 则834x x = 解得:63x =±结合图象 不等式120k k x x -<的解集为463x <或463x <<.23.答案:(1))30y x =>(2)见解析(3)见解析解析:(1)过点C 作CF OA ⊥于点F 如解图所示.在Rt COF △中2OC = 60COF ∠=︒30sin 6023CF C ∴=⋅==︒1cos60212OF OC =⋅︒=⨯=.(1,3C ∴. 把(3C 代入反比例函数()0ky x x =>中得3k =∴反比例函数的表达式为)30y x =>.(2)如解图所示 所作射线CE 即为所求.(3)证明:在OABC 中//OC AB //CB OA .60AOC ∠=︒120OCB OAB ∴∠=∠=︒. CE 平分OCB ∠60OCE BCE OEC ∴∠=∠=∠=︒.DE CE ⊥90CED ∴∠=︒.180609030AED ∴∠=︒-︒-︒=︒.1801203030ADE ∴∠=︒-︒-︒=︒.AED ADE ∴∠=∠.AD AE ∴=.24.答案:(1)8 8y x= (2)01x << (3)S 的取值范围是2504S <≤ 解析:(1)⊥一次函数26y x =+的图象经过点()1,A m ⊥268m =+=⊥点()18A ,⊥反比例函数()0k y x x =>的图象经过点()18A , ⊥188k =⨯=⊥反比例函数的解析式为8y x=; 故答案为:8 8y x =;(2)观察图象得 26k x x+<的解集为1x <<; (3)设点P 的纵坐标为n ⊥点P 在线段AB 上 点M 在8y x =的图象上 ⊥0n << 点P 的横坐标为62n -⊥PM x ∥轴⊥点M 的坐标为8n n ⎛⎫ ⎪⎝⎭, ⊥862n MP n -=. ⊥()21186125322244PMBn S MP n n n n -⎛⎫=⨯⨯=⨯-⨯=--+ ⎪⎝⎭. ⊥08n << 且104-<⊥当03n <<时 S 随n 的增大而增大 当38n ≤<时 S 随n 的增大而减小. ⊥当3n =时 △的面积最大 最大值为254 ⊥S 的取值范围是2504S <≤. 25.答案:(1)抛物线的对称轴为直线2x =(2)点P 的坐标为32,2⎛⎫- ⎪⎝⎭ (3)y 的值随x 的增大而增大解析:(1)由题意得:2440b +=4b ∴=-∴函数关系式为:24y x x =-∴对称轴为:4222b x a -=-=-=; (2)由题意得:OP PB +的值最小 实际就是在同一直线一旁有两点 在直线上求点只要取O 点关于直线2x =对称的点 过AB 的直线与直线的交点就是点P设过AB 的直线为 由在上()4,0A 2x =3y kx =-()4,0B 3y kx =-得34k =334AB y x =-P 在直线2x =上332342y ∴=⨯-=-32,2P ⎛⎫∴- ⎪⎝⎭; (3)24y x x =-在x 轴下方的部分沿x 轴翻转当直线()0y x m m =+≠有两个不相同的解0∴∆> 2340m -⨯> 得94m <又0> 904m ∴<< 在反比例函数m y x=中 904m k <=< y 随x 的增大而减小. 26.答案:(1)点E 在该反比例函数的图象上 理由见解析(2)39y x =+ 323x <<解析:(1)六边形ABCDEF 为正六边形 23AB =23AB AF ∴== 60FAO =︒cos 603OA AF ∴=⋅︒= sin603AF =⋅︒=()0,3F ∴ )3,0A 连接PF PA六边形ABCDEF 为正六边形PE PF PA PB ∴=== 60EPF FPA APB ∠=∠=∠=︒EFP ∴△ FAP △ ABP △为等边三角形23AF PF ∴==()23,3P ∴ 把()23,3P 代入1k y x =得:23=解得:63k =043k ∴=-∴反比例函数表达式为163y x=. EFP △ FAP △为等边三角形∴点E 和点A 关于PF 对称)3,6E ∴ 把3x =代入163y x =得:13663y == ∴点E 在该反比例函数的图象上; (2)把()3,6E ()23,3P 代入()20y ax b a =+≠得: 6333a b a b ⎧=+⎪⎨=+⎪⎩ 解得:39a b ⎧=-⎪⎨=⎪⎩∴直线EP 的解析式为:39y x =+()3,6E ()23,3P由图可知 当323x <<时 k b x +>. 27.答案:(1)见解析(2)直线BC 的函数表达式3522y x =曲线的函数表达式4y x= (3)72 解析:(1)根据点A 的坐标为()1,0- 点B 的坐标为()1,1- 补全x 轴和y 轴 90A E ∠︒∠== 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4 ()1,4C ∴ ()4,1D根据AB BC DE EA 是线段 曲线CD 是反比例函数图象的一部分 画出图形ABCDE如图所示 (2)设线段BC 的解析式为y kx b =+ 把()1,1B - ()1,4C 代入得 14k b k b -+=⎧⎨+=⎩解得 3252k b ⎧=⎪⎪⎨⎪=⎪⎩3522y x ∴=+设曲线CD 的解析式为'k y x =把()1,4C 代入得 '41k = '4= 4y x ∴=; (3)设(),0M m 则35,22P m m ⎛⎫+ ⎪⎝⎭ 435,352222Q m m ⎛⎫ ⎪+ ⎪ ⎪+⎝⎭3522PM m ∴=+ 43522m m =-+354352222PM PQ m m m ⎛⎫ ⎪⎛⎫⋅=+- ⎪ ⎪⎝⎭ ⎪+⎝⎭23554223m m ∴--= 2915140m m ∴+-= 23m ∴= 或73m =-(舍去) 32572322PM ∴=⨯+=. 故答案为:72.。

中考数学反比例函数-经典压轴题附详细答案

中考数学反比例函数-经典压轴题附详细答案

中考数学反比例函数-经典压轴题附详细答案一、反比例函数1.已知点A,B分别是x轴、y轴上的动点,点C,D是某个函数图象上的点,当四边形ABCD(A,B,C,D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.例如:如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;(2)若某函数是反比例函数y= (k>0),他的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式;(3)若某函数是二次函数y=ax2+c(a≠0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标________,写出符合题意的其中一条抛物线解析式________,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数________.【答案】(1)解:如图1,当点A在x轴正半轴,点B在y轴负半轴上时,∵OC=0D=1,∴正方形ABCD的边长CD= ;∠OCD=∠ODC=45°,当点A在x轴负半轴、点B在y轴正半轴上时,设小正方形的边长为a,易得CL=小正方形的边长=DK=LK,故3a=CD= .解得a= ,所以小正方形边长为,∴一次函数y=x+1图象的伴侣正方形的边长为或(2)解:如图2,作DE,CF分别垂直于x、y轴,易知△ADE≌△BAO≌△CBF此时,m<2,DE=OA=BF=m,OB=CF=AE=2﹣m,∴OF=BF+OB=2,∴C点坐标为(2﹣m,2),∴2m=2(2﹣m),解得m=1.反比例函数的解析式为y= .(3)(3,4);y=﹣ x2+ ;偶数【解析】【解答】解:(3)实际情况是抛物线开口向上的两种情况中,另一个点都在(3,4)的左侧,而开口向下时,另一点都在(3,4)的右侧,与上述解析明显不符合①当点A在x轴正半轴上,点B在y轴正半轴上,点C坐标为(3,4)时:另外一个顶点为(4,1),对应的函数解析式是y=﹣ x2+ ;②当点A在x 轴正半轴上,点 B在 y轴正半轴上,点D 坐标为(3,4)时:不存在,③当点A 在 x 轴正半轴上,点 B在 y轴负半轴上,点C 坐标为(3,4)时:不存在④当点A在x 轴正半轴上,点B在y轴负半轴上,点D坐标为(3,4)时:另外一个顶点C为(﹣1,3),对应的函数的解析式是y= x2+ ;⑤当点A在x轴负半轴上,点B在y轴负半轴上,点D坐标为(3,4)时,另一个顶点C的坐标是(7,﹣3)时,对应的函数解析式是y=﹣;⑥当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D的坐标是(﹣4,7)时,对应的抛物线为y= x2+ ;∵由抛物线的伴侣正方形的定义知,一条抛物线有两个伴侣正方形,是成对出现的,∴所求出的任何抛物线的伴侣正方形个数为偶数.【分析】解答此题时,要特别注意认真读题,分析题意,注意已知条件点A,B分别是x 轴、y轴上的动点,点C,D是某个函数图象上的点。

中考数学复习 专题靶向练 反比例函数 专题

中考数学复习 专题靶向练 反比例函数 专题

中考数学复习为专题靶向练(《反比例函数》专题)一、选择题。

题号 1 2 3 4 5 6 7 8 选项1. 一反比例函数的图象经过点(-2,3),则此函数的图象也经过点( ) A .(2,-3) B .(-3,-3) C .(2,3) D .(-4,6)2. 若反比例函数y =ax 的图象分布在第一、三象限,则a 的值可以是( )A. -3B. 2C. 0D. -1 3. 在同一直角坐标系中,函数y =kx -k 与y =k|x |(k ≠0)的大致图象是( )A. ①②B. ②③C. ②④D. ③④4. 如图,点A 在反比例函数y =kx (x >0)的图象上,AB ⊥x 轴于点B ,C 是OB 的中点,连接AO ,AC ,若△AOC 的面积为2,则k =( )A. 4B. 8 C .12 D. 165. 在同一平面直角坐标系中,一次函数y 1=k 1x +b 与反比例函数y 2=k 2x (x >0)的图象如图所示,则当y 1>y 2时,自变量x 的取值范围为( )A. x <1B. x >3C. 0<x <1D. 1<x <3 6. 如图,点A ,B 在反比例函数ky x=(0k >,0x >)的图象上,AC x ⊥轴于点C ,BD x ⊥轴于点D ,BE y ⊥轴于点E ,连结AE .若1OE =,23OC OD =,AC AE =,则k 的值为( )A .2B .322C .94D .227. 已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.下列说法正确的是( )A. 函数解析式为I =13RB. 蓄电池的电压是18 VC. 当I ≤10 A 时,R ≥3.6 ΩD. 当R =6 Ω时,I =4 A8. 如图,在平面直角坐标系中,点A 、B 在函数y =k x(k >0,x >0)的图象上,过点A 作x 轴的垂线,与函数y =-k x(x >0)的图象交于点C ,连接BC 交x 轴于点D.若点A 的横坐标为1,BC =3BD ,则点B 的横坐标为( )A. 32B. 2C. 52D. 39. 如图,△AOB 和△ACD 均为等边三角形,且顶点B 、D 均在反比例函数y =k x(x >0)的图象上,若图中S △OBP =23,则k 的值为( )A. 4B. 6C. 2 3D. 3 3 二、填空题。

《反比例函数》中考常考考点专题(1)(基础篇)九年级数学下册基础知识专项讲练(人教版)

《反比例函数》中考常考考点专题(1)(基础篇)九年级数学下册基础知识专项讲练(人教版)

专题26.29《反比例函数》中考常考考点专题(1)(基础篇)(专项练习)一、单选题【知识点一】反比例函数定义的理解【考点一】反比例函➽➸描述性定义✮✮定义判断1.(2022·湖北宜昌·中考真题)已知经过闭合电路的电流I (单位:A )与电路的电阻R (单位:Ω)是反比例函数关系.根据下表判断a 和b 的大小关系为()/A I 5…a………b…1/R Ω2030405060708090100A .a b >B .a b≥C .a b<D .a b≤2.(2021·北京石景山·一模)下列两个变量之间的关系为反比例关系的是()A .圆的周长与其半径的关系B .平行四边形面积一定时,其一边长与这边上的高的关系C .销售单价一定时,销售总价与销售数量的关系D .汽车匀速行驶过程中,行驶路程与行驶时间的关系【考点二】反比例函➽➸定义✮✮参数3.(2022·辽宁抚顺·二模)下列函数中,y 是x 的反比例函数的是()A .2xy =-B .21y x =C .13y x=D .12y x=-4.(2018·黑龙江哈尔滨·中考真题)已知反比例函数y =23k x-的图象经过点(1,1),则k 的值为()A .﹣1B .0C .1D .2【考点三】反比例函➽➸自变量✮✮因变量5.(2020·广西贺州·中考真题)在反比例函数2y x=中,当=1x -时,y 的值为()A .2B .2-C .12D .12-6.(2022·河南·郸城县光明学校二模)已知点A (x 1,﹣1),B (x 2,2),C (x 3,3)都在反比例函数y 1x=-的图象上,那么x 1,x 2,x 3的大小关系是()A .x 1>x 2>x 3B .x 1>x 3>x 2C .x 3>x 2>x 1D .x 2>x 3>x 1【知识点二】反比例函数的图象和性质【考点四】反比例函数的图象和性质➽➸图象✮✮解析式7.(2020·青海·中考真题)若0ab <,则正比例函数y ax =与反比例函数by x=在同一平面直角坐标系中的大致图像可能是()A .B .C .D .8.(2022·贵州黔西·中考真题)在平面直角坐标系中,反比例函数()0ky k x=≠的图象如图所示,则一次函数2y kx =+的图象经过的象限是()A .一、二、三B .一、二、四C .一、三、四D .二、三、四【考点五】反比例函数的图象和性质➽➸对称性9.(2018·浙江湖州·中考真题)如图,已知直线y =k 1x (k 1≠0)与反比例函数y =2k x(k 2≠0)的图象交于M ,N 两点.若点M 的坐标是(1,2),则点N 的坐标是()A .(﹣1,﹣2)B .(﹣1,2)C .(1,﹣2)D .(﹣2,﹣1)10.(2008·江苏连云港·中考真题)已知某反比例函数的图象经过点()m n ,,则它一定也经过点()A .()m n -,B .()n m ,C .()m n -,D .()m n ,【考点六】反比例函数的图象和性质➽➸位置✮✮参数11.(2021·山东济南·中考真题)反比例函数()0ky k x=≠图象的两个分支分别位于第一、三象限,则一次函数y kx k =-的图象大致是()A .B .C .D .12.(2020·黑龙江大庆·中考真题)已知正比例函数1y k x =和反比例函数2k y x=,在同一直角坐标系下的图象如图所示,其中符合120k k ⋅>的是()A .①②B .①④C .②③D .③④【考点七】反比例函数的图象和性质➽➸增减性✮✮参数13.(2021·贵州黔西·中考真题)对于反比例函数y =﹣5x,下列说法错误的是()A .图象经过点(1,﹣5)B .图象位于第二、第四象限C .当x <0时,y 随x 的增大而减小D .当x >0时,y 随x 的增大而增大14.(2013·浙江衢州·中考真题)若函数2m y x+=的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是A .m <﹣2B .m <0C .m >﹣2D .m >0【考点八】反比例函数的图象和性质➽➸增减性✮✮比较大小15.(2020·天津·中考真题)若点()()()123,5,,2,,5A x B x C x -都在反比例函数10y x=的图象上,则123,,x x x 的大小关系是()A .123x x x <<B .231x x x <<C .132x x x <<D .312x x x <<16.(2020·山西·中考真题)已知点()11,A x y ,()22,B x y ,()33,C x y 都在反比例函数ky x=()0k <的图像上,且1230x x x <<<,则1y ,2y ,3y 的大小关系是()A .213y y y >>B .321y y y >>C .123y y y >>D .312y y y >>【考点九】反比例函数的图象和性质➽➸比例系数✮✮特殊图形面积17.(2022·吉林长春·中考真题)如图,在平面直角坐标系中,点P 在反比例函数ky x=(0k >,0x >)的图象上,其纵坐标为2,过点P 作PQ //y 轴,交x 轴于点Q ,将线段QP 绕点Q 顺时针旋转60°得到线段QM .若点M 也在该反比例函数的图象上,则k 的值为()AB C .D .418.(2021·甘肃兰州·中考真题)如图,点A 在反比例函数()0ky x x=>图象上,AB x ⊥轴于点B ,C 是OB 的中点,连接AO ,AC ,若AOC 的面积为2,则k =()A.4B.8C.12D.16【考点十】反比例函数的图象和性质➽➸面积✮✮(比例系数)解析式19.(2020·贵州黔东南·中考真题)如图,点A是反比例函数y6x(x>0)上的一点,过点A作AC⊥y轴,垂足为点C,AC交反比例函数y=2x的图象于点B,点P是x轴上的动点,则△PAB的面积为()A.2B.4C.6D.820.(2016·山东菏泽·中考真题)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=6x在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为()A.36B.12C.6D.3二、填空题【知识点一】反比例函数定义的理解【考点一】反比例函➽➸描述性定义✮✮定义判断21.(2022·河南·柘城县实验中学一模)从1,2,3中任取一个数作为x,从4,6中任取一个数作为y ,则点(,)x y 在反比例函数12y x=图象上的概率为_________.22.(2019·黑龙江绥化·中考模拟)矩形的面积是240m ,设它的一边长为x (单位:m ),则矩形的另一边长y (单位:m )与x 的函数关系是__________.【考点二】反比例函➽➸定义✮✮参数23.(2012·山东滨州·中考真题)下列函数:①y=2x-1;②5y=x -;③y=x 2+8x-2;④22y=x;⑤1y=2x ;⑥a y=x中,y 是x 的反比例函数的有______(填序号)24.(2014·湖南邵阳·中考真题)若反比例函数的图象经过点(﹣1,2),则k 的值是_____【考点三】反比例函➽➸自变量✮✮因变量25.(2022·黑龙江哈尔滨·中考真题)已知反比例函数6y x=-的图象经过点()4,a ,则a的值为___________.26.(2022·北京石景山·一模)在平面直角坐标系xOy 中,点()2,A m ,(),3B n 都在反比例函数6y x=的图象上,则mn 的值为______.【知识点二】反比例函数的图象和性质【考点四】反比例函数的图象和性质➽➸图象✮✮解析式27.(2020·山东菏泽·中考真题)从1-,2,3-,4这四个数中任取两个不同的数分别作为a ,b 的值,得到反比例函数aby x=,则这些反比例函数中,其图象在二、四象限的概率是______.28.(2012·湖南益阳·中考真题)反比例函数ky=x的图象与一次函数y=2x+1的图象的一个交点是(1,k ),则反比例函数的解析式是____.【考点五】反比例函数的图象和性质➽➸对称性29.(2020·北京·中考真题)在平面直角坐标系xOy 中,直线y x =与双曲线my x=交于A ,B 两点.若点A ,B 的纵坐标分别为12,y y ,则12y y +的值为_______.30.(2019·北京·中考真题)在平面直角坐标系xOy 中,点A ()a b ,()00a b >>,在双曲线1k y x=上.点A 关于x 轴的对称点B 在双曲线2ky x =上,则12k k +的值为______.【考点六】反比例函数的图象和性质➽➸位置✮✮参数31.(2015·湖北黄石·中考真题)反比例函数21a y x-=的图象有一支位于第一象限,则常数a 的取值范围是______.32.(2022·四川成都·二模)有6张正面分别标有数字﹣2,﹣1,0,1,2,3的卡片,他们除了数字不同外,其余全部相同.现将他们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为k ,则使反比例函数y =1kx-的图象分布在第二、四象限的概率为_____.【考点七】反比例函数的图象和性质➽➸增减性✮✮参数33.(2021·湖南郴州·中考真题)在反比例函数3m y x-=的图象的每一支曲线上,函数值y 随自变量x 的增大而增大,则m 的取值范围是________.34.(2021·甘肃武威·中考真题)若点()()123,,4,A y B y --在反比例函数21a y x+=的图象上,则1y ____2y (填“>”或“<”或“=”)【考点八】反比例函数的图象和性质➽➸增减性✮✮比较大小35.(2022·青海·中考真题)如图,一块砖的A ,B ,C 三个面的面积之比是5:3:1,如果A ,B ,C 三个面分别向下在地上,地面所受压强分别为1P ,2P ,3P ,压强的计算公式为FP S=,其中P 是压强,F 是压力,S 是受力面积,则1P ,2P ,3P 的大小关系为______(用小于号连接).36.(2022·山东滨州·中考真题)若点123(1,)(2,)(3,)A y B y C y --,,都在反比例函数6y x=的图象上,则123,,y y y 的大小关系为_______.【考点九】反比例函数的图象和性质➽➸比例系数✮✮特殊图形面积37.(2020·湖南株洲·中考真题)如图所示,在平面直角坐标系Oxy 中,四边形OABC为矩形,点A 、C 分别在x 轴、y 轴上,点B 在函数1ky x=(0x >,k 为常数且2k >)的图象上,边AB 与函数22(0)y x x=>的图象交于点D ,则阴影部分ODBC 的面积为________(结果用含k 的式子表示)38.(2009·黑龙江鸡西·中考真题)如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S +=_______.【考点十】反比例函数的图象和性质➽➸面积✮✮(比例系数)解析式39.(2022·广西河池·中考真题)如图,点P (x ,y )在双曲线ky x=的图象上,PA ⊥x 轴,垂足为A ,若S △AOP =2,则该反比例函数的解析式为_____.40.(2022·辽宁锦州·中考真题)如图,在平面直角坐标系中,△AOB 的边OB 在y 轴上,边AB 与x 轴交于点D ,且BD =AD ,反比例函数y =kx(x >0)的图像经过点A ,若S △OAB =1,则k 的值为___________.三、解答题41.(2016·甘肃白银·中考真题)如图,函数y1=﹣x +4的图象与函数2ky x(x >0)的图象交于A (m ,1),B (1,n )两点.(1)求k ,m ,n 的值;(2)利用图象写出当x ≥1时,y1和y2的大小关系.42.(2013·云南德宏·中考真题)如图,是反比例函数m 5y x-=的图象的一支.根据给出的图象回答下列问题:(1)该函数的图象位于哪几个象限?请确定m 的取值范围;(2)在这个函数图象的某一支上取点A (x 1,y 1)、B (x 2,y 2).如果y 1<y 2,那么x 1与x 2有怎样的大小关系?43.(2021·浙江杭州·中考真题)在直角坐标系中,设函数11k y x=(1k 是常数,10k >,0x >)与函数22y k x =(2k 是常数,20k ≠)的图象交于点A ,点A 关于y 轴的对称点为点B .(1)若点B 的坐标为()1,2-,①求1k ,2k 的值.②当12y y <时,直接写出x 的取值范围.(2)若点B 在函数33k y x=(3k 是常数,30k ≠)的图象上,求13k k +的值.44.(2021·湖北随州·一模)已知一次12y x a =-+的图象与反比例函数()20k y k x=≠的图象相交.(1)判断2y 是否经过点(),1k .(2)若1y 的图象过点(),1k ,且25a k +=.①求2y 的函数表达式.②当0x >时,比较1y ,2y 的大小.45.(2019·江西吉安·中考模拟)已知,如图,正比例函数y =ax 的图象与反比例函数图象交于A 点(3,2),(1)试确定上述正比例函数和反比例函数的表达式.(2)根据图象回答:在第一象限内,当反比例函数值大于正比例函数值时x的取值范围?(3)M(m,n)是反比例函数上一动点,其中0大于m小于3,过点M作直线MN平行x轴,交y轴于点B.过点A作直线AC平行y轴,交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.参考答案1.A【分析】根据电流I与电路的电阻R是反比例函数关系,由反比例函数图像是双曲线,在同一象限内x 和y 的变化规律是单调的,即可判断解:∵电流I 与电路的电阻R 是反比例函数关系由表格:5,20I R ==;1,100I R ==∴在第一象限内,I 随R 的增大而减小∵204080100<<<∴51a b >>>故选:A【点拨】本题考查双曲线图像的性质;解题关键是根据表格判断出双曲线在第一象限,单调递减2.B【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:A.圆的周长与其半径是正比例关系,不符合题意,B.平行四边形面积一定时,其一边长与这边上的高成反比例关系,符合题意,C.销售单价一定时,销售总价与销售数量成正比例关系,不符合题意,D.汽车匀速行驶过程中,行驶路程与行驶时间成正比例关系,不符合题意,故选B .【点拨】本题主要考查成反比例函数关系的量,关键就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.3.D 【分析】根据反比例函数的定义即形如k y x =(k 是常数,且k ≠0)的函数,对各选项进行判断即可.解:A 选项中函数是正比例函数,故不符合题意;B 选项中函数不是反比例函数,故不符合题意;C 选项中函数是正比例函数,故不符合题意;D 选项中函数符合反比例函数的定义,故符合题意;故选:D .【点拨】本题考查了反比例函数的定义.解题的关键在于对反比例定义与形式的熟练掌握与灵活运用.4.D【分析】把点的坐标代入函数解析式得出方程,求出方程的解即可.解:∵反比例函数y =23k x-的图象经过点(1,1),∴代入得:2k -3=1×1,解得:k =2,故选D .【点拨】本题考查了反比例函数图象上点的坐标特征,能根据已知得出关于k 的方程是解此题的关键.5.B【分析】把x=-1代入函数解析式可得y 的值.解:把=1x -代入2y x=得:=2y -,故选:B .【点拨】本题主要考查了反比例函数图象上点的坐标特征,图象上点的坐标适合解析式是关键.6.B【分析】根据函数解析式算出三个点的横坐标,再比较大小.解:∵点A (x 1,﹣1),B (x ,2),C (x 3,3)都在反比例函数y 1x =-的图象上,∴x 1=﹣1÷(﹣1)=1,x 2=﹣1÷212=-,x 3=﹣1÷313=-.∴x 1>x 3>x 2,故选:B .【点拨】本题考查反比例函数图象上点的坐标特征,熟练掌握根据函数析式,求点坐标.7.B【分析】由0ab <,得,a b 异号,若图象中得到的,a b 异号则成立,否则不成立.解:A.由图象可知:0,0a b >>,故A 错误;B.由图象可知:0,0a b <>,故B 正确;C.由图象可知:0,0a b ><,但正比例函数图象未过原点,故C 错误;D.由图象可知:0,0a b <<,故D 错误;故选:B .【点拨】本题考查了根据已知参数的取值范围确定函数的大致图象的问题,熟知参数对于函数图象的影响是解题的关键.8.B【分析】由图可知,反比例函数位于二、四象限,则根据反比例函数的性质可知k <0,再结合一次函数的图象和性质即可作答.解:由图可知,反比例函数位于二、四象限,∴k <0,∴y =kx +2经过一、二、四象限.故选:B .【点拨】本题主要考查了反比例函数的图象和性质以及一次函数的图象和性质,熟练掌握反比例函数和一次函数的图象和性质是解题的关键.9.A【分析】直接利用正比例函数的性质得出M ,N 两点关于原点对称,进而得出答案.解:∵直线y =k 1x (k 1≠0)与反比例函数y =2k x(k 2≠0)的图象交于M ,N 两点,∴M ,N 两点关于原点对称,∵点M 的坐标是(1,2),∴点N 的坐标是(-1,-2).故选A .【点拨】此题主要考查了反比例函数与一次函数的交点问题,正确得出M ,N 两点位置关系是解题关键.10.B解:设反比例函数解析式为为y =k x .∵反比例函数的图象经过点(m ,n ),∴k=mn ,满足条件的是B .11.D【分析】根据题意可得0k >,进而根据一次函数图像的性质可得y kx k =-的图象的大致情况.解: 反比例函数()0k y k x =≠图象的两个分支分别位于第一、三象限,0k ∴>∴一次函数y kx k =-的图象与y 轴交于负半轴,且经过第一、三、四象限.观察选项只有D 选项符合.故选D【点拨】本题考查了反比例函数的性质,一次函数图像的性质,根据已知求得0k >是解题的关键.12.B【分析】根据正比例函数和反比例函数的图象逐一判断即可.解:观察图像①可得120,0k k >>,所以120k k >,①符合题意;观察图像②可得120,0k k <>,所以120k k <,②不符合题意;观察图像③可得120,0k k ><,所以120k k <,③不符合题意;观察图像④可得120,0k k <<,所以120k k >,④符合题意;综上,其中符合120k k ⋅>的是①④,故答案为:B .【点拨】本题考查的是正比例函数和反比例函数的图像,当k >0时,正比例函数和反比例函数经过一、三象限,当k <0时,正比例函数和反比例函数经过二、四象限.13.C【分析】可以判断各个选项中的说法是否正确,从而可以解答本题.解:反比例函数y =﹣5x,A 、当x =1时,y =﹣51=﹣5,图像经过点(1,-5),故选项A 不符合题意;B 、∵k =﹣5<0,故该函数图象位于第二、四象限,故选项B 不符合题意;C 、当x <0时,y 随x 的增大而增大,故选项C 符合题意;D 、当x >0时,y 随x 的增大而增大,故选项D 不符合题意;故选C .【点拨】本题考查的是反比例函数的性质,熟练掌握反比例函数的性质是解题的关键.14.A【分析】根据反比例函数的增减性列出关于的不等式,求出的取值范围即可.解:∵函数2m y x +=的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大,∴m +2<0,解得:m <﹣2.故选A .【点拨】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.15.C【分析】因为A ,B ,C 三点均在反比例函数上,故可将点代入函数,求解123,,x x x ,然后直接比较大小即可.解:将A ,B ,C 三点分别代入10y x=,可求得1232,5,2x x x =-==,比较其大小可得:132x x x <<.故选:C .【点拨】本题考查反比例函数比较大小,解答本类型题可利用画图并结合图像单调性判别,或者直接代入对应数值求解即可.16.A【分析】首先画出反比例函数k y x=()0k <,利用函数图像的性质得到当1230x x x <<<时,1y ,2y ,3y 的大小关系.解: 反比例函数k y x =()0k <,∴反比例函数图像在第二、四象限,观察图像:当1230x x x <<<时,则213y y y >>.故选A .【点拨】本题考查的是反比例函数的图像与性质,掌握反比例函数的图像与性质是解题的关键.17.C【分析】作MN ⊥x 轴交于点N ,分别表示出ON 、MN ,利用k 值的几何意义列式即可求出结果.解:作MN ⊥x 轴交于点N ,如图所示,∵P 点纵坐标为:2,∴P 点坐标表示为:(2k ,2),PQ =2,由旋转可知:QM =PQ =2,∠PQM =60°,∴∠MQN =30°,∴MN =112QM =,QN ∴ON MN k = ,即:2k k =,解得:k =故选:C .【点拨】本题主要考查的是k 的几何意义,表示出对应线段是解题的关键.18.B【分析】根据三角形中线的性质得出4AOB S =△,然后根据反比例函数k 的几何意义得解.解:∵点C 是OB 的中点,AOC 的面积为2,∴4AOB S =△,∵AB x ⊥轴于点B ,∴142AB OB ⋅=,∴8AB OB ⋅=,∴8k =,故选:B .【点拨】本题考查了反比例函数k 的几何意义以及三角形中线的性质,熟知反比例函数k 的几何意义是解本题的关键.19.A【分析】连接OA 、OB 、PC .由于AC ⊥y 轴,根据三角形的面积公式以及反比例函数比例系数k 的几何意义得到S △APC =S △AOC =3,S △BPC =S △BOC =1,然后利用S △PAB =S △APC ﹣S △APB 进行计算.解:如图,连接OA 、OB 、PC .∵AC ⊥y 轴,∴S △APC =S △AOC =12×|6|=3,S △BPC =S △BOC =12×|2|=1,∴S △PAB =S △APC ﹣S △BPC .故选:A .【点拨】本题考查了反比例函数的比例系数k 的几何意义:在反比例函数图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.20.D【分析】设△OAC 和△BAD 的直角边长分别为a 、b ,结合等腰直角三角形的性质及图象可得出点B 的坐标,根据三角形的面积公式结合反比例函数系数k 的几何意义以及点B 的坐标即可得出结论.解:设△OAC 和△BAD 的直角边长分别为a 、b ,则点B 的坐标为(a +b ,a ﹣b ).∵点B 在反比例函数6y x =的第一象限图象上,∴(a +b )×(a ﹣b )=a 2﹣b 2=6.∴S△OAC﹣S△BAD=12a2﹣12b2=12(a2﹣b2)=12×6=3.故选D.【点拨】本题主要考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.解决该题型题目时,要设出等腰直角三角形的直角边并表示出面积,再用其表示出反比例函数上点的坐标是关键.21.1 3【分析】画树状图可得所有xy的积的等可能结果,由点(x,y)在反比例函数12 yx=图象上可得xy=12,进而求解.解:画树状图如下,2×6=12,3×4=12,∵共有6种等可能的结果,点P在反比例函数12yx=的图象上的有2种情况,∴点(x,y)在反比例函数12yx=图象上的概率为2163=.故答案为:1 3.【点拨】本题考查反比例函数与概率的结合,解题关键是掌握反比例函数的性质,画树状图求概率的方法.22.40 yx =【分析】根据矩形面积等于矩形两邻边之积即可列出函数关系式.解:∵矩形的一边长为xm,另一边长ym,面积是240m,∴40xy=,即:40 yx =.故答案为40 yx =.【点拨】本题考查了列反比列函数关系式.从题中找出相等关系是解题的关键. 23.②⑤.解:反比例函数的定义.【分析】根据反比例函数的定义逐一作出判断:①y=2x ﹣1是一次函数,不是反比例函数;②5y=x-是反比例函数;③y=x 2+8x ﹣2是二次函数,不是反比例函数;④22y=x 不是反比例函数;⑤1y=2x 是反比例函数;⑥a y=x中,a≠0时,是反比例函数,没有此条件则不是反比例函数.故答案为②⑤.24.﹣2解:试题分析:解:∵图象经过点(﹣1,2),∴k=xy=﹣1×2=﹣2.故答案为﹣2考点:待定系数法求反比例函数解析式25.32-【分析】把点的坐标代入反比例函数解析式,求出a 的值即可.解:把点()4,a 代入6y x=-得:6342a =-=-.故答案为:32-.【点拨】本题考查了反比例函数图像上点的坐标特征,明确函数图像经过一个点,这个点的坐标就符合函数解析式是解题关键.26.32【分析】把()2,A m ,(),3B n 代入反比例函数6y x =,求出m 、n 的值即可.解:∵点()2,A m ,(),3B n 都在反比例函数6y x=的图象上∴6263m n ⎧=⎪⎪⎨⎪=⎪⎩,解得32m n =⎧⎨=⎩∴32 mn=故答案为:3 2.【点拨】本题考查反比例函数解析式,把坐标代入解析式是解题的关键.27.23【分析】从1-,2,3-,4中任取两个数值作为a,b的值,表示出基本事件的总数,再表示出其积为负值的基础事件数,按照概率公式求解即可.解:从1-,2,3-,4中任取两个数值作为a,b的值,其基本事件总数有:共计12种;其中积为负值的共有:8种,∴其概率为:82 123=故答案为:2 3.【点拨】本题结合反比例函数图象的性质,考查了概率的计算,能准确写出基本事件的总数,和满足条件的基本事件数,是解题的关键.28.3 y= x解:将(1,k)代入一次函数y=2x+1得,k=2+1=3,则反比例函数解析式为3 y= x29.0【分析】根据“正比例函数与反比例函数的交点关于原点对称”即可求解.解:∵正比例函数和反比例函数均关于坐标原点O对称,∴正比例函数和反比例函数的交点亦关于坐标原点中心对称,∴120y y+=,故答案为:0.【点拨】本题考查正比例函数和反比例函数的图像性质,根据正比例函数与反比例函数的交点关于原点对称这个特点即可解题.30.0.【分析】由点A (a ,b )(a >0,b >0)在双曲线1k y x=上,可得k 1=ab ,由点A 与点B 关于x 轴的对称,可得到点B 的坐标,进而表示出k 2,然后得出答案.解:∵点A (a ,b )(a >0,b >0)在双曲线1k y x=上,∴k 1=ab ;又∵点A 与点B 关于x 轴的对称,∴B (a ,-b )∵点B 在双曲线2k y x =上,∴k 2=-ab ;∴k 1+k 2=ab+(-ab )=0;故答案为0.【点拨】考查反比例函数图象上的点坐标的特征,关于x 轴对称的点的坐标的特征以及互为相反数的和为0的性质.31.12a >【分析】由反比例函数的图象与性质可得210a ->,从而可得a 的取值范围.解:∵反比例函数的图象有一支位于第一象限,∴210a ->,解得:12a >.故答案为:12a >.【点拨】本题考查了反比例函数的图象与性质,掌握性质:对于反比例函数(0)k y k x=≠,当k >0时,函数图象位于第一、三象限,是解答的关键.32.13【分析】若双曲线y =1k x-过二、四象限,利用反比例函数的性质得出k >1,求得符合题意的数字为2,3,再利用随机事件的概率=事件可能出现的结果数÷所有可能出现的结果数即可求出结论.解:∵双曲线y =1k x -过二、四象限,∴1-k <0,即k >1∴符合题意的数字为2,3,∴该事件的概率为2163=,故答案为:13.【点拨】本题考查了概率公式,利用反比例函数的性质,找出使得事件成立的k 的值是解题的关键.33.m <3【分析】根据反比例函数的增减性,列出关于m 的不等式,进而即可求解.解:∵在反比例函数3m y x-=的图象的每一支曲线上,函数值y 随自变量x 的增大而增大,∴m -3<0,即:m <3.故答案是:m <3.【点拨】本题主要考查反比例函数的性质,掌握反比例函数k y x =,在反比例函数的图象的每一支曲线上,函数值y 随自变量x 的增大而增大,则k <0,是解题的关键.34.<【分析】先确定21a y x+=的图像在一,三象限,且在每一象限内,y 随x 的增大而减小,再利用反比例函数的性质可得答案.解:21a + >0,∴21a y x+=的图像在一,三象限,且在每一象限内,y 随x 的增大而减小,3- >4,-1y ∴<2,y 故答案为:<【点拨】本题考查的是反比例函数的性质,掌握利用反比例函数的图像与性质比较函数值的大小是解题的关键.35.123P P P <<【分析】先根据这块砖的重量不变可得压力F 的大小不变,且0F >,再根据反比例函数的性质(增减性)即可得.解: 这块砖的重量不变,∴不管,,A B C 三个面中的哪面向下在地上,压力F 的大小都不变,且0F >,P ∴随S 的增大而减小,,,A B C 三个面的面积之比是5:3:1,123P P P ∴<<,故答案为:123P P P <<.【点拨】本题考查了反比例函数的性质,熟练掌握反比例函数的增减性是解题关键.36.y 2<y 3<y 1【分析】将点A (1,y 1),B (-2,y 2),C (-3,y 3)分别代入反比例函数6y x =,并求得y 1、y 2、y 3的值,然后再来比较它们的大小.解:根据题意,得当x =1时,y 1=661=,当x =-2时,y 2=632=--,当x =-3时,y 3623==--;∵-3<-2<6,∴y 2<y 3<y 1;故答案是y 2<y 3<y 1.【点拨】本题考查了反比例函数图象与性质,此题比较简单,解答此题的关键是熟知反比例函数的性质及平面直角坐标系中各象限内点的坐标特点,属较简单题目.37.1k -【分析】根据反比例函数k 的几何意义可知:△AOD 的面积为1,矩形ABCO 的面积为k ,从而可以求出阴影部分ODBC 的面积.解:∵D 是反比例函数22(0)y x x=>图象上一点∴根据反比例函数k 的几何意义可知:△AOD 的面积为122⨯=1,∵点B 在函数1k y x=(0x >,k 为常数且2k >)的图象上,四边形OABC 为矩形,∴根据反比例函数k 的几何意义可知:矩形ABCO 的面积为k ,∴阴影部分ODBC 的面积=矩形ABCO 的面积-△AOD 的面积=k-1.故答案为:k-1.【点拨】本题考查反比例函数k的几何意义,解题的关键是正确理解k的几何意义,本题属于中等题型.38.4解:∵点A、B是双曲线3yx=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=3,∴S1+S2=3+3-1×2=4.故答案为:439.4 yx =-【分析】根据反比例函数比例系数的几何意义,即可求解.解:根据题意得:122AOPS k==,∴4k=,∵图象位于第二象限内,∴4k=-,∴该反比例函数的解析式为4 yx =-.故答案为:4 yx =-【点拨】本题主要考查了反比例函数比例系数的几何意义,熟练掌握反比例函数比例系数的几何意义是解题的关键.40.2【分析】作A过x轴的垂线与x轴交于C,证明△ADC≌△BDO,推出S△OAC=S△OAB=1,由此即可求得答案.解:设A(a,b),如图,作A过x轴的垂线与x轴交于C,则:AC=b,OC=a,AC∥OB,∴∠ACD=∠BOD=90°,∠ADC=∠BDO,∴△ADC≌△BDO,∴S△ADC=S△BDO,∴S△OAC=S△AOD+S△ADC=S△AOD+S△BDO=S△OAB=1,∴12×OC×AC=12ab=1,∴ab=2,∵A(a,b)在y=kx上,∴k=ab=2.故答案为:2.【点拨】本题考查了反比例函数的性质,三角形的面积公式,全等三角形的判定和性质等知识,解题的关键是熟练掌握所学的知识,正确作出辅助线进行解题.41.(1)m=3,k=3,n=3;(2)当1<x<3时,y1>y2;当x>3时,y1<y2;当x=1或x=3时,y1=y2.【分析】(1)把A与B坐标代入一次函数解析式求出m与n的值,将A坐标代入反比例解析式求出k的值;(2)利用图像,可知分x=1x=3,1<x<3与x>3三种情况判断出y1和y2的大小关系即可.解:(1)把A(m,1)代入y=-x+4得:1=﹣m+4,即m=3,∴A(3,1),把A(3,1)代入y=kx得:k=3,把B(1,n)代入一次函数解析式得:n=﹣1+4=3;(2)∵A(3,1),B(1,3),∴根据图像得当1<x<3时,y1>y2;当x>3时,y1<y2;当x=1或x=3时,y1=y2.42.(1)函数图象位于第二、四象限,m<5.(2)①当y1<y2<0时,x1<x2;②当0<y1<y2,x1<x2.解:试题分析:(1)根据反比例函数图象的对称性可知,该函数图象位于第二、四象限,则m﹣5<0,据此可以求得m的取值范围;(2)根据函数图象中“y值随x的增大而增大”进行判断.。

中考数学总复习《反比例函数的性质》练习题及答案

中考数学总复习《反比例函数的性质》练习题及答案

中考数学总复习《反比例函数的性质》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.对于反比例函数y=2x,下列说法正确是()A.图象经过点(2,﹣1)B.图象位于第二、四象限C.图象是中心对称图形D.当x<0时,y随x的增大而增大2.对于反比例函数y=2x,下列说法不正确的是()A.当x<0时,y随x的增大而减小B.点(-2,-1)在它的图象上C.它的图象在第一、三象限D.当x>0时,y随x的增大而增大3.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数y=4x和y=2x的图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A.3B.4C.5D.64.已知反比例函数y=k x的图象如图所示,则一次函数y=kx+k的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限5.若点M(﹣3,a),N(4,﹣6)在同一个反比例函数的图象上,则a的值为()A.8B.﹣8C.﹣7D.56.函数y=1x+√x的图象在()A.第一象限B.第一、三象限C.第二象限D.第二、四象限7.图所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC·CF的值增大。

D.当y增大时,BE·DF的值不变。

8.已知函数y=−k 2+1x的图象经过点P1(x1,y1),P2(x2,y2),如果x2<0<x1,那么()A.0<y2<y1B.y1>0>y2C.y2<y1<0D.y1<0<y29.已知双曲线y=k−1x向右平移2个单位后经过点(4,1),则k的值等于()A.1B.2C.3D.510.对于反比例函数y=k x(k≠0),下列说法正确的是()A.当k>0时,y随x增大而增大B.当k<0时,y随x增大而增大C.当k>0时,该函数图象在二、四象限D.若点(1,2)在该函数图象上,则点(2,1)也必在该函数图象上11.下列关于反比例函数y=8x的描述,正确的是()A.它的图象经过点(12,4)B.图象的两支分别在第二、四象限C.当x>2时,0<y<4D.x>0时,y随x的增大而增大12.反比例函数y= 1x的图象的两个分支分别位于()象限.A.一、二B.一、三C.二、四D.一、四二、填空题13.如图,已知点A、B在双曲线y= k x(x>0)上,AC△x轴于点C,BD△y轴于点D,AC与BD 交于点P,P是AC的中点,若△ABP的面积为3,则k=.14.如图,矩形ABCD的顶点A和对称中心在反比例函数y=k x(k≠0,x>0)的图象上,若矩形ABCD的面积为16,则k的值为.15.已知反比例函数y= k x(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为.16.若反比例函数y=﹣mx的图象经过点(﹣3,﹣2),则当x<0时,y随x的增大而.17.若点(4,m)与点(5,n)都在反比例函数y=8x(x≠0)的图象上,则m n(填>,<或=).18.如图,A(1,1),B(2,2),双曲线y= k x与线段AB有公共点,则k的取值范围是。

中考数学真题分类函数专题(反比例函数)试题及答案详解

中考数学真题分类函数专题(反比例函数)试题及答案详解

中考数学真题分类之函数专题——反比例函数一.反比例函数的定义(共2小题) 1.已知反比例函数的解析式为y =|a|−2x,则a 的取值范围是( )A .a ≠2B .a ≠﹣2C .a ≠±2D .a =±2 2.等腰三角形底角与顶角之间的函数关系是( )A .正比例函数B .一次函数C .反比例函数D .二次函数二.反比例函数的图象(共1小题)3.已知ab <0,一次函数y =ax ﹣b 与反比例函数y =ax在同一直角坐标系中的图象可能( )A .B .C .D .三.反比例函数的性质(共2小题)4.反比例函数y =2x的图象位于( )A .第一、三象限B .第二、三象限C .第一、二象限D .第二、四象限5.关于反比例函数y =5x 的图象,下列说法正确的( ) A .经过点(2,3) B .分布在第二、第四象限 C .关于直线y =x 对称D .x 越大,越接近x 轴四.反比例函数系数k 的几何意义(共3小题)6.如图,矩形OABC 的边AB 与x 轴交于点D ,与反比例函数y =kx(k >0)在第一象限的图象交于点E ,∠AOD =30°,点E 的纵坐标为1,△ODE 的面积是4√33,则k 的值是 .7.如图,矩形ABCD 的顶点A ,B 在x 轴上,且关于y 轴对称,反比例函数y =k1x(x >0)的图象经过点C ,反比例函数y =k 2x(x <0)的图象分别与AD ,CD 交于点E ,F ,若S △BEF =7,k 1+3k 2=0,则k 1等于 .8.如图,菱形ABCD 的边AB 在x 轴上,点A 的坐标为(1,0),点D (4,4)在反比例函数y =k x(x >0)的图象上,直线y =23x +b 经过点C ,与y 轴交于点E ,连接AC ,AE .(1)求k ,b 的值; (2)求△ACE 的面积.五.反比例函数图象上点的坐标特征(共8小题)9.如图,点A ,B 是直线y =x 上的两点,过A ,B 两点分别作x 轴的平行线交双曲线y =1x(x >0)于点C ,D .若AC =√3BD ,则3OD 2﹣OC 2的值为( )A .5B .3√2C .4D .2√310.、若点(﹣1,y 1),(2,y 2),(3,y 3)在反比例函数y =kx(k <0)的图象上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 3>y 2>y 1C .y 1>y 3>y 2D .y 2>y 3>y 111.如图,点A ,B 在双曲线y =3x(x >0)上,点C 在双曲线y =1x(x >0)上,若AC ∥y 轴,BC ∥x 轴,且AC =BC ,则AB 等于( ) A .√2 B .2√2 C .4 D .3√212.反比例函数y =k x(x <0)的图象如图所示,下列关于该函数图象的四个结论:①k >0;②当x <0时,y 随x 的增大而增大;③该函数图象关于直线y =﹣x 对称;④若点(﹣2,3)在该反比例函数图象上,则点(﹣1,6)也在该函数的图象上.其中正确结论的个数有 个.13.已知:函数y 1=|x |与函数y 2=1|x|的部分图象如图所示,有以下结论:①当x <0时,y 1,y 2都随x 的增大而增大; ②当x <﹣1时,y 1>y 2;③y 1与y 2的图象的两个交点之间的距离是2; ④函数y =y 1+y 2的最小值是2. 则所有正确结论的序号是 . 14.如图,在平面直角坐标系中,反比例y =kx(k >0)的图象和△ABC 都在第一象限内,AB =AC =52,BC ∥x 轴,且BC =4,点A 的坐标为(3,5).若将△ABC 向下平移m 个单位长度,A ,C 两点同时落在反比例函数图象上,则m 的值为 .15.一个不透明的口袋中有三个完全相同的小球,球上分别标有数字﹣1,1,2.第一次从袋中任意摸出一个小球(不放回),得到的数字作为点M 的横坐标x ;再从袋中余下的两个小球中任意摸出一个小球,得到的数字作为点M 的纵坐标y .(1)用列表法或树状图法,列出点M (x ,y )的所有可能结果;(2)求点M (x ,y )在双曲线y =−2x上的概率.16.如图,已知菱形ABCD 的对称中心是坐标原点O ,四个顶点都在坐标轴上,反比例函数y =k x(k ≠0)的图象与AD 边交于E (﹣4,12),F (m ,2)两点. (1)求k ,m 的值;(2)写出函数y =kx图象在菱形ABCD 内x 的取值范围.六.待定系数法求反比例函数解析式(共3小题) 17.如图,在平面直角坐标系xOy 中,A (﹣1,2).(1)将点A 向右平移3个单位长度,再向上平移1个单位长度,得到点B ,则点B 的坐标是 .(2)点C 与点A 关于原点O 对称,则点C 的坐标是 . (3)反比例函数的图象经过点B ,则它的解析式是 . (4)一次函数的图象经过A ,C 两点,则它的解析式是 .18.如图,已知平行四边形OABC 中,点O 为坐标原点,点A (3,0),C (1,2),函数y =kx (k ≠0)的图象经过点C . (1)求k 的值及直线OB 的函数表达式: (2)求四边形OABC 的周长.19.如图,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,2),将线段AB绕点A 顺时针旋转90°得到线段AC ,反比例函数y =kx(k ≠0,x >0)的图象经过点C .(1)求直线AB 和反比例函数y =kx (k ≠0,x >0)的解析式;(2)已知点P 是反比例函数y =kx (k ≠0,x >0)图象上的一个动点,求点P 到直线AB 距离最短时的坐标.七.反比例函数与一次函数的交点问题(共5小题)20.如图,在同一平面直角坐标系中,一次函数y 1=kx +b (k 、b 是常数,且k ≠0)与反比例函数y 2=cx(c 是常数,且c ≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是( )A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <221.如图,一次函数y 1=(k ﹣5)x +b 的图象在第一象限与反比例函数y 2=kx的图象相交于A ,B 两点,当y 1>y 2时,x 的取值范围是1<x <4,则k = .22.已知直线y =ax (a ≠0)与反比例函数y =kx(k ≠0)的图象一个交点坐标为(2,4),则它们另一个交点的坐标是 .23.如图,已知反比例函数y =k x(x >0)的图象与一次函数y =−12x +4的图象交于A 和B (6,n )两点. (1)求k 和n 的值;(2)若点C (x ,y )也在反比例函数y =kx(x >0)的图象上,求当2≤x ≤6时,函数值y 的取值范围.24.如图,一次函数y =mx +b 的图象与反比例函数y =kx的图象交于A (3,1),B (−12,n )两点.(1)求该反比例函数的解析式;(2)求n 的值及该一次函数的解析式.八.反比例函数的应用(共1小题)25.南宁至玉林高速铁路已于去年开工建设.玉林良睦隧道是全线控制性工程,首期打通共有土石方总量为600千立方米,设计划平均每天挖掘土石方x 千立方米,总需用时间y 天,且完成首期工程限定时间不超过600天. (1)求y 与x 之间的函数关系式及自变量x 的取值范围;(2)由于工程进度的需要,实际平均每天挖掘土石方比原计划多0.2千立方米,工期比原计划提前了100天完成,求实际挖掘了多少天才能完成首期工程?九.反比例函数综合题(共1小题)26.在平面直角坐标系中,矩形ABCD的顶点坐标为A(0,0),B(6,0),C(6,8),D(0,8),AC,BD交于点E.(1)如图(1),双曲线y=k1x过点E,直接写出点E的坐标和双曲线的解析式;(2)如图(2),双曲线y=k2x 与BC,CD分别交于点M,N,点C关于MN的对称点C′在y轴上.求证△CMN~△CBD,并求点C′的坐标;(3)如图(3),将矩形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线y=k3x与AD交于点P.当△AEP为等腰三角形时,求m的值.参考答案与试题解析一.反比例函数的定义(共2小题) 1.【解答】解:根据反比例函数解析式中k 是常数,不能等于0,由题意可得:|a |﹣2≠0, 解得:a ≠±2, 故选:C . 2.【解答】解:设等腰三角形的底角为y ,顶角为x ,由题意,得y =−12x +90°, 故选:B .二.反比例函数的图象(共1小题)3.【解答】解:若反比例函数y =ax经过第一、三象限,则a >0.所以b <0.则一次函数y =ax ﹣b 的图象应该经过第一、二、三象限;若反比例函数y =ax经过第二、四象限,则a <0.所以b >0.则一次函数y =ax ﹣b 的图象应该经过第二、三、四象限. 故选项A 正确; 故选:A .三.反比例函数的性质(共2小题) 4.【解答】解:∵k =2>0,∴反比例函数经过第一、三象限; 故选:A .5.【解答】解:A 、把点(2,3)代入反比例函数y =5x得2.5≠3不成立,故A 选项错误;B 、∵k =5>0,∴它的图象在第一、三象限,故B 选项错误;C 、反比例函数有两条对称轴,y =x 和y =﹣x ;当x <0时,x 越小,越接近x 轴,故C 选项正确;D 、反比例函数有两条对称轴,y =x 和y =﹣x ;当x <0时,x 越小,越接近x 轴,故D 选项错误. 故选:C .四.反比例函数系数k 的几何意义(共3小题) 6.【解答】解:如图,作EM ⊥x 轴于点M ,则EM =1. ∵△ODE 的面积是4√33, ∴12OD •EM =4√33,∴OD =8√33. 在直角△OAD 中,∵∠A =90°,∠AOD =30°, ∴∠ADO =60°,∴∠EDM =∠ADO =60°.在直角△EMD 中,∵∠DME =90°,∠EDM =60°, ∴DM =EM tan60°=√3=√33, ∴OM =OD +DM =3√3, ∴E (3√3,1).∵反比例函数y =kx(k >0)的图象过点E ,∴k =3√3×1=3√3. 故答案为3√3.7.【解答】解:设点B 的坐标为(a ,0),则A 点坐标为(﹣a ,0) 由图象可知,点C (a ,k 1a),E (﹣a ,−k 2a),D (﹣a ,k 1a),F (−a3,k 1a) 矩形ABCD 面积为:2a •k 1a=2k 1∴S △DEF =DE⋅DF 2=23a×(−2k 2a)2=−23k 2S △BCF =CF⋅BC2=43a×k 1a2=23k 1S △ABE =AB⋅AE2=2a×(−k 2a)2=−k 2∵S △BEF =7∴2k 1+23k 2−23k 1+k 2=7 ①∵k 1+3k 2=0∴k 2=−13k 1代入①式得43k 1+53×(−13k 1)=7解得k 1=9 故答案为:9 8.【解答】解:(1)由已知可得AD =5, ∵菱形ABCD ,∴B (6,0),C (9,4),∵点D (4,4)在反比例函数y =kx(x >0)的图象上, ∴k =16,将点C (9,4)代入y =23x +b ,∴b =﹣2;(2)E (0,﹣2),直线y =23x ﹣2与x 轴交点为(3,0), ∴S △AEC =12×2×(2+4)=6;五.反比例函数图象上点的坐标特征(共8小题) 9.【解答】解:延长CA 交y 轴于E ,延长BD 交y 轴于F . 设A 、B 的横坐标分别是a ,b , ∵点A 、B 为直线y =x 上的两点, ∴A 的坐标是(a ,a ),B 的坐标是(b ,b ).则AE =OE =a ,BF =OF =b .∵C 、D 两点在交双曲线y =1x (x >0)上,则CE =1a,DF =1b. ∴BD =BF ﹣DF =b −1b,AC =1a−a .又∵AC =√3BD , ∴1a−a =√3(b −1b),两边平方得:a 2+1a2−2=3(b 2+1b2−2),即a 2+1a 2=3(b 2+1b2)﹣4,在直角△ODF 中,OD 2=OF 2+DF 2=b 2+1b2,同理OC 2=a 2+1a2, ∴3OD 2﹣OC 2=3(b 2+1b 2)﹣(a 2+1a2)=4.故选:C .10.【解答】解:∵k <0,∴在每个象限内,y 随x 值的增大而增大, ∴当x =﹣1时,y 1>0, ∵2<3, ∴y 2<y 3<y 1 故选:C .11.【解答】解:点C在双曲线y=1x上,AC∥y轴,BC∥x轴,设C(a,1a ),则B(3a,1a),A(a,3a),∵AC=BC,∴3a −1a=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2√2,故选:B.12.【解答】解:观察反比例函数y=kx (x<0)的图象可知:图象过第二象限,∴k<0,所以①错误;因为当x<0时,y随x的增大而增大;所以②正确;因为该函数图象关于直线y=﹣x对称;所以③正确;因为点(﹣2,3)在该反比例函数图象上,所以k=﹣6,则点(﹣1,6)也在该函数的图象上.所以④正确.所以其中正确结论的个数为3个.故答案为3.13.【解答】解:补全函数图象如图:①当x<0时,y1随x的增大而减小,y2随x的增大而增大;故①错误;②当x<﹣1时,y1>y2;故②正确;③y1与y2的图象的两个交点之间的距离是2;故③正确;④∵(x﹣1)2≥0,∴x2+1≥2|x|,∵y=y1+y2=|x|+1|x|=x2+1|x|≥2,∴函数y =y 1+y 2的最小值是2. 故④正确.综上所述,正确的结论是②③④. 故答案为②③④.14.【解答】解:∵AB =AC =52,BC =4,点A (3,5). ∴B (1,72),C (5,72), 将△ABC 向下平移m 个单位长度,∴A (3,5﹣m ),C (5,72−m ), ∵A ,C 两点同时落在反比例函数图象上,∴3(5﹣m )=5(72−m ), ∴m =54;故答案为54;15.【解答】解:(1)用树状图表示为: 点M (x ,y )的所有可能结果;(﹣1,1)(﹣1,2)(1,﹣1)(1,2)(2,﹣1)(2,1)共六种情况.(2)在点M 的六种情况中,只有(﹣1,2)(2,﹣1)两种在双曲线y =−2x上, ∴P =26=13;因此,点M (x ,y )在双曲线y =−2x上的概率为13.16.【解答】解:(1)∵点E (﹣4,12)在y =k x上,∴k =﹣2,∴反比例函数的解析式为y =−2x, ∵F (m ,2)在y =−2x上,∴m =﹣1.(2)函数y =kx图象在菱形ABCD 内x 的取值范围为:﹣4<x <﹣1或1<x <4.六.待定系数法求反比例函数解析式(共3小题) 17.【解答】解:(1)将点A 向右平移3个单位长度,再向上平移1个单位长度,得到点B ,则点B 的坐标是(2,3);(2)点C 与点A 关于原点O 对称,则点C 的坐标是(1,﹣2);(3)设反比例函数解析式为y =kx, 把B (2,3)代入得:k =6,∴反比例函数解析式为y =6x;(4)设一次函数解析式为y =mx +n ,把A (﹣1,2)与C (1,﹣2)代入得:{−m +n =2m +n =−2,解得:{m =−2n =0,则一次函数解析式为y =﹣2x .故答案为:(1)(2,3);(2)(1,﹣2);(3)y =6x;(4)y =﹣2x .18.【解答】解:(1)依题意有:点C (1,2)在反比例函数y =kx(k ≠0)的图象上,∴k =xy =2, ∵A (3,0) ∴CB =OA =3, 又CB ∥x 轴, ∴B (4,2),设直线OB 的函数表达式为y =ax , ∴2=4a ,∴a =12,∴直线OB 的函数表达式为y =12x ;(2)作CD ⊥OA 于点D , ∵C (1,2),∴OC =√12+22=√5, 在平行四边形OABC 中, CB =OA =3,AB =OC =√5,∴四边形OABC 的周长为:3+3+√5+√5=6+2√5, 即四边形OABC 的周长为6+2√5.19.【解答】解:(1)将点A(1,0),点B(0,2),代入y=mx+b,∴b=2,m=﹣2,∴y=﹣2x+2;∵过点C作CD⊥x轴,∵线段AB绕点A顺时针旋转90°得到线段AC,∴△ABO≌△CAD(AAS),∴AD=OB=2,CD=OA=1,∴C(3,1),∴k=3,∴y=3x ;(2)设与AB平行的直线y=﹣2x+h,联立﹣2x+h=3x ,∴﹣2x2+hx﹣3=0,当△=h2﹣24=0时,h=2√6或﹣2√6(舍弃),此时点P到直线AB距离最短;∴P(√62,√6);七.反比例函数与一次函数的交点问题(共5小题)20.【解答】解:∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=c x (c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2.故选:C.21.【解答】解:由已知得A、B的横坐标分别为1,4,所以有{k −5+b =k4(k −5)+b =k 4解得k =4, 故答案为4. 22.【解答】解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(2,4)关于原点对称, ∴该点的坐标为(﹣2,﹣4). 故答案为:(﹣2,﹣4).23.【解答】解:(1)当x =6时,n =−12×6+4=1, ∴点B 的坐标为(6,1). ∵反比例函数y =kx 过点B (6,1),∴k =6×1=6. (2)∵k =6>0,∴当x >0时,y 随x 值增大而减小, ∴当2≤x ≤6时,1≤y ≤3.24.【解答】解:(1)∵反比例函数y =kx的图象经过A (3,1), ∴k =3×1=3,∴反比例函数的解析式为y =3x;(2)把B (−12,n )代入反比例函数解析式,可得 −12n =3, 解得n =﹣6,∴B (−12,﹣6),把A (3,1),B (−12,﹣6)代入一次函数y =mx +b ,可得{1=3m +b−6=−12m +b,解得{m =2b =−5,∴一次函数的解析式为y =2x ﹣5.八.反比例函数的应用(共1小题)25.【解答】解:(1)根据题意可得:y =600x, ∵y ≤600, ∴x ≥1;(2)设实际挖掘了m天才能完成首期工程,根据题意可得:600 m −600m+100=0.2,解得:m=﹣600(舍)或500,检验得:m=500是原方程的根,答:实际挖掘了500天才能完成首期工程.九.反比例函数综合题(共1小题)26.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴DE=EB,∵B(6,0),D(0,8),∴E(3,4),∵双曲线y=k1x 过点E,∴k1=12.∴反比例函数的解析式为y=12x.(2)如图2中,∵点M,N在反比例函数的图象上,∴DN•AD=BM•AB,∵BC=AD,AB=CD,∴DN•BC=BM•CD,∴DNBM =CDBC,∴DNCD =BMCB,∴CNCD =CMCB,∵∠MCN =∠BCD , ∴△MCN ∽△BCD , ∴∠CNM =∠CDB , ∴MN ∥BD ,∴△CMN ∽△CBD . ∵B (6,0),D (0,8),∴直线BD 的解析式为y =−43x +8, ∵C ,C ′关于MN 对称, ∴CC ′⊥MN , ∴CC ′⊥BD , ∵C (6,8),∴直线CC ′的解析式为y =34x +72, ∴C ′(0,72).(3)如图3中,①当AP =AE =5时,∵P (m ,5),E (m +3,4),P ,E 在反比例函数图象上, ∴5m =4(m +3), ∴m =12.②当EP =AE 时,点P 与点D 重合,∵P (m ,8),E (m +3,4),P ,E 在反比例函数图象上, ∴8m =4(m +3), ∴m =3.③显然PA ≠PE ,若相等,点P 在点E 的下方,显然不可能. 综上所述,满足条件的m 的值为3或12.。

中考数学专题复习:反比例函数综合题

中考数学专题复习:反比例函数综合题
设P(a,0),
当AB=AP时,5=
1−
2
+ 32 ,
解得a=5或a=-3(舍去),
故P(5,0);
当AB=PB时,5=|-3-a|,
解得a=-8或a=2,
故P(-8,0)或(2,0).
综上所述,符合条件的点P的坐标为(2,0)或(5,0)或(-8,0).
2 . Rt△ABC 在 直 角 坐 标 系 内 的 位 置 如 图 所 示 , 反 比 例 函 数 y =
∴OC=CE=2.
∵∠AEC=∠DOC=90°,∠ACE=∠DCO,
∴△AEC≌△DOC(ASA).
∴AE=OD=1.
∴A(-1,4).

∵点A在反比例函数y2= 的图象上,

∴k=-1×4=-4.
4
∴反比例函数的表达式为y2=- .

= −2 + 2,
1 = −1,
4
(2)方程组ቐ
的解为ቊ
(1)点A及点D的坐标;

(2)反比例函数y= 经过点F关于y轴的对称点F′,求k的值;

(3)点G和点H在直线AB上,平面内存在点P,使以E,G,H,P为顶
点的四边形是边长为6的菱形,符合条件的菱形有几个?请直接写出
满足条件的两个点P的坐标.
(1)点A的坐标为(8,0),点D的坐标为(4,3)
的菱形有5个,点P的坐标为
出两个即可)
158
144

25
25

48
(2)k=-
25
14
18
− ,
5
5

(3)符合条件
34

5

18

中考数学易错题专题训练-反比例函数练习题及答案解析

中考数学易错题专题训练-反比例函数练习题及答案解析

中考数学易错题专题训练-反比例函数练习题及答案解析一、反比例函数1.平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,AD交y轴于P点(1)已知点A的坐标是(2,3),求k的值及C点的坐标;(2)在(1)的条件下,若△APO的面积为2,求点D到直线AC的距离.【答案】(1)解:∵点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,∴3= ,点C与点A关于原点O对称,∴k=6,C(﹣2,﹣3),即k的值是6,C点的坐标是(﹣2,﹣3);(2)解:过点A作AN⊥y轴于点N,过点D作DM⊥AC,如图,∵点A(2,3),k=6,∴AN=2,∵△APO的面积为2,∴,即,得OP=2,∴点P(0,2),设过点A(2,3),P(0,2)的直线解析式为y=kx+b,,得,∴过点A(2,3),P(0,2)的直线解析式为y=0.5x+2,当y=0时,0=0.5x+2,得x=﹣4,∴点D的坐标为(﹣4,0),设过点A(2,3),B(﹣2,﹣3)的直线解析式为y=mx+b,则,得,∴过点A(2,3),C(﹣2,﹣3)的直线解析式为y=1.5x,∴点D到直线AC的直线得距离为:= .【解析】【分析】(1)根据点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,可以求得k的值和点C的坐标;(2)根据△APO的面积为2,可以求得OP的长,从而可以求得点P的坐标,进而可以求得直线AP的解析式,从而可以求得点D的坐标,再根据点到直线的距离公式可以求得点D到直线AC的距离.2.如图,点P( +1,﹣1)在双曲线y= (x>0)上.(1)求k的值;(2)若正方形ABCD的顶点C,D在双曲线y= (x>0)上,顶点A,B分别在x轴和y 轴的正半轴上,求点C的坐标.【答案】(1)解:点P(,)在双曲线上,将x= ,y= 代入解析式可得:k=2;(2)解:过点D作DE⊥OA于点E,过点C作CF⊥OB于点F,∵四边形ABCD是正方形,∴AB=AD=BC,∠CBA=90°,∴∠FBC+∠OBA=90°,∵∠CFB=∠BOA=90°,∴∠FCB+∠FBC=90°,∴∠FBC=∠OAB,在△CFB和△AOB中,,∴△CFB≌△AOB(AAS),同理可得:△BOA≌△AED≌△CFB,∴CF=OB=AE=b,BF=OA=DE=a,设A(a,0),B(0,b),则D(a+b,a)C(b,a+b),可得:b(a+b)=2,a(a+b)=2,解得:a=b=1.所以点C的坐标为:(1,2).【解析】【分析】(1)由待定系数法把P坐标代入解析式即可;(2)C、D均在双曲线上,它们的坐标就适合解析式,设出C坐标,再由正方形的性质可得△CFB≌△AOB△BOA≌△AED≌△CFB,代入解析式得b(a+b)=2,a(a+b)=2,即可求出C坐标.3.如图、在矩形OABC中,,双曲线与矩形两边BC,AB 分别交于E,F两点.(1)如图一,若E是BC中点,求点F的坐标;(2)如图二,若将沿直线EF对折,点B恰好落在x轴上的点D处,求k的值. 【答案】(1)解:矩形OABC中,,,E是BC中点,点 .点E在双曲线上,..点F的横坐标为4,且在双曲线上,,即点;(2)解:过点E做轴于H点,点点, ., .,,,∽ .,,.,,.【解析】【分析】(1)根据E点坐标求出k的值,而后把F点的横坐标代入反比例函数解析式求出纵坐标;(2)过点E做轴于H点,根据∽,分别用k 表示出DF、AF、AD长度,根据勾股定理构造出关于k的方程.4.在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(﹣ 2,﹣ 2),(,),…,都是梦之点,显然梦之点有无数个.(1)若点P(2,b)是反比例函数 (n为常数,n≠0)的图象上的梦之点,求这个反比例函数解析式;(2)⊙O的半径是,①求出⊙O上的所有梦之点的坐标;②已知点M(m,3),点Q是(1)中反比例函数图象上异于点P的梦之点,过点Q的直线l与y轴交于点A,∠OAQ=45°.若在⊙O上存在一点N,使得直线MN∥l或MN⊥l,求出m的取值范围.【答案】(1)解:∵P(2,b)是梦之点,∴b=2∴P(2,2)将P(2,2)代入中得n=4∴反比例函数解析式是(2)解:①设⊙O上梦之点坐标是(,)∴∴=1或 =-1∴⊙O上所有梦之点坐标是(1,1)或(-1,-1)②由(1)知,异于点P的梦之点Q的坐标为(-2,-2)由已知MN∥l或MN⊥l∴直线MN为y=-x+b或y=x+b当MN为y=-x+b时,m=b-3由图可知,当直线MN平移至与⊙O相切时,且切点在第四象限时,b取得最小值,此时MN记为,其中为切点,为直线与y轴的交点∵△O 为等要直角三角形,∴O =∴O =2∴b的最小值是-2,∴m的最小值是-5当直线MN平移至与⊙O相切时,且切点在第二象限时,b取得最大值,此时MN记为,其中为切点,为直线与y轴的交点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数
典型例题:
例1. 下列各题中,哪些是反比例函数关系。

(1)三角形的面积S一定时,它的底a与这个底边上的高h的关系; (2)多边形的内角和与边数的关系;
(3)正三角形的面积与边长之间的关系;
(4)直角三角形中两锐角间的关系;
(5)正多边形每一个中心角的度数与正多边形的边数的关系;
(6)有一个角为
的直角三角形的斜边与一直角边的关系。

解:成反比例关系的是(1)、(5)
点拨:若判断困难时,应一一写出函数关系式来进行求解。

例2. 在同一坐标系中,画出

的图象,并求出交点坐标。

点悟:
的图象是双曲线,两支分别在一、三象限,在每一个象限内,y随x的增大而减小。

并且每一支都向两方无限接近x、y轴。


的图象是过原点的直线。

解:

双曲线
与直线
相交于(2,4),(
)两点。

点拨:本题求解使用了“数形结合”的思想。

例3. 当n取什么值时,
是反比例函数?它的图象在第几象限内?在每个象限内,y随x增大而增大或是减小?
点悟:根据反比例函数的定义:
,可知
是反比例函数,必须且只需

解:
是反比例函数,则

故当
时,
表示反比例函数
双曲线两支分别在二、四象限内,并且y随x的增大而增大。

点拨:判断一个函数是否是反比例函数,惟一的标准就是看它是否符合定义。

例4. 若点(3,4)是反比例函数
图象上一点,则此函数图象必经过点( )
A. (2,6)
B. (2,-6)
C. (4,-3)
D. (3,-4)
(2002年武汉)点悟:将点(3,4)代入函数式求出m的值。

解:将点(3,4)代入已知反比例函数解析式,得


将A点坐标代入满足上式,故选A。

点拨:本题中求
的值的整体思想是巧妙解题的关键。

例5. a取哪些值时,
是反比例函数?求函数解析式?
解:
解得


时,

时,

时,函数
是反比例函数,其解析式为
点拨:反比例函数可写成
,在具体解题时应注意这种表达形式,应特别注意对
这一条件的讨论。

例6. 若函数
是反比例函数,求其函数解析式。

解:由题意,得

故所求解析式为
点拨:在确定函数解析式时,不仅要对指数进行讨论,而且要注意对x的系数的条件的讨论,二者缺一不可。

例7. (1)已知
,而

成反比例,

成正比例,并且
时,

时,
,求y与x的函数关系式; (2)直线


平行且过点(3,4),求
的解析式。

解:(1)

成反比例,

成正比例





代入 得
(2)

平行

过点(3,4)

直线
的解析式为
点拨:这是一道综合题,应注意综合应用有关知识来解之。

例8. 一定质量的二氧化碳,当它的体积
时,它的密度
(1)求
与V的函数关系式; (2)求当
时二氧化碳的密度。

解:(1)由物理知识可知,质量m,体积V,密度
之间的关系为。




(2)将
代入上式,得
点拨:这是课本上的一道习题,它具有典型性,其意义在于此题与物理知识、化学知识形成了很好的结合,且V的取值可变化。

例9. 在以坐标轴为渐近线的双曲线上,有一点P(m,n),它的坐标是方程
的两个根,求双曲线的函数解析式。

点悟:因为反比例函数
的图象是以坐标轴为渐近线的双曲线。

所以,不妨设所求的函数解析式为。

然后把双曲线上一点的坐标代入,即可求出k的值。

解:由方程
解得

P点坐标为(
)或(

设双曲线的函数解析式为
, 将

代入
,得


代入
,得
故所求函数解析式为
点拨:只需知道曲线
上一点即可确定k。

例10. 如图,
的锐角顶点是直线
与双曲线
在第一象限的交点,且
(1)求m的值 (2)求
的值
解:(1)设A点坐标为(a,b)(

) 则



A在双曲线

,即

(2)
点A是直线与双曲线的交点

A(

由直线知C(-6,0)


点拨:三角形面积和反比例函数的关系,常用来求某些未知元素(如本例中的m)
模拟试题
一. 选择题
1. 函数
是反比例函数,则m的值是( )
A.

B.
C.
D.
2. 下列函数中,是反比例函数的是( )
A.
B.
C.
D.
3. 函数


)的图象的交点个数是( )
A. 0
B. 1
C. 2
D. 不确定
4. 函数

的图象可能是( )
A B C D
5. 若y与x成正比,y与z的倒数成反比,则z是x的( )
A. 正比例函数
B. 反比例函数
C. 二次函数
D. z随x增大而增大
6. 下列函数中y既不是x的正比例函数,也不是反比例函数的是( )
A.
B.
C.
D.
二. 填空题
7. 一般地,函数__________是反比例函数,其图象是_________,当
时,图象两支在__________象限内。

8. 已知反比例函数
,当
时,
_________
9. 反比例函数
的函数值为4时,自变量x的值是_________
10. 反比例函数的图象过点(-3,5),则它的解析式为_________
11. 若函数

的图象有一个交点是(
,2),则另一个交点坐标是_________
三. 解答题
12. 直线
过x轴上的点A(
,0),且与双曲线
相交于B、C两点,已知B点坐标为(
,4),求直线和双曲线的解析式。

13. 已知一次函数
与反比例函数
的图象的一个交点为P(a,b),且P到原点的距离是10,求a、b的值及反比例函数的解析式。

14. 已知函数
是一次函数,它的图象与反比例函数
的图象交于一点,交点的横坐标是
,求反比例函数的解析式。

试题答案:
一. 1. B 2. B 3. A 4. A 5.
A 6. C
二. 7.

;双曲线;二、四
8.
9.
10.
11. (


三. 12. 由题意知点A(
,0),点B(
,4)在直线
上,由此得
点B(
,4)在双曲线


双曲线解析式为
13. 由题设,得




14. 由已知条件
使
代入
因图象交于一点,
即。

相关文档
最新文档