高中数学排列组合知识点
高一排列组合知识点

高一排列组合知识点排列组合是高中数学中的重要内容之一,它是组合数学的基础概念,也是解决许多实际问题的数学工具。
在高一阶段,排列组合的学习主要集中在基本的知识点上。
本文将为大家介绍高一阶段排列组合的基础知识点及其应用。
一、排列与组合的概念排列和组合是组合数学中的两个基本概念。
排列是指从一组元素中有序地选出若干个元素进行排列,排列中的元素不能重复使用;而组合则是从一组元素中无序地选出若干个元素进行组合,组合中的元素可以重复使用。
排列和组合的计算方法也有所不同,下面分别介绍。
二、排列的计算方法排列的计算方法有两种情况:有放回和无放回的排列。
1. 有放回的排列有放回的排列是指从一组元素中有序地选出若干个元素进行排列,并且选过的元素可以重新放回原来的组合中。
假设有n个元素,要选出k个元素进行排列,则有放回的排列数为n^k。
2. 无放回的排列无放回的排列是指从一组元素中有序地选出若干个元素进行排列,并且选过的元素不能重新放回原来的组合中。
假设有n个元素,要选出k个元素进行排列,则无放回的排列数为n!/(n-k)!,其中“!”表示阶乘。
三、组合的计算方法组合的计算方法也有两种情况:有放回和无放回的组合。
1. 有放回的组合有放回的组合是指从一组元素中无序地选出若干个元素进行组合,并且选过的元素可以重新放回原来的组合中。
假设有n个元素,要选出k个元素进行组合,则有放回的组合数为C(n+k-1, k),其中C表示组合数。
2. 无放回的组合无放回的组合是指从一组元素中无序地选出若干个元素进行组合,并且选过的元素不能重新放回原来的组合中。
假设有n个元素,要选出k个元素进行组合,则无放回的组合数为C(n, k)。
四、排列组合的应用排列组合不仅是一种数学工具,也是许多实际问题的解决方法。
在高一数学中,排列组合的应用主要包括以下几个方面:1. 判断有关事件发生顺序的概率问题。
排列可以用于计算事件发生的不同顺序,从而求解事件发生的概率。
高中数学排列组合知识点

排列组合复习巩固1.分类计数原理(加法原理)完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,…,在第类办法中有种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,做第步有种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有然后排首位共有最后排其它位置共有由分步计数原理得练习题:7种不同的花种在排成一列的xx,若两种葵花不种在中间,也不种在两端的xx,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有种不同的排法乙甲丁丙三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种不同的方法,由分步计数原理,节目的不同顺序共有种四.定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有种方法,其余的三个位置甲乙丙共有 1种坐法,则共有种方法。
高中数学排列组合

1、排列定义
一般地,从n个不同元素中取出m(m≤n) 个元素按照一定顺序排成一列,叫做从n个不同 元素中取出m个元素的一个排列.
排列的定义中包含两个基本内容: 一是“取出元素”;二是“按照一定顺序排列”.“一定 顺序”就是与位置有关,这也是判断一个问题是不是排列问 题的重要标志.
根据排列的定义,两个排列相同,当且仅当这两个排 列的元素完全相同,而且元素的排列顺序也完全相同.
思考 上述问题1,2 的共同特点是什么?你能将它 们推广到一般情形吗?
一般地,从n个不同的元素中取出m(m n)个元素, 按 照 一 定 顺 序 排 成 一 列,叫 做 从n个 不 同 元 素 中 取
出m个元素的一个排列 (arrangement).
思考 你能归纳一下排列的特征吗?
根据排列的定义,两个排列相同,当且仅当两个排 列的元素完全相同,且元素的排列顺序也相同.例 如在问题2中,123与134的元素不完全相同,它们 是 不 同 的 排 列;123与132虽 然 元 素 完 全 相 同, 但 元 素的排列顺序不同,它们也是不同的排列.
(5)20位同学互通一次电话 (6)20位同学互通一封信
(7)以圆上的10个点为端点作弦 (8)以圆上的10个点中的某一点为起点,作 过另一个点的射线
(9)有10个车站,共需要多少种车票? (10)有10个车站,共需要多少种不同的票价?
例2.某年全国足球甲级 A组 联赛有14
个队参加, 每队要与其余各队在主、客场 分别比赛一次, 共进行多少场比赛?
nn
1n
2 n n m
m 1n
2 1
m
2
1
n! nm!
A
n n
A nm nm
.
高中数学选修2-3-排列与组合

排列与组合知识集结知识元排列与排列数公式知识讲解1.排列及排列数公式【考点归纳】1.定义(1)排列:一般地,从n个不同的元素中任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(其中被取的对象叫做元素)(2)排列数:从n个不同的元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号表示.2.相关定义:(1)全排列:一般地,n个不同元素全部取出的一个排列,叫做n个不同元素的一个全排列.(2)n的阶乘:正整数由1到n的连乘积,叫做n的阶乘,用n!表示.(规定0!=1)3.排列数公式(1)排列计算公式:=.m,n∈N+,且m≤n.(2)全排列公式:=n•(n﹣1)•(n﹣2)•…•3•2•1=n!.例题精讲排列与排列数公式例1.(x-2)(x-3)(x-4)…(x-15)(x∈N+,x>15)可表示为()A.A B.A C.A D.A例2.若=12,则n=()A.8B.7C.6D.4例3.已知=15,那么=()A.20B.30C.42D.72组合与组合数公式知识讲解1.组合及组合数公式【考点归纳】1.定义(1)组合:一般地,从n个不同元素中,任意取出m(m≤n)个元素并成一组,叫做从n个元素中任取m个元素的一个组合.(2)组合数:从n个不同元素中,任意取出m(m≤n)个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m个元素的组合数,用符号表示.2.组合数公式:=.m,n∈N+,且m≤n.3.组合数的性质:性质1性质2.例题精讲组合与组合数公式例1.'排球单循环赛南方球队比北方球队多9支南方球队总得分是北方球队的9倍求证冠军是一支南方球队(胜得1分败得0分).'例2.'一个袋子里装有大小相同且标有数字1~5的若干个小球,其中标有数字1的小球有1个,标有数字2的小球有2个,…,标有数字5的小球有5个.(Ⅰ)从中任意取出1个小球,求取出的小球标有数字3的概率;(Ⅱ)从中任意取出3个小球,求其中至少有1个小球标有奇数数字的概率;(Ⅲ)从中任意取出2个小球,求小球上所标数字之和为6的概率.'例3.'求C3n38-n+C21+n3n的值.'排列组合的简单计数问题知识讲解1.排列、组合及简单计数问题【知识点的知识】1、排列组合问题的一些解题技巧:①特殊元素优先安排;②合理分类与准确分步;③排列、组合混合问题先选后排;④相邻问题捆绑处理;⑤不相邻问题插空处理;⑥定序问题除法处理;⑦分排问题直排处理;⑧“小集团”排列问题先整体后局部;⑨构造模型;⑩正难则反、等价转化.对于无限制条件的排列组合问题应遵循两个原则:一是按元素的性质分类,二是按时间发生的过程进行分步.对于有限制条件的排列组合问题,通常从以下三个途径考虑:①以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;②以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③先不考虑限制条件,计算出排列或组合数,再减去不符合要求的排列或组合数.2、排列、组合问题几大解题方法:(1)直接法;(2)排除法;(3)捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”;(4)插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”;(5)占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则;(6)调序法:当某些元素次序一定时,可用此法;(7)平均法:若把kn个不同元素平均分成k组,每组n个,共有;(8)隔板法:常用于解正整数解组数的问题;(9)定位问题:从n个不同元素中每次取出k个不同元素作排列规定某r个元素都包含在内,并且都排在某r个指定位置则有;(10)指定元素排列组合问题:①从n个不同元素中每次取出k个不同的元素作排列(或组合),规定某r个元素都包含在内.先C后A策略,排列;组合;②从n个不同元素中每次取出k个不同元素作排列(或组合),规定某r个元素都不包含在内.先C后A策略,排列;组合;③从n个不同元素中每次取出k个不同元素作排列(或组合),规定每个排列(或组合)都只包含某r个元素中的s个元素.先C后A策略,排列;组合.例题精讲排列组合的简单计数问题例1.的展开式中,x的系数为___(用数字作答)例2.在的展开式中,x4的系数是____.例3.若,则n的展开式中,含x2项的系数为_______.当堂练习单选题练习1.计算2+3的值是()A.72B.102C.5070D.5100练习2.=()A.30B.24C.20D.15练习3.6本不同的书在书桌上摆成一排,要求甲,乙两本书必须放在两端,丙、丁两本书必须相邻,则不同的摆放方法有()种。
高中数学排列与组合知识点

高中数学排列与组合知识点排列组合是高中数学教学内容的一个重要组成部分,但由于排列组合极具抽象性,使之成为高中数学课本中教与学的难点.加之高中学生的认知水平和思维能力在一定程度上受到限制,所以在解题中经常出现错误.以下本人搜集整合了高中数学排列与组合相关知识点,希望可以帮助大家更好的学习这些知识。
高中数学排列与组合知识点汇编如下:一、排列1 定义(1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。
(2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为 Amn.2 排列数的公式与性质(1)排列数的公式: Amn=n(n-1)(n-2)…(n-m+1)特例:当m=n时, Amn=n!=n(n-1)(n-2)…×3×2×1规定:0!=1二、组合1 定义(1)从n个不同元素中取出 m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合(2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号 Cmn表示。
2 比较与鉴别由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。
排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。
因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。
三、排列组合与二项式定理知识点1.计数原理知识点①乘法原理:N=n1·n2·n3·…nM (分步) ②加法原理:N=n1+n2+n3+…+nM (分类)2. 排列(有序)与组合(无序)Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)! Ann =n!Cnm = n!/(n-m)!m!Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 k?k!=(k+1)!-k!3.排列组合混合题的解题原则:先选后排,先分再排排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素. 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)插空法(解决相间问题) 间接法和去杂法等等在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复和遗漏;(4)列出式子计算和作答.经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想.4.二项式定理知识点:①(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+-…+ Cn n-1abn-1+ Cnnbn特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn②主要性质和主要结论:对称性Cnm=Cnn-m最大二项式系数在中间。
乐乐课堂数学高中排列组合

乐乐课堂数学高中排列组合
1. 二项式定理:二项式定理是指给定两个非负整数n和k,其中n≥k,它们之间的关系式为:
Cnk=n!/(k!(n-k)!)
2. 概率论:概率论是研究不确定性结果出现的可能性大小以及出现概率的数学分支学科。
3. 排列组合:排列组合是一种数学统计方法,指从n个不同元素中取出m(m≤n)个元素所构成的组合数。
它描述的是在n个不同元素中任取m个元素进行排列或组合时,所形成的各种情况的数目。
1、组合:组合是指从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排列起来构成一个新的元素,称之为组合。
2、排列:排列是指从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排列起来构成一个新的元素,称之为排列。
排列的顺序十分重要,如果两个排列的元素相同,但是顺序不同,则视为不同的排列。
1. 交换律:交换两个元素不改变整体排列。
2. 结合律:把两个排列组合相加,得到的排列组合是两个排列组合的和。
3. 分配律:当同时发生两个事件时,可以先发生一个,确定结果后再发生另一个,最终结果和同时发生时结果是一样的。
4. 重复组合:重复多次取出相同元素的组合。
5. 组合概率:当多个事件的发生概率不变的情况下,求组合的概率。
高中数学排列组合

高中数学排列组合一、基本概念排列组合是数学中比较重要的一个分支,它是研究对象按照一定的规则,从有限个数中选出若干个数进行排列和组合的方法和样式。
1、排列排列是由一些元素按照一定顺序排列而成的整体。
排列是从n个不同元素中取出m个元素按一定顺序排列的方法数,用符号$A^m_n$表示。
例如:n个不同的元素依次排成m列,第一列有n种取法,第二列有(n-1)种取法,第三列有(n-2)种取法,依此类推,第m列有(n-m+1)种取法,则这n个元素排成m列有式子:$$ A_n^m=n(n-1)(n-2)...(n-m+1) $$2、组合组合是由一些元素按照任意排列组成的新整体。
组合是从n个不同元素中取出m个元素的不同组合数,用符号$C^m_n$表示。
例如:从4个球员中选出3人组成篮球队,有如下四种选法:$$ ABC,ABD,ACD,BCD $$将三个球员组成的篮球队作为一个整体,不考虑其顺序,则这4种选法仅算一种,所以这四种球员的组合方式有:$$ C_4^3=4 $$二、排列按顺序选择元素的方式叫做排列。
排列的计算方法是:从n个元素中取m个元素进行排列的方法有:$$ A_n^m=n(n-1)(n-2)...(n-m+1) $$特别地,当m=n时,有:$$ A_n^n=n! $$其中,n!表示n的阶乘,$n!=n(n-1)(n-2)...1$。
例1:从一组大小为6的数字中,任取4个数进行排列,求排列个数。
设全集为{1,2,3,4,5,6},任取其中4个元素进行排列。
$$ A_6^4=6\times 5\times 4\times 3=360 $$例2:一共有5位弟子,要从其中选出3位去参加武术比赛,求有多少种不同的组合方式。
设全集为{A,B,C,D,E},要从其中任选3个弟子参加武术比赛。
$$ C_5^3=10 $$三、组合组合是指从一组元素中任选m个元素,并将其看作一个整体。
组合的计算方法是:从n个元素中取m个元素进行组合的方法有:$$ C_n^m=\frac{A_n^m}{A_m^m}=\frac{n(n-1)(n-2)...(n-m+1)}{m!} $$特别地,当m=n时,有:$$ C_n^n=\frac{n!}{n!}=1 $$如果m>n,则组合数为0。
排列组合高考知识点

排列组合高考知识点排列组合是高中数学中比较重要的知识点之一,也是高考必考的内容。
掌握好排列组合的基本概念和解题方法,对于应对高考数学考试是非常关键的。
本文将从排列和组合两个方面对这一知识点进行详细的介绍和讲解。
一、排列排列是指从一组对象中选择若干个进行有序的排列。
在排列中,对象的顺序是非常重要的,即不同的顺序产生的结果是不同的。
1.1 基本概念在排列中,从n个不同对象中取出m (1≤m≤n)个进行排列,叫做从n个不同对象中取出m个的m排列(n次排列),用符号A(n,m)表示。
公式为:A(n,m)= n(n-1)(n-2) ... (n-m+1) = n!/(n-m)!其中,! 表示阶乘运算,即 n! = n(n-1)(n-2) ... 3*2*1。
1.2 解题思路解决排列问题的关键是要明确题目所求的是多少个对象的排列,以及是否要考虑顺序。
通常,在问题中会明确给出这些信息。
根据题目中的条件,使用相应的公式计算即可得出结果。
二、组合组合是指从一组对象中选择若干个进行无序的组合。
在组合中,对象的顺序不重要,即不同的顺序产生的结果是相同的。
2.1 基本概念在组合中,从n个不同对象中取出m (1≤m≤n) 个对象进行组合,叫做从n个不同对象中取出m个的m组合(n取m),用符号C(n,m)表示。
公式为:C(n,m)= n!/[(n-m)! * m!]2.2 解题思路解决组合问题的关键是要明确题目所求的是多少个对象的组合,以及是否要考虑顺序。
如果题目明确要求考虑顺序,则需要使用排列的方法;如果题目没有明确要求考虑顺序,则使用组合的方法。
根据题目中的条件,使用相应的公式计算即可得出结果。
三、排列组合的应用排列组合在实际问题中有着广泛的应用。
下面以几个实例来说明排列组合在解决问题中的作用。
3.1 奖项抽选假设某次抽奖活动中,有10个人参与,其中有5个奖项要分发。
问共有多少种分发奖项的方案?解:这是一个从10个人中选出5个的组合问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合
复习稳固
1.分类计数原理(加法原理)
完成一件事,有n 类方法,在第1类方法中有1m 种不同的方法,在第2类方法中有2m 种不同的方法,…,在第n 类方法中有n m
2.分步计数原理〔乘法原理〕
完成一件事,需要分成n 个步骤,做第1步有
m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m
3.分类计数原理分步计数原理区别
分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 一.特别元素和特别位置优先策略
例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.
解:由于末位和首位有特别要求,应该优先安排,
先排末位共有1
3C
然后排首位共有14C 最后排其它位置共有34A
由分步计数原理得113
434288C C A =
练习题:7种不同的花种在排成一列的花盆里,假设两种葵花不种在中间,也不种在两端的花盆里,问有多少不
同的种法?
二.相邻元素捆绑策略
例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.
解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排
列,同时对相邻元素内部进行自排。
由分步计数原理可得共有522
522480A A A =种不同的排法
三.不相邻问题插空策略
例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含
首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有54
56A A 种
四.定序问题倍缩空位插入策略
例4. 7人排队,其中甲乙丙3人顺序肯定共有多少不同的排法
解:(倍缩法)对于某几个元素顺序肯定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列
数除以这几个元素之间的全排列数,则共有不同排法种数是:73
73/A A
(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有4
7A 种方法,其余的三个位置甲乙丙共有 1种坐法,
则共有4
7A 种方法。
五.重排问题求幂策略
例5.把6名实习生分配到7个车间实习,共有多少种不同的分法
解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原理共有6
7种不同的排法 六.环排问题线排策略
例6. 8人围桌而坐,共有多少种坐法?
解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人44A 并从此位置把圆形展成直线其余7人共有〔8-1〕!种排法即7! 七.多排问题直排策略
例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法
解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.个特别元素有24A 种,再排后4个位置上
4
4
3
的特别元素丙有14A 种,其余的5人在5个位置上任意排列有55A 种,则共有215
445
A A A 种 八.排列组合混合问题先选后排策略
例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.
解:第一步从5个球中选出2个组成复合元共有2
5C 种方法.再把4个元素(包含一个复合元素)装入4个不
同的盒内有44A 种方法,依据分步计数原理装球的方法共有24
54C A
九.小集团问题先整体后局部策略
例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少
个?
解:把1,5,2,4当作一个小集团与3排队共有22A 种排法,再排小集团内部共有22
22A A 种排法,由分步
计数原理共有2
2
2
222A A A 种排法 .
十.元素相同问题隔板策略
例10.有10个运发动名额,分给7个班,每班至少一个,有多少种分配方案?
解:因为10个名额没有差异,把它们排成一排。
相邻名额之间形成9个空隙。
在9个空档中选6个位置插
个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有6
9C 种分法。
十一.正难则反总体淘汰策略
例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的
取法有多少种?
解:这问题中如果直接求不小于10的偶数很困难,可用总体淘汰法。
这十个数字中有5个偶数5个奇数,
所取的三个数含有3个偶数的取法有35C ,只含有1个偶数的取法有12
55C C ,和为偶数的取法共有123555C C C +。
再淘汰和小于10的偶数共9种,符合条件的取法共有1235559C C C +-
十二.平均分组问题除法策略
例12. 6本不同的书平均分成3堆,每堆2本共有多少分法?
解: 分三步取书得2
2
2
642C C C 种方法,但这里出现重复计数的现象,不妨记6本书为ABCDEF ,假设第一步取AB,
第二步取
CD,第三步取
EF
该分法记为(AB,CD,EF),则222
642C C C 中还有
(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有33A 种取法 ,而这些分法仅是
(AB,CD,EF)一种分法,故共有2223
6423/C C C A 种分法。
十三. 合理分类与分步策略
例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有
多少选派方法
解:10演员中有5人只会唱歌,2人只会跳舞3人为全能演员。
选上唱歌人员为标准进行研究只会唱的5
人中没有人选上唱歌人员共有22
33C C 种,只会唱的5人中只有1人选上唱歌人员1
1
2
534C C C 种,只会唱的5人中只有2人选上唱歌人员有22
55C C 种,由分类计数原理共有 2211222335
3455C C C C C C C ++种。
十四.构造模型策略
例14. 马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,
也不能关掉两端的2盏,求满足条件的关灯方法有多少种?
解:把此问题当作一个排队模型在6盏亮灯的5个空隙中插入3个不亮的灯有3
5C 种
十五.实际操作穷举策略
例15.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法
解:从5个球中取出2个与盒子对号有2
5C 种还剩下3球3盒序号不能对应,利用实际操作法,如果剩下3,4,5
号球, 3,4,5号盒3号球装4号盒时,则4,5号球有只有1种装法,同理3号球装5号盒时,4,5号球有
也只有1种装法,由分步计数原理有2
52C 种
十六. 分解与合成策略
例16. 30030能被多少个不同的偶数整除
分析:先把30030分解成质因数的乘积形式30030=2×3×5 × 7 ×11×13,依题意可知偶因数必先取
2,再从其余5个因数中任取假设干个组成乘积,全部的偶因数为:12345
55555
C C C C C ++++ 练习:正方体的8个顶点可连成多少对异面直线
解:我们先从8个顶点中任取4个顶点构成四体共有体共4
81258C -=,每个四面体有3对异面直线,正方体中
的8个顶点可连成358174⨯=对异面直线
十七.化归策略
例17. 25人排成5×5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种? 解:将这个问题退化成9人排成3×3方阵,现从中选3人,要求3人不在同一行也不在同一列,有多少选法.这样每行必有1人从其中的一行中选取1人后,把这人所在的行列都划掉,如此继续下去.从3×3方队中选3人的方
法有111321C C C 种。
再从5×5方阵选出3×3方阵便可解决问题.从5×5方队中选取3行3列有3355C C 选法所以从
5×5方阵选不在同一行也不在同一列的3人有33111
55321C C C C C 选法。
十八.数字排序问题查字典策略
例18.由0,1,2,3,4,5六个数字可以组成多少个没有重复的比324105大的数?
解:297221
122334455=++++=A A A A A N
十九.树图策略
例19.3人相互传球,由甲开始发球,并作为第一次传球,经过5次传求后,球仍回到甲的手中,则不同的传球方
法有______ 10=N
二十.复杂分类问题表格策略
例20.有红、黄、兰色的球各5只,分别标有A 、B 、C 、D 、E 五个字母,现从中取5只,要求各字母均有且三色
齐备,则共有多少种不同的取法 解:
例21.5
名“客〞,每个“客〞有7种住宿法,由乘法原理得75
种.。